

Heavy quark production in pp at the LHC

Ingo Schienbein LPSC Grenoble/Université Joseph Fourier

in collaboration with B. Kniehl, G. Kramer, H. Spiesberger

Winter Workshop on Recent QCD Advances at the LHC Les Houches, February 13 – 18, 2011

OUTLINE

- HEAVVY QUARKS IN PQCD
- **2** HADROPRODUCTION OF HEAVY QUARKS: THEORY
- **3** APPLICATIONS
- **4** PREDICTIONS FOR THE LHC
- **5** SUMMARY

Heavy quarks in pQCD

HEAVY QUARKS

A quark *h* is heavy : $\Leftrightarrow m_h \gg \Lambda_{QCD} \sim 250 \text{ MeV}$

- $m_h \gg \Lambda_{\text{QCD}} \Rightarrow \alpha_s(m_h^2) \propto \ln^{-1}(\frac{m_h^2}{\Lambda_{\text{OCD}}^2}) \ll 1$ (asymptotic freedom)
- m_h sets hard scale; acts as long distance cut-off
- Perturbtation theory (pQCD) applicable

charm:	$m_c \sim 1.5~{ m GeV}$	$\Lambda_{ m QCD}/m_c\sim 0.17$	$\alpha_{s}(m_{c}^{2})\sim0.34$
bottom:	$m_b\sim 5~{ m GeV}$	$\Lambda_{ m QCD}/m_b\sim 0.05$	$lpha_s(m_b^2)\sim 0.21$
top:	$m_t \sim 175~{ m GeV}$	$\Lambda_{ m OCD}/m_t \sim 0.001$	$\alpha_{\rm s}(m_t^2) \sim 0.11$

- The smaller the ratio Λ_{QCD}/m_h , the smaller effects of non-perturbative QCD (such as hadronization)
- Top quark decays before it could hadronize due to its large mass ($\Gamma \propto m_t^3$):

 $\Gamma \simeq \Gamma(t \to bW) \simeq rac{G_F m_t^3}{8\pi\sqrt{2}} |V_{tb}|^2 \simeq 1.76 \ {
m GeV} \ (rac{m_t}{175 \ {
m GeV}})^3$

Requirements:

- (1) $\mu \ll m$: Decoupling of heavy degrees of freedom
- (2) $\mu \gg m$: IR-safety
- (3) $\mu \sim m$: Correct threshold behavior

Problems:

- Multiple hard scales: m_c, m_b, m_t, μ
- Mass-independent factorization/renormalization schemes like MS
- A single $\overline{\text{MS}}$ scheme cannot meet requirements (1) and (3) (is unphysical).

Way out: Patchwork of $\overline{\text{MS}}$ schemes S^{n_f, n_R}

- Variable Flavor-Number Scheme (VFNS): $S^{3,3} \rightarrow S^{4,4} \rightarrow S^{5,5}$
- Fixed Flavor-Number Scheme (FFNS): $S^{3,3} \rightarrow S^{3,4} \rightarrow S^{3,5}$ (3-FFNS)
- Masses reintroduced by backdoor: threshold corrections (=matching conditions)

3-FFNS/Fixed Order:

- No charm PDF! Of course need exp. Input for u, d, s, g PDFs at scale Q₀⁽³⁾
- finite collinear logs $\ln Q/m_c$ arise \rightarrow are kept in hard part (unresummed, in fixed order)
- Requirement (3) naturally satisfied
- Not IR-safe, does not meet requirement (2):
 - Not valid for Q >> m_c
 - Can we quantify? Valid for $Q < m_c, 3m_c, 5m_c$?

Variable Flavour Number Scheme (VFNS):

- often large ratios of scales involved: multi-scale problems For $Q \gg m_c$: write $\ln Q/m_c = \ln \mu/m_c + \ln Q/\mu$, subtract $\ln \mu/m_c$ and resum $\ln \mu/m_c$ by introducing charm PDF at $Q_0^{(4)} \simeq m_c$ using a perturbative boundary condition
- $Q < Q_0 : n_f = 3$ no charm PDF, $Q \ge Q_0 : n_f \rightarrow n_f + 1$, charm PDF without fit parameters
- IR-safe, satisfies requirement (2); resums colliner logarithms
- Problem: original ZM-VFNS (=massless parton model) only valid for Q >> m (Quantify?)
- GM-VFNS: need extra work to satisfy requirement (3) but then valid for all scales Q! approaches FFNS for Q ~ m, approaches ZM-VFNS for Q >> m

HEAVY FLAVOUR SCHEMES AND PDFS

- GM-VFNS essential for W, Z cross sections at the LHC [see talk by M. Guzzi]
- Most of the most recent global analyses of proton PDFs use a version of a GM-VFNS
 - MSTW08: TR scheme
 - CTEQ6.6/CT10: S-ACOT χ
 - NNPDF2.1: FONLL
 - HERANPDF1.0: same as MSTW08
 - GJR08, JR09: as GRV in a FFNS
 - CTEQ5,CTEQ6.1,NNPDF2.0,... and older: ZM-VFNS
- The various GM-VFN schemes are 'tuned to' the DIS structure functions F^c₂, F^c_L

IF THESE SCHEME ARE NOT JUST COOKING RECIPES BUT PQCD FORMALISMS WITH HEAVY QUARKS, THEY SHOULD BE APPLICABLE TO OTHER PROCESSES AS WELL

8/54

Hadroproduction of heavy quarks: Theory

 $A + B \rightarrow H + X$: $d\sigma = \sum_{i,j,k} f_i^A(x_1) \otimes f_j^B(x_2) \otimes d\sigma(ij \rightarrow kX) \otimes D_k^H(z)$

sum over all possible subprocesses $i + j \rightarrow k + X$

Parton distribution functions: $f_i^A(x_1, \mu_F), f_j^B(x_2, \mu_F)$ non-perturbative input long distance universal Hard scattering cross section: $d\sigma(\mu_F, \mu'_F, \alpha_s(\mu_R), [\frac{m_h}{p_T}])$ perturbatively computable short distance (coeffi cient functions) Fragmentation functions: $D_k^H(z, [\mu_F])$ non-perturbative input long distance universal

Accuracy:

light hadrons: $\mathcal{O}((\Lambda/p_T)^p)$ with p_T hard scale, Λ hadronic scale, p = 1, 2 heavy hadrons: if m_h is neglected in $d\sigma$: $\mathcal{O}((m_h/p_T)^p)$

```
Details (subprocesses, PDFs, FFs; mass terms) depend on the Heavy Flavour Scheme
```

FFNS/Fixed Order

Start with FFNS = Fixed Order:

- NLO calculation more than 20 years old, very well tested
- Allows to predict the total cross section
- Allows to compute *p*_T spectrum if !(*p*_T >> *m*) (up to inclusion of a non-perturbative FF which is very hard)

Compare data with best FFNS prediction!

- Find p_T -range where FFNS applicable. Guess: $p_T = 5m$ still ok.
- When need for resummation of ln *m* terms visible? (Apart from smaller uncertainty band in resummed theory)

As described before: GM-VFNS \rightarrow FFNS for $p_T \sim m$

Leading order subprocesses:

- 1. $gg \rightarrow Q\bar{Q}$
- 2. $q\bar{q} \rightarrow Q\bar{Q}$ (q = u, d, s)

- The gg-channel is dominant at the LHC ($\sim 85\%$ at $\sqrt{S} = 14$ TeV).
- The total production cross section for heavy quarks is finite. The minimum virtuality of the t-channel propagator is m². Sets the scale in α_s. Perturbation theory should be reliable.
- Note: For $m^2 \rightarrow 0$ total cross section would diverge.

[See M. Mangano, hep-ph/9711337; Textbook by Ellis, Stirling and Webber]

Next-to-leading order (NLO) subprocesses:

- 1. $gg \rightarrow Q\bar{Q}g$
- 2. $q\bar{q} \rightarrow Q\bar{Q}g$ (q = u, d, s)
- 3. $gq \rightarrow Q\bar{Q}q, g\bar{q} \rightarrow Q\bar{Q}\bar{q}$ [new at NLO]
- 4. Virtual corrections to $gg \rightarrow Q\bar{Q}$ and $q\bar{q} \rightarrow Q\bar{Q}$

NLO corrections for σ_{tot} and differential cross sections $d\sigma/dp_T dy$ known since long:

- Nason, Dawson, Ellis, NPB303(1988)607; Beenakker, Kuif, van Neerven, Smith, PRD40(1989)54 [σ_{tot}]
- NDE, NPB327(1989)49; (E)B335(1990)260; Beenakker *et al.*,NPB351(1991)507 [*d*σ/*d*p_T*d*y]

Well tested by recalculations and zero-mass limit:

- Bojak, Stratmann, PRD67(2003)034010 [*dσ*/*dp*_T*dy* (un)polarized]
- Kniehl, Kramer, Spiesberger, IS, PRD71(2005)014018 [$m \rightarrow 0$ limit of diff. x-sec]
- Czakon, Mitov, NPB824(2010)111 [σ_{tot}, fully analytic]

HEAVY QUARK HADROPRODUCTION: SOME FIXED ORDER RESULTS

- $d\sigma/dp_T$ for the process $pp \rightarrow B^+X$; Fragmentation $b \rightarrow B$ via Peterson-FF
- CTEQ6.1 PDFs (slightly inconsistent)
- Prediction in NLO perturbation theory

Remarks:

- Fixed order theory in reasonable agreement with Tevatron data up to $p_T \simeq 5 m_b$
- At p_T ≤ m_b factorization less obvious. Depends on definition of convolution variable z: p_B = zp_b or p^B_T = zp^b_T or p⁺_B = zp⁺_b or p⁼_B = zp^b_b
- Less hadronization effects than originally believed:

 ϵ-parameter small corresponding to a hard fragmentation function. Harder FF → harder p_T-spectrum
- Larger $\alpha_s(M_Z) \rightarrow$ harder p_T -spectrum
- Mass dependence imortant for $p_T \lesssim m$ (peak) $ightarrow \sigma_{tot}$
- Only the 4th or 5th Mellin-moment of the FF is relevant for large p_T [M. Mangano]: $d\sigma^b/dp_T(b) \simeq A/p_T(b)^n$ with $n \simeq 4, \ldots, 5$ [see talk by F. Arleo]

 $\frac{d\sigma^{B}/dp_{T}(B) = \int dz/z D(z) d\sigma^{b}/dp_{T}(b)[p_{T}(b) = p_{T}(B)/z]}{A/p_{T}(B)^{n} \times \int dz z^{n-1} D(z)}$

ZM-VFNS/RS (RS: Resummed)

Next ZM-VFNS/RS which is the baseline for $p_T >> m$

- Again NLO calculation more than 20 years old, very well tested
- Allows to compute p_T spectrum if $p_T >> m$
- Needs scale-dependent FFs for quarks and gluons $D_q^H(z, \mu_F), D_g^H(z, \mu_F')$
- Same theory used for the computation of inclusive π or K production.

Compare data with best ZM-VFNS prediction!

- Find smallest *p_T* where ZM-VFNS applicable.
- m/p_T terms neglected.
- Is there an overlapping region where both, FFNS and ZM-VFNS are valid?

As said before: GM-VFNS \rightarrow ZM-VFNS for $\rho_T >> m$

NLO calculation: [Aversa, Chiappetta, Greco, Guillet, NPB327(1989)105]

- 1. $gg \rightarrow qX$
- 2. $gg \rightarrow gX$
- 3. *qg* → *gX*
- 4. $qg \rightarrow qX$
- 5. $q\bar{q} \rightarrow gX$
- 6. $q\bar{q} \rightarrow qX$
- 7. $qg \rightarrow \bar{q}X$
- 8. $qg \rightarrow \bar{q}' X$
- 9. $qg \rightarrow q'X$
- 10. $qq \rightarrow gX$
- 11. $qq \rightarrow qX$
- 12. $q\bar{q} \rightarrow q'X$
- 13. $q\bar{q}' \rightarrow gX$
- 14. $q\bar{q}' \rightarrow qX$
- 15. $qq' \rightarrow gX$
- 16. $qq' \rightarrow qX$

 \oplus charge conjugated processes

One-particle inclusive production in a GM-VFNS

FONLL = FO+NLL [1]

$$FONLL = FO + (RS - FOM0)G(m, p_T)$$

FO: Fixed Order; FOM0: Massless limit of FO; RS: Resummed

$$G(m,p_T)=\frac{p_T^2}{p_T^2+25m^2}$$

$$\Rightarrow \text{FONLL} = \begin{cases} \text{FO} & : & \text{p}_{\text{T}} \lesssim 5\text{m} \\ \text{RS} & : & \text{p}_{\text{T}} \gtrsim 5\text{m} \end{cases}$$

[1] Cacciari, Greco, Nason, JHEP05(1998)007

Fragmentation functions:

- $D_i^H(z,\mu_F') = D_i^Q \otimes D_Q^H$ where:
 - D^Q_i(z, μ'_F): perturbative fragmentation functions of i = q, g, Q into an on-shell heavy quark Q
 - D^H_Q(z): scale-independent, non-perturbative FF describing transition of heavy quark to heavy hadron
- Non-perturbative FF fi tted to $e^+e^- \rightarrow DX$, BX data

Applications available for:

- $\gamma^* + p \rightarrow D^{*,0,+} + X$ photoproduction
- *p* + *p*→ (*D*⁰, *D*^{*±}, *D*[±], *D*[±]_s, Λ[±]_c) + X good description of Tevatron data
- *p* + *p*→ *B* + *X* good description of Tevatron data
- *p* + *p* → *D*, *B* + *X* good description of RHIC data

[JHEP0103(2001)006]

[JHEP05(1998)007]

[PRL89(2002)122003,JHEP07(2004)033]

[PRL95(2005)122001]

Factorization Formula:

$$d\sigma(p\bar{p} \to D^{\star}X) = \sum_{i,j,k} \int dx_1 dx_2 dz f_i^p(x_1) f_j^{\bar{p}}(x_2) \times d\hat{\sigma}(ij \to kX) D_k^{D^{\star}}(z) + \mathcal{O}(\alpha_s^{n+1}, (\frac{\Lambda}{Q})^p)$$

Q: hard scale, p = 1, 2

- d
 *d
 ^φ_F*, μ'_F, α_s(μ_R), m_h/_{ρ_T}): hard scattering cross sections
 free of long-distance physics → m_h kept
- PDFs $f_i^p(x_1, \mu_F), f_i^{\bar{p}}(x_2, \mu_F)$: $i, j = g, q, c \quad [q = u, d, s]$
- FFs $D_k^{D^\star}(z,\mu_F')$: k = g,q,c

 \Rightarrow need short distance coefficients including heavy quark masses

[1] J. Collins, 'Hard-scattering factorization with heavy quarks: A general treatment', PRD58(1998)094002

I. Schienbein (LPSC Grenoble) Heavy quark production in pp at the LHC February 13

LIST OF SUBPROCESSES: GM-VFNS

Only light lines H	eavy quark initiated ($m_Q = 0$)	Mass effects: $m_Q \neq 0$
$f g g \to q X$	0 -	
$ 2 gg \to gX $	2 -	2 -
3 $qg \rightarrow gX$	$ 3 Qg \to gX $	3 -
		4 -
$ \ {\bf 9} \ q\bar{q} \rightarrow g X $		5 -
$\mathbf{6} q\bar{q} \to q\mathbf{X}$		6 -
		7 -
8 $qg \rightarrow \bar{q}' X$	8 Qg $\rightarrow \bar{q}X$	$ 8 \ qg \to \bar{Q} X $
		$ 9 qg \rightarrow QX $
$\textcircled{0} qq \rightarrow gX$	$\textcircled{0} QQ \rightarrow gX$	1 -
	$\textcircled{0} QQ \rightarrow QX$	① -
	\mathbf{I} $\mathbf{Q} \bar{\mathbf{Q}} ightarrow q X$	
$\textcircled{B} q\bar{q}' \to gX$	${ m I} { m I} { m I} { m Q} ar q ightarrow gX, q ar Q ightarrow gX$	B -
$\mathbf{I} \mathbf{Q} \ \mathbf{q} \mathbf{\bar{q}}' \to \mathbf{q} \mathbf{X}$	${f Q} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	🕐 -
	$\textcircled{5} Qq \to gX, qQ \to gX$	(b) -
		6 -
I. Schienbein (LPSC Grenoble)	Heavy quark production in pp at the LHC	February 13–18, 2011

26/54 February 13-18, 2011

Mass terms contained in the hard scattering coeffi cients:

```
d\hat{\sigma}(\mu_F, \mu_{F'}, \alpha_s(\mu_R), \frac{m}{p_T})
```

Two ways to derive them:

 Compare massless limit of a massive fi xed-order calculation with a massless MS calculation to determine subtraction terms

[Kniehl,Kramer,IS,Spiesberger,PRD71(2005)014018]

OR

(2) Perform mass factorization using partonic PDFs and FFs

[Kniehl,Kramer,IS,Spiesberger,EPJC41(2005)199]

 Compare limit m → 0 of the massive calculation (Merebashvili et al., Ellis, Nason; Smith, van Neerven; Bojak, Stratmann; ...) with massless MS calculation (Aurenche et al., Aversa et al., ...)

 $\lim_{m\to 0} \mathrm{d}\tilde{\sigma}(m) = \mathrm{d}\hat{\sigma}_{\overline{\mathrm{MS}}} + \Delta \mathrm{d}\sigma$

 \Rightarrow Subtraction terms

$$\mathrm{d}\sigma_{\mathrm{sub}}\equiv\Delta\mathrm{d}\sigma=\lim_{m
ightarrow0}\mathrm{d} ilde{\sigma}(m)-\mathrm{d}\hat{\sigma}_{\overline{\mathrm{MS}}}$$

Subtract dσ_{sub} from massive partonic cross section while keeping mass terms

 $\mathrm{d}\hat{\sigma}(m) = \mathrm{d}\tilde{\sigma}(m) - \mathrm{d}\sigma_{\mathrm{sub}}$

 $\rightarrow d\hat{\sigma}(m)$ short distance coeffi cient including m dependence

 \rightarrow allows to use PDFs and FFs with $\overline{\rm MS}$ factorization \otimes massive short distance cross sections

- Treat contributions with charm in the initial state with m = 0
- Massless limit: technically non-trivial, map from phase-space slicing to subtraction method

I. Schienbein (LPSC Grenoble) Heavy quark production in pp at the LHC February 13–18, 2011 28 / 54

Mass factorization

Subtraction terms are associated to mass singularities: can be described by partonic PDFs and FFs for collinear splittings $a \rightarrow b + X$

• initial state: $f_{g \to Q}^{(1)}(x, \mu^2) = \frac{\alpha_{\delta}(\mu)}{2\pi} P_{g \to q}^{(0)}(x) \ln \frac{\mu^2}{m^2}$ $f_{Q \to Q}^{(1)}(x, \mu^2) = \frac{\alpha_{\delta}(\mu)}{2\pi} C_F \left[\frac{1+z^2}{1-z} (\ln \frac{\mu^2}{m^2} - 2\ln(1-z) - 1)\right]_+$ $f_{g \to g}^{(1)}(x, \mu^2) = -\frac{\alpha_{\delta}(\mu)}{2\pi} \frac{1}{3} \ln \frac{\mu^2}{m^2} \delta(1-x)$

- final state: $d_{g \to Q}^{(1)}(z, \mu^2) = \frac{\alpha_s(\mu)}{2\pi} P_{g \to q}^{(0)}(z) \ln \frac{\mu^2}{m^2}$ $d_{Q \to Q}^{(1)}(z, \mu^2) = C_F \frac{\alpha_s(\mu)}{2\pi} \left[\frac{1+z^2}{1-z} \left(\ln \frac{\mu^2}{m^2} 2\ln(1-z) 1 \right) \right]_+$
- Other partonic distribution functions are zero to order α_s

[Mele, Nason; Kretzer, Schienbein; Melnikov, Mitov]

(2) SUBTRACTION TERMS VIA $\overline{\text{MS}}$ MASS FACTORIZATION: $a(k_1)b(k_2) \rightarrow Q(p_1)X$

$$\begin{array}{ll} \mbox{Fig. (a):} & d\sigma^{\rm sub}(ab \to QX) &= \int_0^1 dx_1 \ f_{a \to i}^{(1)}(x_1, \mu_F^2) \ d\hat{\sigma}^{(0)}(ib \to QX)[x_1k_1, k_2, p_1] \\ &\equiv \ f_{a \to i}^{(1)}(x_1) \otimes d\hat{\sigma}^{(0)}(ib \to QX) \end{array}$$

$$\begin{array}{lll} \underline{\text{Fig. (b):}} & d\sigma^{\text{sub}}(ab \to QX) & = & \int_0^1 dx_2 \, f_{b \to j}^{(1)}(x_2, \mu_F^2) \, d\hat{\sigma}^{(0)}(aj \to QX)[k_1, x_2 k_2, \rho_1] \\ & \equiv & f_{b \to j}^{(1)}(x_2) \otimes d\hat{\sigma}^{(0)}(aj \to QX) \end{array}$$

 $d\sigma^{\rm sub}(ab \to QX) = \int_0^1 dz \, d\hat{\sigma}^{(0)}(ab \to kX)[k_1, k_2, z^{-1}p_1] \, d_{k \to Q}^{(1)}(z, {\mu_F'}^2)$ Fig. (c): $\equiv d\hat{\sigma}^{(0)}(ab \rightarrow kX) \otimes d_{k}^{(1)}(z)$

[1] Kniehl, Kramer, I.S., Spiesberger, EPJC41(2005)199

I. Schienbein (LPSC Grenoble) February 13-18, 2011 Heavy quark production in pp at the LHC

GRAPHICAL REPRESENTATION OF SUBTRACTION TERMS FOR $q\bar{q} \rightarrow Q\bar{Q}g$ and $gq \rightarrow Q\bar{Q}q$

$$\frac{d\hat{\sigma}^{(0)}(q\bar{q} \rightarrow Q\bar{Q}) \otimes d^{(1)}_{Q \rightarrow Q}(z):}{d\hat{\sigma}^{(0)}(q\bar{q} \rightarrow gg) \otimes d^{(1)}_{g \rightarrow Q}(z):} \xrightarrow{\tau_{0} \sigma \sigma \sigma \sigma \sigma} \xrightarrow{\tau_{0} \sigma \sigma \sigma \sigma} \xrightarrow{\tau_{0} \sigma \sigma \sigma} \xrightarrow{\tau_{0} \sigma \sigma} \xrightarrow{\tau_{0} \sigma \sigma \sigma} \xrightarrow{\tau_{0} \sigma} \xrightarrow{\tau_{0} \sigma \sigma} \xrightarrow{\tau_{0} \sigma \sigma} \xrightarrow{\tau_{0} \sigma} \xrightarrow{\tau_{0} \sigma \sigma} \xrightarrow{\tau_{0} \sigma$$

$$rac{\mathrm{d}\hat{\sigma}^{(0)}(gq
ightarrow gq)\otimes d^{(1)}_{g
ightarrow Q}(z):}{f^{(1)}_{q
ightarrow Q}(x_1)\otimes \mathrm{d}\hat{\sigma}^{(0)}(Qq
ightarrow Qq):}$$

Applications

Applications available for

- γ + γ → D^{*±} + X direct and resolved contributions
- $\gamma^* + p \rightarrow D^{*\pm} + X$ photoproduction
- *p* + *p*→ (*D*⁰, *D*^{*±}, *D*[±], *D*[±]_s, Λ[±]_c) + X good description of Tevatron data
- $p + \bar{p} \rightarrow B + X$ works for Tevatron data at large p_T
- work in progress for $e + p \rightarrow D + X$

EPJC22, EPJC28

EPJC38, arXiv:0902.3166 [EPJC]

PRD71, PRL96, arXiv:0901.4130

PRD77

Input parameters:

- $\alpha_{s}(M_{Z}) = 0.1181$
- $m_c = 1.5 \text{ GeV}, m_b = 5 \text{ GeV}$
- PDFs: CTEQ6M (NLO)
- FFs: NLO FFs from fits to LEP-OPAL, Belle/CLEO data initial scale for evolution: μ₀ = m_c (D-mesons) resp. μ₀ = m_b (B-mesons)
- Default scale choice: $\mu_R = \mu_F = \mu'_F = m_T$ where $m_T = \sqrt{p_T^2 + m^2}$

FRAGMENTATION FUNCTIONS

FF for $c \to D^*$ from fi tting to e^+e^- data 2008 analysis based on GM-VFNS $\mu_0 = m$

global fi t: data from ALEPH, OPAL, BELLE, CLEO

BELLE/CLEO fi t

[KKKS: Kneesch, Kramer, Kniehl, IS NPB799 (2008)]

tension between low and high energy data sets \rightarrow speculations about non-perturbative (power-suppressed) terms

HADROPRODUCTION OF D^0 , D^+ , D^{*+} , D_s^+ GM-VFNS results w/ KKKSc FFs [1]

• $d\sigma/dp_T [nb/GeV]$ $|y| \le 1$ prompt charm

- Uncertainty band: $1/2 \le \mu_R/m_T, \mu_F/m_T \le 2$ $(m_T = \sqrt{p_T^2 + m_c^2})$
- CDF data from run II [2]
- GM-VFNS describes data within errors

[1] Kniehl, Kramer, IS, Spiesberger, arXiv:0901.4130[hep-ph], PRD(to appear)

[2] Acosta et al., PRL91(2003)241804

I. Schienbein (LPSC Grenoble) Heavy quark production in pp at the LHC

COMPARISON W/ PREVIOUS KK FFs [1]

New KKKSc FFs improve agreement w/ CDF data.

[1] Kniehl, Kramer, PRD74(2006)037502

I. Schienbein (LPSC Grenoble)

Heavy quark production in pp at the LHC

HADROPRODUCTION OF B^0 , B^+ [1] New FFs from LEP1/SLC data [2]

 $D(x, \mu_0^2) = N \frac{x(1-x)^2}{[(1-x)^2 + \epsilon x]^2}$

Kartvelishvili-Likhoded

 $D(x,\mu_0^2) = Nx^{\alpha}(1-x)^{\beta}$

[1] Kniehl, Kramer, IS, Spiesberger, PRD77(2008)014011

[2] ALEPH, PLB512(2001)30; OPAL, EPJC29(2003)463; SLD, PRL84(2000)4300; PRD65(2002)092006

I. Schienbein (LPSC Grenoble)

Heavy quark production in pp at the LHC

February 13–18, 2011 39 / 54

GM-VFNS PREDICTION VS. CDF II [1,2]

- CDF (1.96 TeV):
 - open squares J/ψX [1]
 - solid squares $J/\psi K^+$ [2]
- CTEQ6.1M PDFs

•
$$\Lambda_{\overline{\rm MS}}^{(5)} = 227 \text{ MeV} \rightsquigarrow \alpha_{\rm S}^{(5)} = 0.1181$$

•
$$1/2 \le \mu_R/m_T, \mu_F/m_T, \mu_R/\mu_F \le 2$$

 $(m_T = \sqrt{p_T^2 + m_b^2})$

[1] CDF, PRD71(2005)032001[2] CDF, PRD75(2007)012010

I. Schienbein (LPSC Grenoble)

Heavy quark production in pp at the LHC

- CDF II (preliminary) [1]
- $\mu_R = \mu_F = m_T$
- for $p_T \gg m_b$:
 - GM-VFN merges w/ ZM-VFN
 - FFN breaks down
- data point in bin [29,40] favors GM-VFN

[1] Kraus, FERMILAB-THESIS-2006-47; Annovi, FERMILAB-CONF-07-509-E

FFN vs. CDF II [1]

- obsolete FFN as above
- up-to-date FFN evaluated with
 - CTEQ6.1M PDFs
 - m_b = 4.5 GeV

•
$$\Lambda_{\overline{MS}}^{(5)} = 227 \text{ MeV} \rightsquigarrow \alpha_s^{(5)} = 0.1181$$

• $D(x) = B(b \rightarrow B)\delta(1 - x)$ with $B(b \rightarrow B) = 39.8\%$

[1] Kniehl, Kramer, IS, Spiesberger, PRD77 (2008) 014011

I. Schienbein (LPSC Grenoble)

Heavy quark production in pp at the LHC

February 13-18, 2011 42 / 54

Predictions for the LHC

GM-VFNS predictions for D^0 , $D^{\star\pm}$, D^{\pm} production at ALICE

- pp collisions, $\sqrt{S} = 7$ TeV
- CTEQ6.5 PDF, KKKSc FF, $m_c = 1.5 \text{ GeV}$
- Results for $D^0 + \bar{D}^0$, $D^{\star +} + D^{\star -}$, $D^+ + D^-$
- Error bands: Varying μ_R by factors 2 up and down (Except for very small p_T this gives maximal variation in the cross section)

Preliminary ALICE results for D^0 and D^+

• Presented by A. Dainese at LHC Physics Day, 3. Dec. 2010

pQCD predictions (FONLL, GM-VFNS) compatible with data

I. Schienbein (LPSC Grenoble) Heavy quark production in pp at the LHC

- *pp* collisions, $\sqrt{S} = 7$ TeV
- CTEQ6.6 PDF, KKKS06 FF, m_c = 1.5 GeV
- Rapidity bins (top to bottom): $|\eta|<0.2,\,0.2<|\eta|<0.5,0.5<|\eta|<0.8,0.8<|\eta|<1.3,\,1.3<|\eta|<2.1$
- Results for average $(D^0 + \overline{D}^0)/2$, $(D^{\star +} + D^{\star -})/2$, $(D^+ + D^-)/2$

GM-VFNS predictions for D^0 , $D^{\star\pm}$, D^{\pm} production at ATLAS

Figures provided by S. Head

- *pp* collisions, $\sqrt{S} = 7$ TeV
- CTEQ6.6 PDF, KKKS06 FF, m_c = 1.5 GeV
- Left fi gure: $d\sigma/d\eta$ for 3.5 < $p_{\rm T}$ < 40
- Right fi gure: *dσ/dp* for 0 < η < 2.1
- Results for sum $D^0 + \bar{D}^0$, $D^{*+} + D^{*-}$, $D^+ + D^-$

LHCB: **D**⁰ CROSS SECTION (TALK BY P. URQUIJO AT LPCC, DEC. 2010)

• Prelim. results ($\mathcal{L} = 1.8 \text{ nb}^{-1}$), $D^0 \rightarrow K^- \pi^+$, Data: 12 % correlated error not shown

- BAK et al.= GM-VFNS: B. Kniehl,G. Kramer,I. Schienbein,H. Spiesberger
- MC et al.= FONLL: M. Cacciari, S. Frixione, M. Mangano, P. Nason, G. Ridolfi

I. Schienbein (LPSC Grenoble)

Heavy quark production in pp at the LHC

February 13–18, 2011 48 / 54

LHCB: D⁺ CROSS SECTION (TALK BY P. URQUIJO AT LPCC, DEC. 2010)

• Prelim. results ($\mathcal{L} = 1.8 \text{ nb}^{-1}$), $D^+ \rightarrow K^- \pi^+ \pi^+$, Data: 14 % correlated error not shown

- BAK et al.= GM-VFNS: B. Kniehl,G. Kramer,I. Schienbein,H. Spiesberger
- MC et al.= FONLL: M. Cacciari, S. Frixione, M. Mangano, P. Nason, G. Ridolfi

I. Schienbein (LPSC Grenoble) Hea

Heavy quark production in pp at the LHC

February 13–18, 2011 49 / 54

LHCB: D^{*+} cross section (talk by P. Urquijo at LPCC, Dec. 2010)

• Preliminary ($\mathcal{L} = 1.8 \text{ nb}^{-1}$), $D^{\star +} \rightarrow (D^0 \rightarrow K^- \pi^+)\pi^+$, Data: 14 % corr. error not shown

- BAK et al.= GM-VFNS: B. Kniehl,G. Kramer,I. Schienbein,H. Spiesberger
- MC et al.= FONLL: M. Cacciari, S. Frixione, M. Mangano, P. Nason, G. Ridolfi

I. Schienbein (LPSC Grenoble)

Heavy quark production in pp at the LHC

February 13-18, 2011 50 / 54

LHCB: D_s cross section (talk by P. Urquijo at LPCC, Dec. 2010)

• Preliminary ($\mathcal{L} = 1.8 \text{ nb}^{-1}$), $D^{s} \rightarrow K^{-}K^{+}\pi^{+}$, Data: 16 % corr. error not shown

- BAK et al.= GM-VFNS: B. Kniehl,G. Kramer,I. Schienbein,H. Spiesberger
- MC et al.= FONLL: M. Cacciari, S. Frixione, M. Mangano, P. Nason, G. Ridolfi

I. Schienbein (LPSC Grenoble)

Heavy quark production in pp at the LHC

February 13-18, 2011 51 / 54

- Presented an overview of theoretical approaches to hadroproduction of heavy quarks
- Main message: GM-VFNS predictions in good agreement with first LHC data
- Paper in preparation
 - More predictions (GM-VFNS, FFNS) for D and B mesons
 - Uncertainties
 - Matching to FFNS at small p_T

Backup

Low- p_T improvement of GM-VFNS [1]

- evaluate $d\hat{\sigma}_{\text{ZM}}^{(1)}(Q + g/q \rightarrow Q + X)$ @ LO to match $f_{g \rightarrow Q}^{(1)} \otimes d\hat{\sigma}^{(0)}(Q + g/q \rightarrow Q + g/q)$
- evaluate $d\hat{\sigma}^{(0)}(gg/q\overline{q} \to Q\overline{Q}) \otimes d^{(1)}_{Q \to Q}$ w/ $m_Q \neq 0$ to match $d\hat{\sigma}^{(1)}_{GM}(gg/q\overline{q} \to Q/\overline{Q} + X)$
- impose $\theta(\hat{s} 4m_Q^2)$ on massless kinematics
- choose $\mu_F^2 = m_Q^2 + \xi p_T^2$ so that $\mu_F \xrightarrow{p_T \to 0} m_Q = \mu_0$
- $G(m, p_T) \equiv 1$ in contrast to FONLL

[1] Kniehl, Kramer, IS, Spiesberger, in preparation

I. Schienbein (LPSC Grenoble)

Heavy quark production in pp at the LHC