

After the first quarkonium data at $\sqrt{s} = 7$ TeV: where do we stand ?

J.P. Lansberg Paris Sud XI - IPNO

Winter Workshop on Recent QCD Advances at the LHC February 13-18 2011 Les Houches, France

J.P. Lansberg (IPNO)

Q production at $\sqrt{s} = 7$ TeV

A B >
A B >

Outline

2

5

6

8

What we understand:

why QCD corrections do matter at mid- and high- P_T

What we seem to understand:

- The CSM predictions account correctly for the yield
- Colour Octet Dominance is challenged at low/mid P_T in pp
- QCD corrections do matter for the polarisation

What we do not understand:

 ψ production at very large P_T

What we already have from the LHC

- LHC data which are public so far
- Polarisation impact on acceptance
- First comparisons of theory with LHC data
- "Not-so-global" fits with LHC data

What we expect from the LHC More observables !

★ ∃ > < ∃ >

Part I

What we understand

J.P. Lansberg (IPNO)

Q production at $\sqrt{s} = 7$ TeV

February 17, 2011 3 / 30

2

イロト イヨト イヨト イヨト

J.Campbell, F. Maltoni, F. Tramontano, Phys.Rev.Lett. 98:252002,2007 P.Artoisenet, J.P.L, F.Maltoni, PLB 653:60,2007 P.Artoisenet, J.Campbell, JPL, F.Maltoni, F. Tramontano, Phys. Rev. Lett. 101, 152001 (2008)

4 3 > 4 3

J.Campbell, F. Maltoni, F. Tramontano, Phys.Rev.Lett. 98:252002,2007 P.Artoisenet, J.P.L, F.Maltoni, PLB 653:60,2007 P.Artoisenet, J.Campbell, JPL, F.Maltoni, F. Tramontano, Phys. Rev. Lett. 101, 152001 (2008)

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

Image: A matrix and a matrix

J.Campbell, F. Maltoni, F. Tramontano, Phys.Rev.Lett. 98:252002,2007 P.Artoisenet, J.P.L, F.Maltoni, PLB 653:60,2007 P.Artoisenet, J.Campbell, JPL, F.Maltoni, F. Tramontano, Phys. Rev. Lett. 101, 152001 (2008)

J.Campbell, F. Maltoni, F. Tramontano, Phys.Rev.Lett. 98:252002,2007 P.Artoisenet, J.P.L, F.Maltoni, PLB 653:60,2007 P.Artoisenet, J.Campbell, JPL, F.Maltoni, F. Tramontano, Phys. Rev. Lett. 101, 152001 (2008)

QCD corrections for J/ψ at RHIC

JPL, PLB695:149-156,2011.

QCD corrections for J/ψ at RHIC

JPL, PLB695:149-156,2011.

Part II

What we seem to understand

J.P. Lansberg (IPNO)

Q production at $\sqrt{s} = 7$ TeV

February 17, 2011 6 / 30

2

イロト イヨト イヨト イヨト

S. J. Brodsky and JPL, PRD 81 051502 (R), 2010

< A

S. J. Brodskv and JPL, PRD 81 051502 (R), 2010

LO: $gg \rightarrow J/\psi g$ (nothing new !, back to 1981 !)

J.P. Lansberg (IPNO)

Q production at $\sqrt{s} = 7$ TeV

February 17, 2011 7 / 30

S. J. Brodskv and JPL, PRD 81 051502 (R), 2010

NLO: $gg \rightarrow J/\psi$, $gq \rightarrow J/\psi gq$, ...

using the matrix elements from J.Campbell, F. Maltoni, F. Tramontano, PRL 98:252002,2007

J.P. Lansberg	(IPNO))
---------------	--------	---

< 🗇 🕨

S. J. Brodsky and JPL, PRD 81 051502 (R), 2010

NLO⁺: adding one new LO contribution $cg \rightarrow J/\psi c$

J.P. Lansberg (IPNO)

Q production at $\sqrt{s} = 7$ TeV

February 17, 2011 7 / 30

S. J. Brodsky and JPL, PRD 81 051502 (R), 2010

NLO⁺: adding one new LO contribution $cg \rightarrow J/\psi c$

Could be studied via azimuthal correlation $J/\psi + e, \mu$; 10-40% of the direct signal

Q production at $\sqrt{s} = 7$ TeV

→ The yield vs. \sqrt{s}

JPL, PoS(ICHEP 2010), 206 (2010) (here only LO curves)

- Unfortunately, very large th. uncertainties: masses, scales (μ_R, μ_F), gluon PDFs at low x and Q², ...
- Good agreement with RHIC, Tevatron and LHC data

(multiplied by a constant F^{direct})

• Constraints from the *P*_T dependence in *pp*

NLO yield for CO channel overshoot data at low P_T

B. Gong, X. Q. Li, J.-X. Wang, PLB 673:197,2009.

H 5

• Constraints from the P_T dependence in pp

• NLO yield for CO channel overshoot data at low P_T

B. Gong, X. Q. Li, J.-X. Wang, PLB 673:197,2009.

The P_T dependence is badly reproduced and cannot be properly fit

- Constraints from the *P*_T dependence in *pp*
 - NLO yield for CO channel overshoot data at low P_T

B. Gong, X. Q. Li, J.-X. Wang, PLB 673:197,2009.

The P_T dependence is badly reproduced and cannot be properly fit

- Strong constraints from the e^+e^- analyses
 - Recent update by Belle of $e^+e^- \rightarrow J/\psi + X_{non\ c\bar{c}} = 0.43 \pm 0.09 \pm 0.09$ pb

- Constraints from the P_T dependence in pp
 - NLO yield for CO channel overshoot data at low P_T

B. Gong, X. Q. Li, J.-X. Wang, PLB 673:197,2009.

The P_T dependence is badly reproduced and cannot be properly fit

- Strong constraints from the e^+e^- analyses
 - Recent update by Belle of $e^+e^- \rightarrow J/\psi + X_{non\ c\bar{c}} = 0.43 \pm 0.09 \pm 0.09$ pb • $e^+e^- \rightarrow J/\psi gg$ CS at NLO + rel. corr. : 0.4-0.7 pb

no space for CO (${}^{1}S_{0}$ or ${}^{3}P_{J}$) in *B*-factory data

< ロ > < 同 > < 回 > < 回 >

Y.Q.Ma, et al., PRL102 (2009)162002; B.Gong, J.X.Wang, PRL102 (2009) 162003; Z.G. Hue et al., PRD81 (2010) 054036

• Constraints from the *P*_T dependence in *pp*

• NLO yield for CO channel overshoot data at low P_T

B. Gong, X. Q. Li, J.-X. Wang, PLB 673:197,2009.

The P_T dependence is badly reproduced and cannot be properly fit

• Strong constraints from the e^+e^- analyses

• Recent update by Belle of $e^+e^- \rightarrow J/\psi + X_{non\ c\bar{c}} = 0.43 \pm 0.09 \pm 0.09$ pb • $e^+e^- \rightarrow J/\psi gg$ CS at NLO + rel. corr. : 0.4-0.7 pb

no space for CO $({}^{1}S_{0} \text{ or } {}^{3}P_{J})$ in *B*-factory data

Y.Q.Ma,et al., PRL102 (2009)162002; B.Gong, J.X.Wang, PRL102 (2009) 162003; Z.G. Hue et al., PRD81 (2010) 054036 • $e^+e^- \rightarrow J/\psi gg$ CO at NLO: 0.9-1.0 pb using universality with Tevatron (Academical) reduction by a factor of 2-3 of the LDMEs, IF one ignores the CSM Y. Zhang et al., PRD81:034015,2010.

- Constraints from the *P*_T dependence in *pp*
 - NLO yield for CO channel overshoot data at low P_T

B. Gong, X. Q. Li, J.-X. Wang, PLB 673:197,2009.

The P_T dependence is badly reproduced and cannot be properly fit

- Strong constraints from the e^+e^- analyses
 - Recent update by Belle of $e^+e^- \rightarrow J/\psi + X_{non\ c\bar{c}} = 0.43 \pm 0.09 \pm 0.09$ pb • $e^+e^- \rightarrow J/\psi gg$ CS at NLO + rel. corr. : 0.4-0.7 pb

no space for CO $({}^{1}S_{0} \text{ or } {}^{3}P_{J})$ in *B*-factory data

Y.Q.Ma,et al., PRL102 (2009)162002; B.Gong, J.X.Wang, PRL102 (2009) 162003; Z.G. Hue et al., PRD81 (2010) 054036 • $e^+e^- \rightarrow J/\psi gg$ CO at NLO: 0.9-1.0 pb using universality with Tevatron (Academical) reduction by a factor of 2-3 of the LDMEs, IF one ignores the CSM

 Actually, the reduction is much stronger and thus in p - p collisions the CS dominates over CO at low/mid P_T QCD corrections do matter for the polarisation

Y & ψ polarisation at $\mathcal{O}(\alpha_S^4)$ & $\mathcal{O}(\alpha_S^5)$

P.Artoisenet, J.Campbell, JPL, F.Maltoni, F. Tramontano, Phys. Rev. Lett. 101,152001,2008 B. Gong, J.X Wang, Phys. Rev. Lett. 100,232001,2008. JPL, EPJC 61,693,2009. JPL, PLB695:149-156,2011.

イロト イポト イヨト イヨト

Y & ψ polarisation at $\mathcal{O}(\alpha_S^4)$ & $\mathcal{O}(\alpha_S^5)$

P.Artoisenet, J.Campbell, JPL, F.Maltoni, F. Tramontano, Phys. Rev. Lett. 101,152001,2008 B. Gong, J.X Wang, Phys. Rev. Lett. 100,232001,2008. JPL, EPJC 61,693,2009. JPL, PLB695:149-156,2011.

(a)

Y & ψ polarisation at $\mathcal{O}(\alpha_S^4)$ & $\mathcal{O}(\alpha_S^5)$

P.Artoisenet, J.Campbell, JPL, F.Maltoni, F. Tramontano, Phys. Rev. Lett. 101,152001,2008 B. Gong, J.X Wang, Phys. Rev. Lett. 100,232001,2008. JPL, FJZ 61,693,2009. JPL, PLB695:149-156,2011.

- → Complete modification of the polarisation at NLO (also at NNLO*)
- \rightarrow Yield from k_T factorisation is also longitudinal (in the helicity frame)
- → This is not yet explained by simple arguments

(although reasonable)

J.P. Lansberg (IPNO)

Q production at $\sqrt{s} = 7$ TeV

Part III

what we do not understand

J.P. Lansberg (IPNO)

Q production at $\sqrt{s} = 7$ TeV

February 17, 2011 11 / 30

æ

イロト イヨト イヨト イヨト

• Could simply be the colour octets $({}^{3}S_{1}^{[8]})$

- Could simply be the colour octets $({}^{3}S_{1}^{[8]})$
- What about the polarisation measurement, then ?

- Could simply be the colour octets $({}^{3}S_{1}^{[8]})$
- What about the polarisation measurement, then ?

J.P. Lansberg (IPNO)

Q production at $\sqrt{s} = 7$ TeV

February 17, 2011 12 / 30

- Could simply be the colour octets $({}^{3}S_{1}^{[8]})$
- What about the polarisation measurement, then ?

Could be the data ...

- Could simply be the colour octets $({}^{3}S_{1}^{[8]})$
- What about the polarisation measurement, then ?

- Could be the data ...
- Let's wait for the LHC data for prompt $\psi(2S)$ or direct J/ψ

J.P. Lansberg (IPNO)

Q production at $\sqrt{s} = 7$ TeV

February 17, 2011 12 / 30

Part IV

LHC data at $\sqrt{s} = 7$ TeV

J.P. Lansberg (IPNO)

Q production at $\sqrt{s} = 7$ TeV

February 17, 2011 13 / 30

2

イロン イ理 とく ヨン イヨン

LHC data which are public so far

• CMS:

arXiv:1011.4193 [hep-ex] , arXiv:1012.5545 [hep-ex]

- $J/\psi \, d\sigma / dP_T$ in 3 y bins: |y| < 1.2, ..., 1.6 < |y| < 2.4
- Extraction of the prompt signal (*i.e.* excluding *B* feed down)
- $Y d\sigma/dP_T$ for 1, 2, 3S in 2 y bins |y| < 1, 1 < |y| < 2 ($\rightarrow d\sigma/dy$)

A B F A B F

LHC data which are public so far

• CMS:

arXiv:1011.4193 [hep-ex] , arXiv:1012.5545 [hep-ex]

- $J/\psi \, d\sigma/dP_T$ in 3 y bins: |y| < 1.2, ..., 1.6 < |y| < 2.4
- Extraction of the prompt signal (*i.e.* excluding *B* feed down)
- $Y d\sigma/dP_T$ for 1, 2, 3S in 2 y bins |y| < 1, 1 < |y| < 2 ($\rightarrow d\sigma/dy$)

ATLAS:

ATLAS-CONF-2010-062

- $J/\psi \ d\sigma/dP_T$ in 3 y bins: |y| < 0.75, ..., 1.5 < |y| < 2.25
- Extraction of the prompt signal

LHC data which are public so far

• CMS:

arXiv:1011.4193 [hep-ex] , arXiv:1012.5545 [hep-ex]

- $J/\psi \, d\sigma/dP_T$ in 3 y bins: |y| < 1.2, ..., 1.6 < |y| < 2.4
- Extraction of the prompt signal (*i.e.* excluding *B* feed down)
- $Y d\sigma/dP_T$ for 1, 2, 3S in 2 y bins |y| < 1, 1 < |y| < 2 ($\rightarrow d\sigma/dy$)
- ATLAS:

ATLAS-CONF-2010-062

- $J/\psi \ d\sigma/dP_T$ in 3 y bins: |y| < 0.75, ..., 1.5 < |y| < 2.25
- Extraction of the prompt signal
- LHCb:

LHCb-PUB-2010-011 + talk by De Capua

- $J/\psi \ d\sigma/dP_T$ in 5 y bins: 2.5 < |y| < 3.0,..., 3.5 < |y| < 4.0
- Extraction of the prompt signal in these 5 bins
- Signal for χ_c
- Signal for Y's
LHC data which are public so far

• CMS:

arXiv:1011.4193 [hep-ex] , arXiv:1012.5545 [hep-ex]

- $J/\psi \, d\sigma/dP_T$ in 3 y bins: |y| < 1.2, ..., 1.6 < |y| < 2.4
- Extraction of the prompt signal (*i.e.* excluding *B* feed down)
- $Y d\sigma/dP_T$ for 1, 2, 3S in 2 y bins |y| < 1, 1 < |y| < 2 ($\rightarrow d\sigma/dy$)
- ATLAS:
 - $J/\psi \, d\sigma / dP_T$ in 3 y bins: |y| < 0.75, ..., 1.5 < |y| < 2.25
 - Extraction of the prompt signal
- LHCb:

- -

ATLAS-CONF-2010-062

LHCb-PUB-2010-011 + talk by De Capua

- $J/\psi \ d\sigma/dP_T$ in 5 y bins: 2.5 < |y| < 3.0,..., 3.5 < |y| < 4.0
- Extraction of the prompt signal in these 5 bins
- Signal for χ_c
- Signal for Y's
- ALICE:
 - $J/\psi \ d\sigma/dy$ in the central region and for 2.5 <|y| < 4.0
 - $J/\psi \, d\sigma / dP_T$ in 1 y bin: 2.7 < |y| < 3.8

Comparison data-data

Plots courtesy of E. Scomparin, H. Woehri, C. Lourenço, collaborative work CMS, LHCb, ATLAS and ALICE

b-feed down extraction

Plot courtesy of H. Woehri, collaborative work with colleagues from LHCb, ATLAS and ALICE shown by C. Lourenço at Quarkonium2010

J.P. Lansberg (IPNO)

Polarisation impact on acceptance

Plots shown by C. Lourenço at Quarkonium2010

Plot shown by P. Robbe at Quarkonium2010

Plot shown by D. Price at Quarkonium2010

Comparison of the data with different models: Colour Octet Dominance

Plots by C. Lourenço shown at Quarkonium2010

Theory curves by P. Artoisenet.

J.P. Lansberg (IPNO)

Q production at $\sqrt{s} = 7$ TeV

February 17, 2011 18 / 30

Comparison of the data with different models: Colour Evaporation Model

Plots shown by C. Lourenço at Quarkonium2010

Theory curves by R. Vogt.

Q production at $\sqrt{s} = 7$ TeV

February 17, 2011 19 / 30

Comparison of the data with different models: Colour Singet Model

Plots shown by C. Lourenço at Quarkonium2010

Theory curves by JPL

J.P. Lansberg (IPNO)

Q production at $\sqrt{s} = 7$ TeV

February 17, 2011 20 / 30

(3)

Comparison of the Y data with different models

Plot shown by T. Dahms at Quarkonium2010

Comparison of the Y data with different models

Comparison with Color Singlet Model: NEW !

P.Artoisenet, J.Campbell, JPL, F.Maltoni, F. Tramontano, Phys. Rev. Lett. 101, 152001 (2008)

J.P. Lansberg (IPNO)

Q production at $\sqrt{s} = 7$ TeV

2 recents CO ME "global" fits from HERA, Tevatron, RHIC and LHC data
 [1] Y.Q. Ma, K. Wang and K.T. Chao, PRL 106, 042002 (2011)
 [2] M. Butenschön, B. Kniehl, PRL 106, 022003 (2011)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- 2 recents CO ME "global" fits from HERA, Tevatron, RHIC and LHC data
 [1] Y.Q. Ma, K. Wang and K.T. Chao, PRL 106, 042002 (2011)
 [2] M. Butenschön, B. Kniehl, PRL 106, 022003 (2011)
- Quotes on "global" since these ignored the polarization (ratio of σ) data

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- 2 recents CO ME "global" fits from HERA, Tevatron, RHIC and LHC data
 [1] Y.Q. Ma, K. Wang and K.T. Chao, PRL 106, 042002 (2011)
 [2] M. Butenschön, B. Kniehl, PRL 106, 022003 (2011)
- Quotes on "global" since these ignored the polarization (ratio of σ) data
- [1] however proposes that a possible dominance of ${}^{1}S_{0}^{[8]}$ would help to describe polarisation data

4 3 5 4 3 5 5

- 2 recents CO ME "global" fits from HERA, Tevatron, RHIC and LHC data
 [1] Y.Q. Ma, K. Wang and K.T. Chao, PRL 106, 042002 (2011)
 [2] M. Butenschön, B. Kniehl, PRL 106, 022003 (2011)
- Quotes on "global" since these ignored the polarization (ratio of σ) data
- [1] however proposes that a possible dominance of ${}^{1}S_{0}^{[8]}$ would help to describe polarisation data
- Not a single mention of polarisation in [2] !

It didn't seem to disturb the PRL referees ... weird

4 3 5 4 3 5 5

- 2 recents CO ME "global" fits from HERA, Tevatron, RHIC and LHC data
 [1] Y.Q. Ma, K. Wang and K.T. Chao, PRL 106, 042002 (2011)
 [2] M. Butenschön, B. Kniehl, PRL 106, 022003 (2011)
- Quotes on "global" since these ignored the polarization (ratio of σ) data
- [1] however proposes that a possible dominance of ${}^{1}S_{0}^{[8]}$ would help to describe polarisation data
- Not a single mention of polarisation in [2] !

It didn't seem to disturb the PRL referees ... weird

• [2] does not agree with the fit value of [1]; ${}^{1}S_{0}^{[8]}$ dominance not expected the discrepancy remains with pol. data, but it is not mentioned !

- A TE N - A TE N

- 2 recents CO ME "global" fits from HERA, Tevatron, RHIC and LHC data
 [1] Y.Q. Ma, K. Wang and K.T. Chao, PRL 106, 042002 (2011)
 [2] M. Butenschön, B. Kniehl, PRL 106, 022003 (2011)
- Quotes on "global" since these ignored the polarization (ratio of σ) data
- [1] however proposes that a possible dominance of ${}^{1}S_{0}^{[8]}$ would help to describe polarisation data
- Not a single mention of polarisation in [2] !

It didn't seem to disturb the PRL referees ... weird

< 日 > < 同 > < 回 > < 回 > < □ > <

• [2] does not agree with the fit value of [1]; ${}^{1}S_{0}^{[8]}$ dominance not expected the discrepancy remains with pol. data, but it is not mentioned !

Reminders on the "importance" of polarisation:

"Despite these various diluting effects, a substantial [transverse] polarization is expected at large p_T [..]its detection would be a "smoking gun" for the presence of the colour-octet [..] mechanism. QWG Yellow Report, hep-ph/0412158

"4.2.3 Quarkonium polarization: a key observable" New review of QWG, Eur.Phys.J.C71:1,2011.

- 2 recents CO ME "global" fits from HERA, Tevatron, RHIC and LHC data
 [1] Y.Q. Ma, K. Wang and K.T. Chao, PRL 106, 042002 (2011)
 [2] M. Butenschön, B. Kniehl, PRL 106, 022003 (2011)
- Quotes on "global" since these ignored the polarization (ratio of σ) data
- [1] however proposes that a possible dominance of ${}^{1}S_{0}^{[8]}$ would help to describe polarisation data
- Not a single mention of polarisation in [2] !

イロト 不得 トイヨト イヨト

• [2] does not agree with the fit value of [1]; ${}^{1}S_{0}^{[8]}$ dominance not expected the discrepancy remains with pol. data, but it is not mentioned !

Reminders on the "importance" of polarisation:

"Despite these various diluting effects, a substantial [transverse] polarization is expected at large p_T [..]its detection would be a "smoking gun" for the presence of the colour-octet [..] mechanism. QWG Yellow Report, hep-ph/0412158

"4.2.3 Quarkonium polarization: a key observable" New review of QWG, Eur.Phys.J.C71:1,2011.

Also, polarization is the only parameter-quasifree prediction of COM

It didn't seem to disturb the PRL referees ... weird

- 2 recents CO ME "global" fits from HERA, Tevatron, RHIC and LHC data
 [1] Y.Q. Ma, K. Wang and K.T. Chao, PRL 106, 042002 (2011)
 [2] M. Butenschön, B. Kniehl, PRL 106, 022003 (2011)
- Quotes on "global" since these ignored the polarization (ratio of σ) data
- [1] however proposes that a possible dominance of ${}^{1}S_{0}^{[8]}$ would help to describe polarisation data
- Not a single mention of polarisation in [2] !

イロト 不得 トイヨト イヨト

• [2] does not agree with the fit value of [1]; ${}^{1}S_{0}^{[8]}$ dominance not expected the discrepancy remains with pol. data, but it is not mentioned !

• Reminders on the "importance" of polarisation:

"Despite these various diluting effects, a substantial [transverse] polarization is expected at large p_T [..]its detection would be a "smoking gun" for the presence of the colour-octet [..] mechanism. QWG Yellow Report, hep-ph/0412158

"4.2.3 Quarkonium polarization: a key observable" New review of QWG, Eur.Phys.J.C71:1,2011.

- Also, polarization is the only parameter-quasifree prediction of COM
- Very disturbing situation

It didn't seem to disturb the PRL referees ... weird

- 2 recents CO ME "global" fits from HERA, Tevatron, RHIC and LHC data
 [1] Y.Q. Ma, K. Wang and K.T. Chao, PRL 106, 042002 (2011)
 [2] M. Butenschön, B. Kniehl, PRL 106, 022003 (2011)
- Quotes on "global" since these ignored the polarization (ratio of σ) data
- [1] however proposes that a possible dominance of ${}^{1}S_{0}^{[8]}$ would help to describe polarisation data
- Not a single mention of polarisation in [2] !

• [2] does not agree with the fit value of [1]; ${}^{1}S_{0}^{[8]}$ dominance not expected the discrepancy remains with pol. data, but it is not mentioned !

• Reminders on the "importance" of polarisation:

"Despite these various diluting effects, a substantial [transverse] polarization is expected at large p_T [..]its detection would be a "smoking gun" for the presence of the colour-octet [..] mechanism. QWG Yellow Report, hep-ph/0412158

"4.2.3 Quarkonium polarization: a key observable" New review of QWG, Eur.Phys.J.C71:1,2011.

- Also, polarization is the only parameter-quasifree prediction of COM
- Very disturbing situation
- To be complete: these studies also ignored e^+e^- constraints (slide 9) J.P. Lansberg (IPNO) Q production at $\sqrt{s} = 7$ TeV February 17, 2011 22 / 30

It didn't seem to disturb the PRL referees ... weird

Part V

what we expect from the LHC:

J.P. Lansberg (IPNO)

Q production at $\sqrt{s} = 7$ TeV

February 17, 2011 23 / 30

æ

イロト イヨト イヨト イヨト

Part V

what we expect from the LHC: new measurements

J.P. Lansberg (IPNO)

Q production at $\sqrt{s} = 7$ TeV

 Image: Image:

Image: A matrix

• J/ψ + hadron azimuthal correlations

STAR Collab., Phys.Rev.C80:041902 (R),2009.

イロト イヨト イヨト イヨト

• J/ψ + hadron azimuthal correlations star control star

STAR Collab., Phys.Rev.C80:041902 (R),2009.

• PYTHIA might not be reliable (Color Singlet at LO: $gg \rightarrow J/\psi g$)

(4) (5) (4) (5)

• J/ψ + hadron azimuthal correlations STAR COL

STAR Collab., Phys.Rev.C80:041902 (R),2009.

- PYTHIA might not be reliable (Color Singlet at LO: $gg \rightarrow J/\psi g$)
- Need for updates with NLO and NNLO^{*} $(gg \rightarrow J/\psi gg, gg \rightarrow J/\psi ggg)$

J.P. Lansberg (IPNO)

• J/ψ + hadron azimuthal correlations st

STAR Collab., Phys.Rev.C80:041902 (R),2009.

- PYTHIA might not be reliable (Color Singlet at LO: $gg \rightarrow J/\psi g$)
- Need for updates with NLO and NNLO^{*} $(gg \rightarrow J/\psi gg, gg \rightarrow J/\psi ggg)$

• $J/\psi + D$ or $J/\psi + lepton$: peak at $\Delta \phi = \pi$ in the yield integrated over P_T S. J. Brodsky and JPL, PRD 81 051502 (R), 2010

 $\rightarrow J/\psi + \gamma$

<ロ> <四> <四> <四> <四> <四</p>

 ${ \rightarrow J/\psi + \gamma}$

• CS rate at NLO \simeq conservative (high) expectation from CO

R.Li and J.X. Wang, PLB 672:51,2009

3

< 日 > < 同 > < 回 > < 回 > < □ > <

- $\rightarrow J/\psi + \gamma$
 - CS rate at NLO \simeq conservative (high) expectation from CO

R.Li and J.X. Wang, PLB 672:51,2009

At NNLO, CS rate clearly above expectation from CO

3

< 日 > < 同 > < 回 > < 回 > < □ > <

- $\rightarrow J/\psi + \gamma$
 - CS rate at NLO \simeq conservative (high) expectation from CO
 - R.Li and J.X. Wang, PLB 672:51,2009
 - At NNLO, CS rate clearly above expectation from CO
 - Clearly, new info on CS vs CO w.r.t inclusive case !

JPL, PLB 679:340,2009.

- 4 – 5

- $\rightarrow J/\psi + \gamma$
 - CS rate at NLO ~ conservative (high) expectation from CO B.Li and J.X. Wang, PLB 672:51.2009
 - At NNLO, CS rate clearly above expectation from CO
 - Clearly, new info on CS vs CO w.r.t inclusive case !

JPL, PLB 679:340,2009.

 $\rightarrow J/\psi + c\bar{c}, Y + b\bar{b}$

- 4 – 5

- $\rightarrow J/\psi + \gamma$
 - CS rate at NLO ~ conservative (high) expectation from CO R.Li and J.X. Wang, PLB 672:51.2009
 - At NNLO, CS rate clearly above expectation from CO
 - Clearly, new info on CS vs CO w.r.t inclusive case !

- $\rightarrow J/\psi + \gamma$
 - CS rate at NLO ~ conservative (high) expectation from CO B.Li and J.X. Wang, PLB 672:51.2009
 - At NNLO, CS rate clearly above expectation from CO
 - Clearly, new info on CS vs CO w.r.t inclusive case !

Polarisation

2

<ロ> <問> <問> < 回> < 回> 、

- Polarisation
 - of direct yields of Y(3S), then others

æ

- Polarisation
 - of direct yields of Y(3S), then others
 - polarisation of the χ_Q (angular dependence of the γ)

A B F A B F

- Polarisation
 - of direct yields of Y(3S), then others
 - polarisation of the χ_Q (angular dependence of the γ)
 - rapidity dependence of the polarisation

A B b 4 B b

- Polarisation
 - of direct yields of Y(3S), then others
 - polarisation of the χ_Q (angular dependence of the γ)
 - rapidity dependence of the polarisation
 - ϕ angular dependence of the leptonic decay

A THE A THE
- Polarisation
 - of direct yields of Y(3S), then others
 - polarisation of the χ_Q (angular dependence of the γ)
 - rapidity dependence of the polarisation
 - ϕ angular dependence of the leptonic decay
 - polarisation in different frames

4 3 5 4 3 5

- Polarisation
 - of direct yields of Y(3S), then others
 - polarisation of the χ_Q (angular dependence of the γ)
 - rapidity dependence of the polarisation
 - ϕ angular dependence of the leptonic decay
 - polarisation in different frames
- $J/\psi + J/\psi$, $J/\psi + Y$?

3

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Polarisation
 - of direct yields of Y(3S), then others
 - polarisation of the χ_Q (angular dependence of the γ)
 - rapidity dependence of the polarisation
 - ϕ angular dependence of the leptonic decay
 - polarisation in different frames
- $J/\psi + J/\psi$, $J/\psi + Y$?
 - strong sensitivity on the CO LDME ${}^{3}S_{1}^{[8]}$?

3

< 口 > < 同 > < 回 > < 回 > < 回 > <

- Polarisation
 - of direct yields of Y(3S), then others
 - polarisation of the χ_Q (angular dependence of the γ)
 - rapidity dependence of the polarisation
 - ϕ angular dependence of the leptonic decay
 - polarisation in different frames
- $J/\psi + J/\psi$, $J/\psi + Y$?
 - strong sensitivity on the CO LDME ${}^{3}S_{1}^{[8]}$?
 - could help to understand large P_T inclusive production

3

- Polarisation
 - of direct yields of Y(3S), then others
 - polarisation of the χ_Q (angular dependence of the γ)
 - rapidity dependence of the polarisation
 - ϕ angular dependence of the leptonic decay
 - polarisation in different frames
- $J/\psi + J/\psi$, $J/\psi + Y$?
 - strong sensitivity on the CO LDME ${}^{3}S_{1}^{[8]}$?
 - could help to understand large P_T inclusive production
 - but too small rates even at low P_T?

- Polarisation
 - of direct yields of Y(3S), then others
 - polarisation of the χ_Q (angular dependence of the γ)
 - rapidity dependence of the polarisation
 - ϕ angular dependence of the leptonic decay
 - polarisation in different frames
- $J/\psi + J/\psi$, $J/\psi + Y$?
 - strong sensitivity on the CO LDME ${}^{3}S_{1}^{[8]}$?
 - could help to understand large P_T inclusive production
 - but too small rates even at low P_T?
- Quarkonium studies via pp decay

- Polarisation
 - of direct yields of Y(3S), then others
 - polarisation of the χ_Q (angular dependence of the γ)
 - rapidity dependence of the polarisation
 - ϕ angular dependence of the leptonic decay
 - polarisation in different frames
- $J/\psi + J/\psi$, $J/\psi + Y$?
 - strong sensitivity on the CO LDME ${}^{3}S_{1}^{[8]}$?
 - could help to understand large P_T inclusive production
 - but too small rates even at low P_T?
- Quarkonium studies via pp̄ decay
 - planned by LHC-b

- Polarisation
 - of direct yields of Y(3S), then others
 - polarisation of the χ_Q (angular dependence of the γ)
 - rapidity dependence of the polarisation
 - ϕ angular dependence of the leptonic decay
 - polarisation in different frames
- $J/\psi + J/\psi$, $J/\psi + Y$?
 - strong sensitivity on the CO LDME ${}^{3}S_{1}^{[8]}$?
 - could help to understand large P_T inclusive production
 - but too small rates even at low P_T?
- Quarkonium studies via pp̄ decay
 - planned by LHC-b
 - allow to study h_c as well as ψ

- Polarisation
 - of direct yields of Y(3S), then others
 - polarisation of the χ_Q (angular dependence of the γ)
 - rapidity dependence of the polarisation
 - ϕ angular dependence of the leptonic decay
 - polarisation in different frames
- $J/\psi + J/\psi$, $J/\psi + Y$?
 - strong sensitivity on the CO LDME ${}^{3}S_{1}^{[8]}$?
 - could help to understand large P_T inclusive production
 - but too small rates even at low P_T?
- Quarkonium studies via pp̄ decay
 - planned by LHC-b
 - allow to study h_c as well as ψ
 - maybe different acceptances, nice cross check and a solution

J.P. Lansberg (IPNO)

Q production at $\sqrt{s} = 7$ TeV

February 17, 2011 26 / 30

Further suggestions ...

Fundamental information on the quarkonium production mechanisms can also obtained:

• in *pA* and *AA* analyses: color filter ? ... needs several nucleus

A B K A B K

Further suggestions ...

Fundamental information on the quarkonium production mechanisms can also obtained:

- in *pA* and *AA* analyses: color filter ? ... needs several nucleus
- in polarised *pp* collisions, e.g. Single Spin Asymmetry "a nonzero transverse SSA generated by a gluon Sivers TMD would be an evidence against large contributions from CO transition".

F. Yuan, PRD 78, 014024 (2008).

A THE A THE A

Further suggestions ...

Fundamental information on the quarkonium production mechanisms can also obtained:

- In pA and AA analyses: color filter ? ... needs several nucleus
- in polarised *pp* collisions, e.g. Single Spin Asymmetry
 "a nonzero transverse SSA generated by a gluon Sivers TMD would be an evidence against large contributions from CO transition".

F. Yuan, PRD 78, 014024 (2008).

PHENIX, PRD 82, 112008 (2010)

Part VI

Conclusions and Outlooks

J.P. Lansberg (IPNO)

Q production at $\sqrt{s} = 7$ TeV

February 17, 2011 28 / 30

2

イロト イヨト イヨト イヨト

• LO pQCD (CSM) fails as far as $d\sigma/dP_T$ is concerned

э

A B A B A B A
 A B A
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A

- LO pQCD (CSM) fails as far as $d\sigma/dP_T$ is concerned
- Yet, the LO (and NLO) CSM reproduces the yield:

relevant for heavy-ion studies !

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- LO pQCD (CSM) fails as far as $d\sigma/dP_T$ is concerned
- Yet, the LO (and NLO) CSM reproduces the yield:
 - relevant for heavy-ion studies !

 Agrees with the strong reduction of CO contributions at low/mid P_T expected from e⁺e⁻ analyses

- A TE N - A TE N

- LO pQCD (CSM) fails as far as $d\sigma/dP_T$ is concerned
- Yet, the LO (and NLO) CSM reproduces the yield:
 - relevant for heavy-ion studies !
- Agrees with the strong reduction of CO contributions at low/mid P_T
 - expected from e^+e^- analyses

- Moreover, QCD-corrections bring near agreements for $d\sigma/dP_T$ in
 - γp for J/ψ
 - pp for Y (Tevatron)
 - pp for ψ (RHIC, Tevatron) (gap at large P_T)
- Drawback: large theoretical uncertainties...

- LO pQCD (CSM) fails as far as $d\sigma/dP_T$ is concerned
- Yet, the LO (and NLO) CSM reproduces the yield:
 - relevant for heavy-ion studies !
- Agrees with the strong reduction of CO contributions at low/mid P_T
 - expected from e^+e^- analyses
- Moreover, QCD-corrections bring near agreements for $d\sigma/dP_T$ in
 - γp for J/ψ
 - pp for Y (Tevatron)
 - pp for ψ (RHIC, Tevatron) (gap at large P_T)
- Drawback: large theoretical uncertainties...
- COM: still doing great for $d\sigma/dP_T$, but unable to describe pol.

- LO pQCD (CSM) fails as far as $d\sigma/dP_T$ is concerned
- Yet, the LO (and NLO) CSM reproduces the yield:
 - relevant for heavy-ion studies !
- Agrees with the strong reduction of CO contributions at low/mid P_T
 - expected from e^+e^- analyses
- Moreover, QCD-corrections bring near agreements for $d\sigma/dP_T$ in
 - γp for J/ψ
 - pp for Y (Tevatron)
 - pp for ψ (RHIC, Tevatron) (gap at large P_T)
- Drawback: large theoretical uncertainties...
- COM: still doing great for $d\sigma/dP_T$, but unable to describe pol.
- Very soon, the LHC results on inclusive yields will be more precise than the theory ...

- LO pQCD (CSM) fails as far as $d\sigma/dP_T$ is concerned
- Yet, the LO (and NLO) CSM reproduces the yield:
 - relevant for heavy-ion studies !
- Agrees with the strong reduction of CO contributions at low/mid P_T
 - expected from e^+e^- analyses
- Moreover, QCD-corrections bring near agreements for $d\sigma/dP_T$ in
 - γp for J/ψ
 - pp for Y (Tevatron)
 - pp for ψ (RHIC, Tevatron) (gap at large P_T)
- Drawback: large theoretical uncertainties...
- COM: still doing great for $d\sigma/dP_T$, but unable to describe pol.
- Very soon, the LHC results on inclusive yields will be more precise than the theory ...
- The time has come for another look with new observables at the LHC or elsewhere !

J.P. Lansberg (IPNO)

Part VII

Backup

J.P. Lansberg (IPNO)

Q production at $\sqrt{s} = 7$ TeV

February 17, 2011 3

イロト イヨト イヨト イヨト

30/30

HERA: CSM vs COM at NLO

 \rightarrow Equally good (or ... bad) description of large P_T data.

Q production at $\sqrt{s} = 7$ TeV