

Multiparton evolution: recombination

Jochen Bartels, University Hamburg,

Les Houches, Feb. 15, 2011

based upon collaboration with M.G.Ryskin, St.Petersburg

MotivationRecombinationDiffraction

Introduction

Little doubt that we need multiple interactions in pp scattering at LHC

Theoretical background of multiple interactions: a (relatively) young field.

Questions:

- evolution equations : in x or in momentum scale ? (BFKL-type vs.higher twist B'F'KL)
- consistency requirements AGK cutting rules
- detailed form of evolution equations
- in course of evolution, change the number of parton chains (triple vertex)

This talk: address particular aspects

recombination (=correlation, swing,...), diffraction

Evolution of two chains = is double DGLAP good enough?

Motivation:

- corrections to double DGLAP
- diffraction
- saturation (ridge effect: Jamal's talk)

(diffraction)

Recombination: a few details

Production of two pairs of jets from two noninteracting chains: momentum loop

q serves as upper cutoff of the ladders close to the proton.

At small x: large anomalous dimension compensates the divergence near q=0.

$$\begin{split} \frac{d\sigma}{dY_{1}dY_{2}d_{1}^{2}d_{2}^{2}} &\sim \frac{1}{\tilde{R}^{4}} \frac{1}{(p_{1}^{2})^{2}} \frac{1}{(p_{2}^{2})^{2}} \int \frac{d\mu'}{2\pi i} \int \frac{d\mu}{2\pi i} \int \frac{d\mu'_{1}}{2\pi i} \int \frac{d\mu_{1}}{2\pi i} \int \frac{d\mu'_{2}}{2\pi i} \int \frac{d\mu'_{2}}{2\pi i} \int \frac{d\mu_{2}}{2\pi i} \cdot \int dY' \int dY \cdot \int \frac{d^{2}q}{q^{4}} \\ \text{(BFKL-like)} & \left[\left(\frac{q^{2}}{Q_{0}^{2}} \right)^{\mu'} e^{(Y_{tot} - Y')\chi(\mu')} \right]^{2} \cdot \left[\left(\frac{p_{1}^{2}}{q^{2}} \right)^{\mu'_{1}} e^{(Y' - Y_{1})\chi(\mu'_{1})} \right] \left[\left(\frac{p_{2}^{2}}{q^{2}} \right)^{\mu'_{2}} e^{(Y' - Y_{2})\chi(\mu'_{2})} \right] \\ \text{(DGLAP-like)} & \left[\left(\frac{p_{1}^{2}}{q^{2}} \right)^{\mu_{1}} e^{(Y_{1} - Y)\chi(\mu_{1})} \right] \left[\left(\frac{p_{2}^{2}}{q^{2}} \right)^{\mu_{2}} e^{(Y_{2} - Y)\chi(\mu_{2})} \right] \\ \text{(BFKL-like)} & \cdot \left[\left(\frac{q^{2}}{Q_{0}^{2}} \right)^{\mu} e^{Y_{\chi}(\mu)} \right]^{2} \end{split}$$

î

Color suppression: at first site ~ 10% per recombination

Closer look: less suppression: combinatorics (>1 for n=5 chains, 2 recombinations)

Evolution equations: two options

• evolution in rapidity (BKP)

• evolution in momentum scale (B'F'KL)

At each step of evolution: sum over all pairwise interactions

Diffraction

Rapidity gaps (on the partonic level) require color singlet states.

The HERA picture:

Counting problem: how much diffraction is inside the initial condition of DGLAP? parton density does not contain hard diffraction. Best: unify the two description.

Again the same counting problem. In addition: need the survival probability

Tuesday, February 15, 2011

Survival probability:

Second (and third..) chain fills the gap.

Simplest possibility: recombination

Tuesday, February 15, 2011

Conclusions:

Theory of multiple interactions needs more work:

- evolution equations
- recombination
- problems with diffraction

Main next task: numerical work

Hope: some of this maybe useful for Monte Carlo