Jets & high-p_T Hadron Production in p-p collisions at CMS

Andreas Hinzmann for the CMS Collaboration

Winter Workshop on Recent QCD Advances at the LHC, Les Houches

15 Feb 2011

Outline

 $\sqrt{s} = 7 \text{ Te}$

10002000

p_{_} (GeV)

Total uncert

- Photon scale

Extranolation

Offset (+1PU)

- Total MPF

1. Jet reconstruction and performance in CMS

3. Inclusive jets

4. Di-jets and searches 5. Multi-jet final states for new Physics

1. Jet reconstruction and performance

3 Andreas Hinzmann

Jet reconstruction in CMS

Calorimeter Jets clustered from calorimeter towers

Track Jets clustered from tracks

Jet plus Tracks correct Calorimeter Jets using momentum of tracks

Particle Flow Jets

clustered from identified particles reconstructed using all detector components

- Default jet clustering algorithms for p+p collisions:
 - Anti- K_T with R=0.5 (and 0.7)

Jet energy calibration in CMS

CMS uses factorized approach

- 1. Offset correction: remove pile-up and noise contribution (treated as uncertainty in presented results)
- 2. MC-truth correction:
 - based on test-beam calibration and simulation
 - flaten jet response in p_T and η

5

Jet energy calibration in CMS – cont'd

3. In-situ residual correction:

- flaten jet response in η using di-jet p_T balance method
- flaten jet response in p_T using photon+jet Missing-E_T
 Projection Fraction method (MPF from D0)

Jet performance in CMS

- Jet calibration vs. η better than 1% per unit of pseudorapidity
- Jet energy scale uncertainty: 3-5% over whole p_T range
- Jet energy resolution from dijet p_T asymmetry method: 10% @ p_T = 100 GeV
- Jet position resolution in Φ and η : ~0.01 @ p_T = 100 GeV

2. Jet properties

Jet shapes

Integrated jet transverse shape:

$$\psi(r) = \frac{\sum\limits_{r_i < r} p_{Ti}}{\sum\limits_{r_i < R} p_{Ti}} \quad \langle \langle \langle r \rangle \rangle$$

- Probe transition between pQCD and soft gluon radiation
- Sensitive to the quark/gluon jet mixture
- Test parton shower event generators at non-perturbative levels

Jet shapes – cont'd

- Good agreement between data and theoretical models observed
- At 20 < p_T[GeV] < 50 Pythia tune D6T predicts slightly too broad jets while Herwig++ predicts slightly too narrow jets

3. Inclusive jets

11 Andreas Hinzmann

Inclusive jets

- Extending the high p_{T} • limit beyond Tevatron reach
- Accessing the low p_{T} part using ParticleFlow jet reconstruction
- Rapidity coverage |y|<3
- Derived using three jet types (Calo, JPT, PF) yielding compatible results
- **Good agreement between** data and NLO QCD
- Update with increased luminosity in preparation

Inclusive jets - cont'd

Theory:

NLO pQCD using NLOJet++

with CTEQ6.6 PDFs

- Data:
 - Ansatz resolution unfolding to particle level

Inclusive jets - cont'd

Theory:

PDF uncertainty from CTEQ6.6

 $\mu_{\rm R}$, $\mu_{\rm F}$ uncertainty: $p_{\rm T}/2 \rightarrow 2 p_{\rm T}$

Non-perturbative corrections:

- Systematic uncertainties:
 - Data:
 - Jet energy scale (5%)
 - Jet p_T resolution (10%)
 - Luminosity (11%)
 - 50% × (Pythia6 Herwig++) $\sqrt{s} = 7 \text{ TeV}$ CMS preliminary, 60 nb⁻¹ 60 Theory uncertainty (%) Jncertainty (%) 120 lvl < 0.5 **Total uncertainty Total uncertainty** lvl < 0.5 Absolute p_ (±5%) 100 PDF (CTEQ6.6) 40 Relative p_'(±1%) p_ resolution (±10%) NP (Pythia-Herwig++) 80 20 Scale ($\mu/2 \rightarrow 2\mu$) 60 40 0 20 -20 0 -20 -40 -40 Anti-k_T R=0.5 Jets Anti-k_T R=0.5 PF -60 30 20 30 100 200 1000 20 100 200 p_{_} (GeV) p_{_} (GeV)

4. Di-jets and searches for new physics

Di-jet event from 7 TeV collision

Two jets clustered using anti- k_T algorithm with R=0.7

Di-jet mass distribution

- Data in good agreement with Pythia6 + CMS simulation
- Search for narrow resonances • decaying to di-jets with natural width less than experimental resolution
- Use model-independent resonance search to obtain mass exclusion limits at 95% CL for a variety of resonance models

	Excluded Regions (TeV)
String Resonance	0.50-2.50
Excited Quark	0.50-1.58
Axigluon/Coloron	0.50-1.17, 1.47-1.52
E₀ Diquark	0.50-0.58, 0.97-1.08, 1.45-1.60

Extended measurement with comparison • to pQCD at particle level in preparation

Di-jet centrality ratio

• Di-jet centrality ratio:

 $N(|\eta| < 0.7) / N(0.7 < |\eta| < 1.3)$

- Precison test of pQCD with low systematic uncertainties due to ratio
- Sensitive to contact interactions (CI) and dijet resonances

 $\mathcal{L}_{qq} = + \frac{2\pi}{\Lambda^2} (\overline{q}_L \gamma^\mu q_L) (\overline{q}_L \gamma_\mu q_L)$

- Limit on CI scale Λ using frequentist inspired CL_S:
 - Exclude $\Lambda < 4.0$ TeV at 95% CL
 - Expected limit: $\Lambda < 2.9 \text{ TeV}$

Di-jet angular distributions

- Probe parton-parton scattering angle • $\chi_{\text{dijet}} = e^{|y_1 - y_2|} \sim \frac{1 + |\cos \theta^*|}{1 - |\cos \theta^*|}$
- QCD like t-channel \rightarrow flat in χ
- Isotropic new physics peaks at low χ (e.g. contact interactions (CI))
- Low systematic uncertainties due to normalization in each mass bin
- Good agreement with pQCD predictions 12
- Exclude $\Lambda < 5.6$ TeV at 95% CL
- Expected limit: $\Lambda < 5.0$ TeV
- Most stringent limit to date

Data

5. Multi-jet final states

20 Andreas Hinzmann

Di-jet azimuthal decorrelation

 Measurement of azimuthal angle between two leading jets:

 $\Delta \phi_{\text{dijet}} = |\phi_1 - \phi_2|$

- Sensitive to higher order radiation w/o explicitly measuring the radiated jets
- Low systematic uncertainties due to normalization in each p_T bin
- Useful for tuning phenomenological parameters (ISR) in MC event generators

CERN-PH-EP-2010-086, submitted to PRL

Di-jet azimuthal decorrelation - cont'd

- Pythia6 and Herwig++ in reasonable agreement with data
- PYTHIA8.135 used in this analysis. In PYTHIA8.145 comparison improve due to a bug fix

3-jet to 2-jet ratio

• Ratio of inclusive 3-jet to 2-jet cross section:

 $R_{32} = \frac{d\sigma_3/dH_{\rm T}}{d\sigma_2/dH_{\rm T}}$

- Plateau sensitive to strong coupling
- Good agreement with Pythia6 and Madgraph within uncertainties
- Update with increased luminosity in preparation

Hadronic event shapes

- Event shapes provide geometric information about energy flow in hadronic events
- Central transverse thrust: maximum of projection on a transverse axis

$$\ln \tau_{\perp,\mathcal{C}} = \ln(1 - T_{\perp,\mathcal{C}})$$
$$T_{\perp,C} \equiv \max_{\vec{n}=-} \frac{\sum_{i\in\mathcal{C}} |\vec{p}_{\perp,i} \cdot \vec{n}_T|}{\sum_{i\in\mathcal{C}} |\vec{p}_{\perp,i} \cdot \vec{n}_T|}$$

- $y = \max_{\vec{n}_T} \frac{1}{\sum_{i \in \mathcal{C}} p_{\perp,i}}$
- Measured in exclusive p_T bins: 90, 125, 200 GeV
- Essential for tuning non-perturbative effects in MC event generators
- Low systematic uncertainties due to normalization in p_T bins
- Dedicated talk by Matthias Weber (ETH Zürich)

Conclusions

- Excellent performance of LHC in 2010
- Rich variety of results from high- p_T QCD program at CMS
 - Rather precise jet measurements with first CMS data
 - Many analysis already exceed Tevatron reach
 - Global data characteristics correctly described by QCD
 - Detailed measurements of jets and their characteristics constrain model building
 - Instruments for search for new physics evaluated on the data
- All CMS public results: <u>https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResults</u>

Backup

26 Andreas Hinzmann

The CMS detector

27 Andreas Hinzmann

Collected data in 2010

CMS trigger system

- Two-tiered system:
 - L1: hardware, firmware (40 MHz \rightarrow 100 kHz)
 - HLT: high-level software (100 kHz \rightarrow ~100-200 Hz)
- Minimum Bias Trigger
 - Coincidence of Beam Scintillator Counters
- Jet Triggers
 - Using uncalibrated Calorimeter Jets
 - >99% efficient above turn-on
 - Lowest threshold trigger unprescaled over 2010 run: Jet140u

Jet performance in CMS – cont'd

Inclusive jets - cont'd

Di-jet azimuthal decorrelation - cont'd

32 Andreas Hinzmann

Hadronic event shapes - cont'd

Hadronic event shapes - cont'd

34 Andreas Hinzmann