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Parton saturation

x : parton longitudinal momentum fraction
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the distribution of partons
as a function of x and k7 :

QCD linear evolutions: k1 > Qs In(1/z)

DGLAP evolution to larger k; (and a more dilute hadron)
BFKL evolution to smaller x (and a denser hadron)

dilute/dense separation characterized by the saturation scale Q(x)

QCD non-linear evolution: k1 ~ Qs meaning z < 1

xf(x, ki) gluon density per unit area
Y TTAR2 it grows with decreasing x

orec ~ ais/k®  recombination cross-section

recombinations important when p opec > 1
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this regime is non-linear
yet weakly coupled
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Motivation

- after the first d+Au run at RHIC, there was a lot of new results on
single inclusive particle production at forward rapidities dAu _, h X
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the spectrum
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the modification factor R, = 1 sz /dN2 were studied
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the suppressed production (Ry, < 1) was predicted in the
Color Glass Condensate picture of the high-energy nucleus

- but single particle production probes limited information about the CGC

to strengthen the evidence, we need to study (only the 2-point function)

more complex observables

- focus on di-hadron azimuthal correlations NP
N . e 7N

a measurement sensitive to possible modifications

of the back-to-back emission pattern in a hard process dAu—h/h, X



Di-hadron final-state kinematics

finalstate: K, Y, k,, ¥, x = X, =
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forward rapidities probe small x



Dijets in standard pQCD

in pQCD calculations based on collinear factorization, dijets are back-to-back
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p+ broadening at large x

with lower transverse momenta, multiple scatterings become important

when p; is not much higher than Aqcp (/e b @HW
higher twists are important, especially with nuclei @s(2)
a Gaussian model with o, ~ a '\
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forward/central data

STAR (2006)

p+p —=>7n’+h™ +X d4+Au—>n'+h~ +X

qualitative agreement with data, but quantitative ? e [S-or0040014], 5002020013
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What changes at small x

at small x, multiple scatterings are characterized by Qg (not Aqcp anymore)

A . . . o In(1/z) ¢ Satraton
q or intrinsic k; , or whatever is introduced to

Qs(x)
account for higher twists in the OPE becomes ~ Qg

in addition, when p;~ Qg and therefore multiple | e
scatterings are important, so is parton saturation @ -

In(k7/Ajcp)
the OPE approach is not appropriate at small x, because all twists contribute equally
starting from the leading twist result and calculating the next term is not efficient

when x is large, we don’t know a better way,
but when x is small (such that Qg >> Aqcp ), we do

the CGC can be used to resum the expansion Qg/p; expansion

forward dijet production Jalilian-Marian and Kovchegov (2005)

calculations with different Baier, Kovner, Nardi and Wiedemann (2005)

| s of imati Nikolaev, Schafer, Zakharov and Zoller (2005)
evels of approximations C.M. (2007)



Forward di-jet production

P y e P B e i
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2202 2 . S5 S Mg b: quark in the amplitude

’ > 20 x: gluon in the amplitude
b’: quark in the conj. amplitude
x’: gluon in the conj. amplitude

Fourier transform k. and q.

collinear factorization of quark density in deuteron into transverse coordinates
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wavefunction I

interaction with hadron 2 / CGC

n-point functions that resums the powers of ggA and the powers of ag In(1/x,)

computed in principle with JIMWLK evolution

_ [k o |eVk
[k o |eVk + g |eve

gluon-initiated processes calculated recently Dominguez, CM, Xiao and Yuan (2011)



CGC predictions

with a large-Nc approximation to practically handle to 4-point function

CM (2007) S® and S©) expressed as non-linear functions of S

even though the knowledge of S@ is enough to predict the
forward dihadron spectrum, there is no k; factorization:
the cross section is a non-linear function of the gluon distribution

« some results for (1/0) do/dA® pri =5 GV, §1=35, ja=2

I m=ulmv 1

k1=5 GeV, y1=3.5, yp=2
k, 1s varied from 1.5 to 3 GeV

Ll

as k, decreases, it gets closer to Qg and the
correlation in azimuthal angle is suppressed

azimuthal correlations are only a small JoPA—h1ho X
part of the information contained in ey dy d2kodys




Uncorrected Coincidence
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Evidence of monojets
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this happens at forward rapidities,
but at central rapidities, the p+p and
d+Au signal are almost identical



Monojets in central d+Au

* in central collisions where Qg is the biggest an offset is needed to

account for the background
there is a very good agreement of the

saturation predictions with STAR data

Albacete and CM, (2010) d+AU = 7n%+X, Vs = 200 GeY, 2000 < T Qe < 4000
§ 003 pu>2Gev/c, 1GeV/d<prs<pn
o B { L >=3.1)<ns>=3.2
U c F Jr v
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to calculate the near-side peak, one __——FE% |
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needs di-pion fragmentation functions 8 |
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» the focus is on the away-side peak 0.01F
C 0 (.48+0.02

. o . . 1.75+0.21
where non-linearities have the biggest effect SPTLRAR )
D
suppressed away-side peak By

hstdir2.20091004.2 20081120

standard (DGLAP-like) QCD calculations cannot reproduce this



About the CGC calculation

* in the large-Nc limit, the cross section is obtained from

the 2-point function is fully constrained
by e+A DIS and d+Au single hadron data

* in principle the 4-point function should be obtained from an
evolution equation (equivalent to JIMWLK + large Nc)
Jalilian-Marian and Kovchegov (2005)

* In practice one uses an approximation that allows to express
S“ as a (non-linear) function of S®) C.M. (2007)

this approximation misses some leading-Nc terms Dumitru and Jalilian-Marian (2010)

the evolution of higher point functions (~ multi-gluon distribution)
is different from that of the 2-point function (single gluon distribution)
it is equally important to understand it



Di-hadron correlations in DIS

unlike most observables considered in DIS, di-hadrons probe more
than the dipole scattering amplitude, it also probes the 4-point function

» the di-hadron cross section in the CGC picture

Y p—qqX
dJT,L _ / d*x &>y iz’ d*y' etk L (X=Y) =ik (X' =Y")
d?k, d?k', 21 27 2w 27w

fdi Or (6, x—x, y—y'; Q%)
X [TQQ(X - X,7 :EB) + qu(y - yfi LUB) - TQQQQ(XJ Xfa y!? Y, 'CCB)]
we expect to see the same effect

in e+A vs e+p than the one seen
in d+Au vs p+p collisions at RHIC

the same 4-point function is involved as in the d+Au
case but the e+A process gives a more direct access

the connection between the 4-point function and TMDs

can be established when _ Dominguez, Xiao and Yuan (2010)



Conclusions

the magnitude of the away-side peak,

3 oozl p, >2 GeVic STAR PRELIMINARY
compared to that of the near-side peak, & | 1ceve<p =, | Geu cental (-0.0145)

decreases from p+p to d+Au central
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this happens at forward rapidities,
but at central rapidities, the p+p and 7 e :
d+Au signal are almost identical ok CTETE TR

= the suppression of the away-side peak occurs when Qg increases

this was predicted, in some cases with no parameter adjustments

so far all di-hadron correlations measured in d+Au vs. p+p are consistent with saturation

now one should try to quantify this better, to further develop our understanding of the CGC



