Multiparton evolution: recombination

Jochen Bartels, University Hamburg,

Les Houches, Feb.I5, 20II

based upon collaboration with
M.G.Ryskin, St.Petersburg

- Motivation
- Recombination
-Diffraction

Introduction

Little doubt that we need multiple interactions in pp scattering at LHC
Theoretical background of multiple interactions: a (relatively) young field.
Questions:

- evolution equations : in \times or in momentum scale? (BFKL-type vs.higher twist B'F'KL)
- consistency requirements - AGK cutting rules
- detailed form of evolution equations
- in course of evolution, change the number of parton chains (triple vertex)

This talk: address particular aspects recombination (=correlation, swing,...), diffraction

Evolution of two chains $=$ is double DGLAP good enough?

Motivation:

- corrections to double DGLAP
- diffraction
- saturation (ridge effect: Jamal's talk)

Recombination: a few details

Production of two pairs of jets from two noninteracting chains:

Dominant: small \dot{q}^{2}, of order of initial scale Q_{0}^{2}, forward evolution

Include two recombinations:

Most important: the q integral $\quad \int \frac{d q^{2}}{q^{4}}$
q serves as upper cutoff of the ladders close to the proton.
At small x : large anomalous dimension compensates the divergence near $\mathrm{q}=0$.

$$
\frac{d \sigma}{d Y_{1} d Y_{2} d_{1}^{2} d_{2}^{2}} \sim \frac{1}{\tilde{R}^{4}} \frac{1}{\left(p_{1}^{2}\right)^{2}} \frac{1}{\left(p_{2}^{2}\right)^{2}} \int \frac{d \mu^{\prime}}{2 \pi i} \int \frac{d \mu}{2 \pi i} \int \frac{d \mu_{1}^{\prime}}{2 \pi i} \int \frac{d \mu_{1}}{2 \pi i} \int \frac{d \mu_{2}^{\prime}}{2 \pi i} \int \frac{d \mu_{2}}{2 \pi i} .
$$

$$
\int d Y^{\prime} \int d Y \cdot \int \frac{d^{2} q}{q^{4}}
$$

(BFKL-like)

$$
\left[\left(\frac{q^{2}}{Q_{0}^{2}}\right)^{\mu^{\prime}} e^{\left(Y_{t o t}-Y^{\prime}\right) \chi\left(\mu^{\prime}\right)}\right]^{2} .
$$

(DGLAP-like)

$$
\left[\left(\frac{p_{1}^{2}}{q^{2}}\right)^{\mu_{1}^{\prime}} e^{\left(Y^{\prime}-Y_{1}\right) \chi\left(\mu_{1}^{\prime}\right)}\right]\left[\left(\frac{p_{2}^{2}}{q^{2}}\right)^{\mu_{2}^{\prime}} e^{\left(Y^{\prime}-Y_{2}\right) \chi\left(\mu_{2}^{\prime}\right)}\right]
$$

$$
\left[\left(\frac{p_{1}^{2}}{q^{2}}\right)^{\mu_{1}} e^{\left(Y_{1}-Y\right) \chi\left(\mu_{1}\right)}\right]\left[\left(\frac{p_{2}^{2}}{q^{2}}\right)^{\mu_{2}} e^{\left(Y_{2}-Y\right) \chi\left(\mu_{2}\right)}\right]
$$

(BFKL-like)

$$
\cdot\left[\left(\frac{q^{2}}{Q_{0}^{2}}\right)^{\mu} e^{Y \chi(\mu)}\right]^{2}
$$

Paths of evolution:

a
b
recombination is favored if

- small x evolution near them proton
- momentum evolution near the hard jet

Color suppression per recombination

$$
\frac{1}{N_{c}^{2}-1}
$$

Color suppression: at first site $\sim 10 \%$ per recombination

Closer look: less suppression: combinatorics (>| for $n=5$ chains, 2 recombinations)

Evolution equations: two options

- evolution in rapidity (BKP)
- evolution in momentum scale ($\mathrm{B}^{\prime} \mathrm{F}^{\prime} K L$)

$$
\partial_{y} \varphi_{4}\left(k_{1}, \ldots k_{4} ; y\right)=
$$

$$
\left(\sum_{i j} H_{i j} \otimes \varphi_{4}\right)\left(k_{1}, \ldots k_{4} ; y\right)
$$

$$
\left(\sum_{i j} P_{i j} \otimes \psi_{4}\right)\left(x_{1}, \ldots x_{4} ; y\right)
$$

At each step of evolution: sum over all pairwise interactions

Diffraction

Rapidity gaps (on the partonic level) require color singlet states.

The HERA picture:

Counting problem: how much diffraction is inside the initial condition of DGLAP? parton density does not contain hard diffraction. Best: unify the two description.

The LHC picture:

Again the same counting problem. In addition: need the survival probability

Survival probability:

Second (and third..) chain fills the gap.

Simplest possibility: recombination

Conclusions:

Theory of multiple interactions needs more work:

- evolution equations
- recombination
- problems with diffraction

Main next task: numerical work

Hope: some of this maybe useful for Monte Carlo

