
ÉCOLE DE PHYSIQUE des HOUCHES

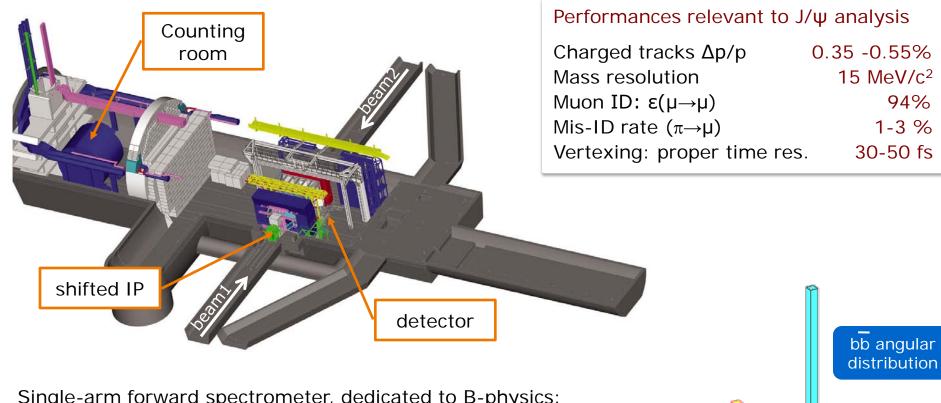
Winter Workshop on Recent QCD Advances at the LHC Les Houches, February 13th - 18th, 2011

Prompt J/ ψ and b \rightarrow J/ ψ X production in pp-collisions at $\sqrt{s} = 7$ TeV at LHCb

Physics motivation

J/ψ produced in abundance at LHC: enough statistics to study the production cross sections already with the first LHC data.

Measurement very important:


- J/ψ production mechanism not well understood, the color-octet model used to fit the CDF data does not describe the J/ψ polarization.
- **b** $\rightarrow J/\psi$ X decays fundamental for the LHCb core physics program.

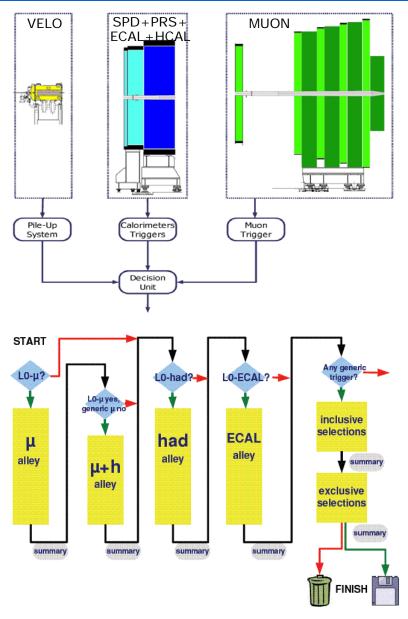
 \Box 3 main sources of J/ ψ :

- direct production in pp collisions.
- feed-down from heavier charmonium states (ψ_{2S} , $\chi_{c,...}$).
- J/ψ from b-hadron decay chains.

The LHCb detector

Single-arm forward spectrometer, dedicated to B-physics:

- $\mathcal{L} = 2 \times 10^{32} \text{ cm}^{-2} \text{s}^{-1} \rightarrow 10^{12} \text{ bb/year}$
- Acceptance 10-250 mrad (V) / 10-300 mrad (H) \rightarrow 1.6 < η < 4.9 (unique @ LHC)
- Useful σ_{bb} (14 TeV) for LHCb is 230 µb


Q.

liagij

0h

Irad

Trigger & Selection

Trigger

L0 trigger:

- Single muon: $p_T > 1.4 \text{ GeV/c}$
- Di-Muon: $p_{T,1} > 0.56 \text{ GeV/c}$, $p_{T,2} > 0.48 \text{ GeV/c}$

HLT1:

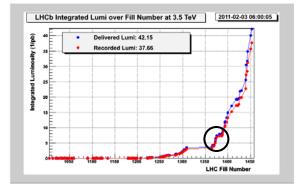
- Single muon: confirm L0 and $p_T > 1.8 \text{ GeV/c}$
- Di-Muon: confirm L0 and $M_{\mu\mu} > 2.5 \text{ GeV/c}^2$

HLT2:

Di-Muon:
$$M_{\mu\mu} > 2.9 \text{ GeV/c}^2$$

Offline Selection

- Muon track well reconstructed and identified as muon
- **D** Both muons $p_T > 0.7 \text{ GeV/c}$
- **D** Muon track fit quality: $\chi^2/nDoF < 4$
- J/ψ mass window: 150 MeV/c²
- **J**/ψ vertex fit quality: $P(\chi^2) > 0.5\%$.



Data and objectives

<u>Data</u>

- Use (5.2 \pm 0.5) pb⁻¹ of data collected at the end of September 2010 at LHCb, with pp collisions at $\sqrt{s} = 7$ TeV, in two different trigger conditions:
 - 2.2 pb⁻¹ with HLT1 single muon line at full rate.
 - 3.0 pb⁻¹ with HLT1 single muon line pre-scaled (x 0.2), to cope with instantaneous luminosity increase.

<u>Goal</u>

□ Measure the differential cross section $d^2\sigma/dp_T dy$ as a function of the transverse momentum p_T and the rapidity y:

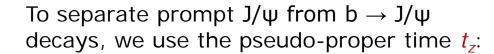
14 bins in p_T 0 < p_T < 14 GeV/c 5 bins in y 2 < y < 4.5

- Perform two separate measurements:
 - prompt J/ψ: direct production in pp collisions or seed down from other charmonium states (ψ_{2S}, χ_c, ...).
 - J/ψ from B decay

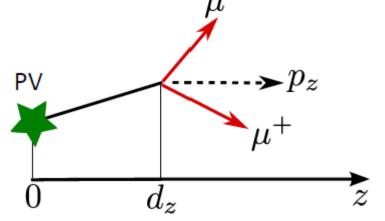
J/ψ sample

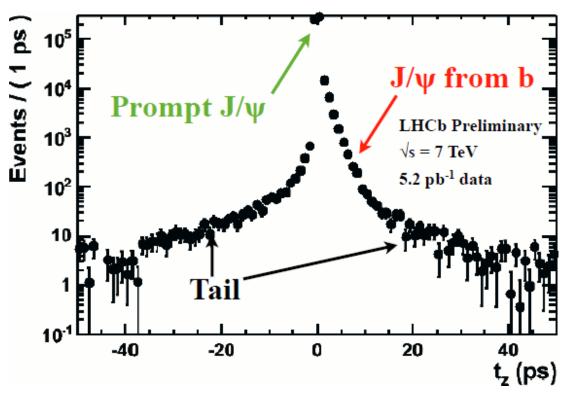
Invariant Mass Fit

- □ A Crystal Ball function for the signal to take the radiative tail into account.
- □ A negative exponential for the background.
- Same fit procedure for each bin of p_{T} and y.



$$\frac{d^{2}\sigma}{dydp_{T}} = \frac{N_{J/\psi \to \mu^{+}\mu^{-}}}{L \times \varepsilon_{tot} \times BR_{J/\psi \to \mu^{+}\mu^{-}} \times \Delta y \times \Delta p_{T}}$$


- \rightarrow N is the number of observed decays in a certain p_T and y bin
- \rightarrow L is the total integrated luminosity (5.2 pb⁻¹)
- $\rightarrow \epsilon_{tot}$ is the total efficiency (acceptance \times trigger \times reconstruction \times ...)
- \rightarrow BR is the J/ $\psi \rightarrow \mu^+ \mu^-$ branching ratio: (5.94 ± 0.06)%
- $\rightarrow \Delta y=0.5$, $\Delta p_T=1$ GeV/c are the bin sizes


Prompt J/ ψ and J/ ψ from b

$$t_z(J/\psi) = \frac{d_z \times M_{J/\psi}}{p_z}$$

t_z tail

The very long symmetric tails (up to 40 ps) are due to a wrong PV association. The shape of this tails is determined directly from data by simulating a wrong association

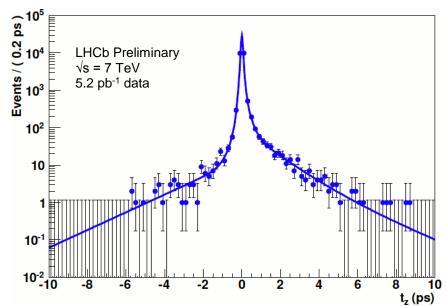
(next event $PV \rightarrow$ uncorrelated PV).

$$t_z^{next} (J/\psi) = \frac{(z_{J/\psi} - z_{PV}^{next}) \times M_{J/\psi}}{p_z}$$

Events per Bin 10 Data, side-bands subtracted LHCb Preliminary √s = 7 TeV "next event" method 10⁴ 5.2 pb⁻¹ data for tail simulation 10³ The *next event* method reproduces 10² the tails very well. 10 -20 100 -100 -80 20 -60 -40 0 40 60 80

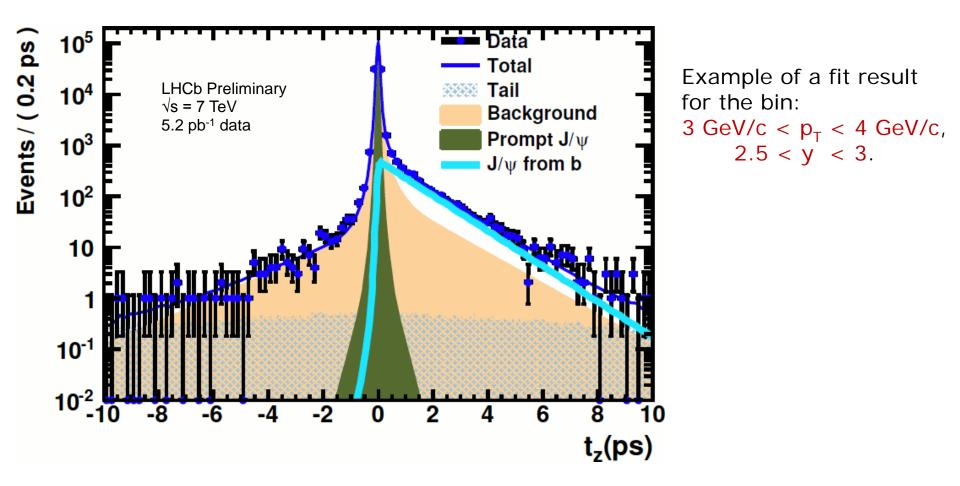
tz/ps

t_z signal and background functions


To fit the t_z distribution we used the following function:

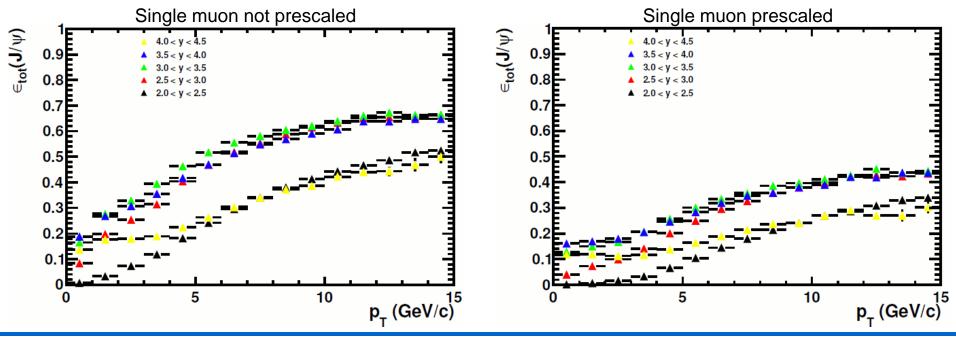
$$f_{signal}(t_{z}; f_{p}, f_{b}, \tau_{b}) = f_{p}\delta(t_{z}) + f_{b}\frac{e^{-t_{z}/t_{b}}}{\tau_{b}} + (1 - f_{b} - f_{p})f_{tail}(t_{z})$$

+ / -


Prompt J/ ψ (delta) + J/ ψ from B (negative exponential) + t_z tail, all convolved with a resolution function (double Gaussian)

Background: Background contribution to the t_z distribution is parameterized with an empirical function, which is the sum of a delta function and five exponentials (three negative exponentials for positive t_z and two positive exponentials for negative t_z), convolved with the sum of two Gaussian functions (the choice of the background function is motivated by the shape of the t_z distribution seen in the J/ ψ mass sidebands).

A combined fit in t_z and mass is performed in every p_T and y bin to extract the number of prompt J/ ψ and of J/ ψ from B decay.

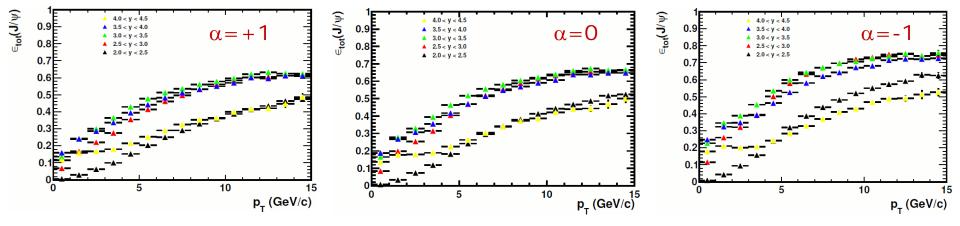

Efficiency

A sample of fully simulated inclusive J/ψ is used to estimate the total efficiency ϵ_{tot} in each bin of p_T and rapidity. The total efficiency includes the geometrical acceptance ϵ_{acc} , the detection, reconstruction and selection efficiency combined in an efficiency term ϵ_{rec} and the trigger efficiency ϵ_{tra} :

$$\varepsilon_{tot} = \varepsilon_{acc} \times \varepsilon_{rec} \times \varepsilon_{trg}$$

Efficiencies are computed from Monte Carlo and are extensively checked on data, with control samples. Prompt J/ψ and J/ψ from B result to have the same efficiency (small differences are treated as systematic uncertainties).

Systematic effects

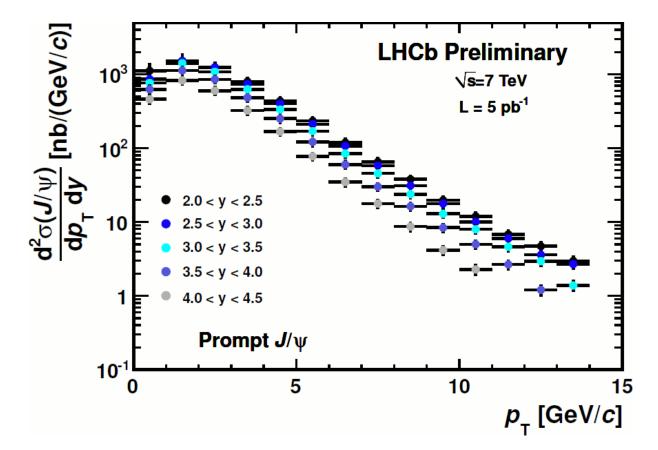

- □ A large number of systematic uncertainties have been studied in details on data and MC (trigger, global cuts, track chi2, vertexing, global fit)
 - The systematic uncertainty associated with the trigger efficiency is evaluated by comparing data with simulation. Trigger efficiency in data uses a trigger unbiased event sample, i.e., a sample in which the event would still be triggered if the J/Ψ candidates were removed (Trigger Independent of Signal, TIS)

Quantity	Systematic error	Comment
Trigger	1.7% to 4.5%	Bin dependent
GEČ	2 %	Correlated between bins
Muon identification	2.5%	Correlated between bins
Tracking efficiency	8%	Correlated between bins
Track χ^2	1%	Correlated between bins
Vertexing	1%	Correlated between bins
Mass fits	1%	Correlated between bins
Bin size	0.1% to 15%	Bin dependent
Inter-bin cross-feed	0.5%	Correlated between bins
		(not applied to the total cross-section)
Radiative tail	1%	Correlated between bins
$\mathcal{B}(J/\psi \to \mu^+\mu^-)$	1%	Correlated between bins
Luminosity	10%	Correlated between bins
t_z fits	3.6%	Correlated between bins
GEC efficiency of <i>B</i> events	2%	Applies only to J/ψ from <i>b</i> cross-sections
<i>b</i> hadronization fractions	2%	Applies only to extrapolations of
		$b\overline{b}$ cross-sections
$\mathcal{B}(b \to J/\psi X)$	9%	Applies only to extrapolations of
		$b\overline{b}$ cross-sections

Polarization effect

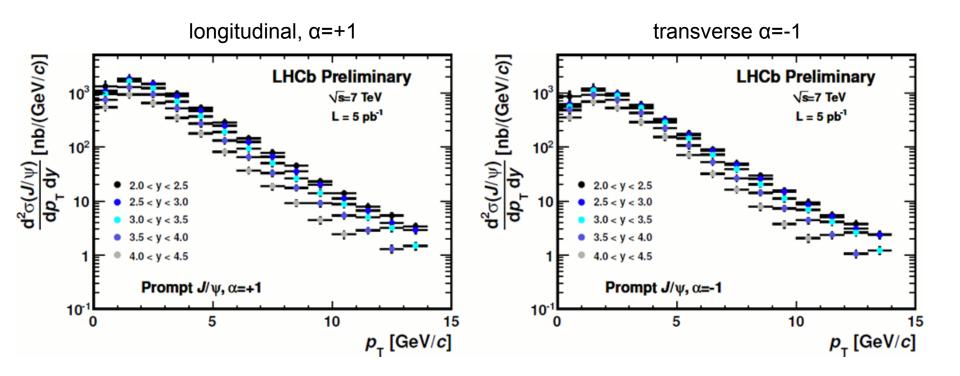
- The efficiency is evaluated from a Monte Carlo simulation in which the J/Ψ is produced <u>unpolarized</u>. However, studies show that both longitudinal and transverse J/Ψ polarization may lead to very different efficiencies.
- 3 extreme polarization cases have been studied, in the helicity frame, where the angular distribution of J/Ψ muons is (integrating over the azimuthal angle φ):

$$\frac{dN}{d\cos\theta} = \frac{1+\alpha\cos^2\theta}{2+2\times\alpha/3}$$



□ The plots indicate that the polarization significantly affects the acceptance and reconstruction efficiencies (up to 30%) and that the effect depends on p_T and y. → the prompt J/Ψ cross-section will be given separately for the 3 polarizations.

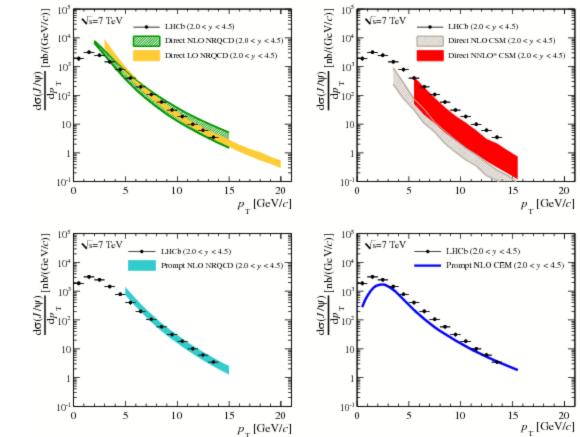
Results: Prompt J/ ψ cross section


Differential cross-section for prompt J/ ψ in data as a function of p_T in bins of y, assuming that prompt J/ ψ are produced unpolarized.

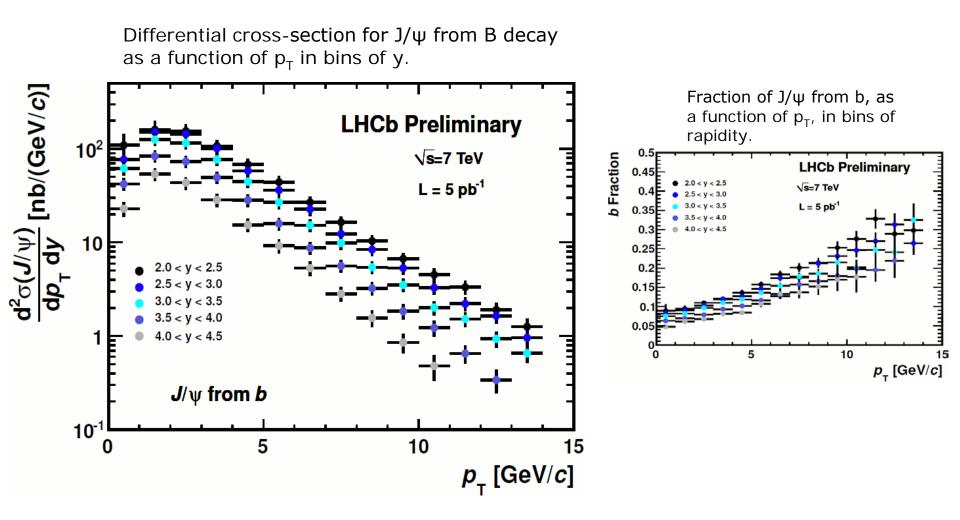
 $\sigma(prompt J/\psi, p_T < 14 \ GeV/c, 2 < y < 4.5) = 10.8 \pm 0.05 \pm 1.51^{+1.69}_{-2.25} \ \mu b$

Results: Prompt J/ ψ cross section

Differential cross-section for prompt J/ ψ in data as a function of p_T in bins of y, for the two extreme polarization cases.



LHCh


Comparison with theoretical models

- □ A comparison with three different models is proposed.
 - → LO and NLO NRQCD (Non Relativistic QCD summing color Singlet and color Octet)
 - \rightarrow NLO and NNLO CSM
 - \rightarrow NLO CEM (Color Evaporation Model)
- The NLO NRQCD model seems to fit data reasonably well in the high p_T region, though the uncertainty is quite large and there is a clear problem at low p_T.

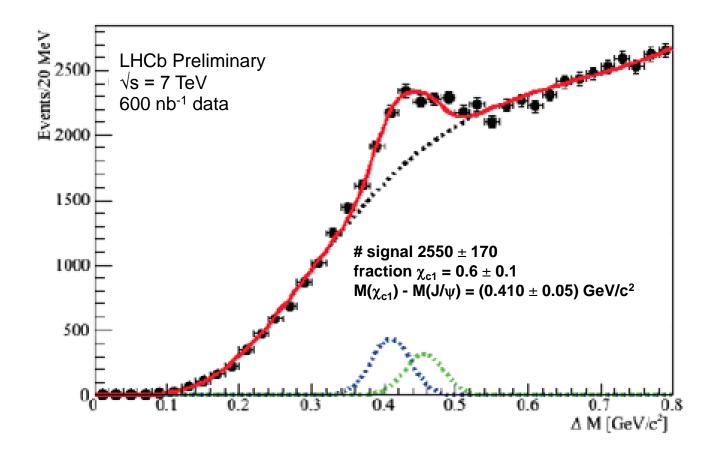
Results: J/ ψ from B cross section

 $\sigma(J/\psi from b, p_T < 14 GeV/c, 2 < y < 4.5) = 1.16 \pm 0.01 \pm 0.17 \ \mu b$

Cross section extrapolation

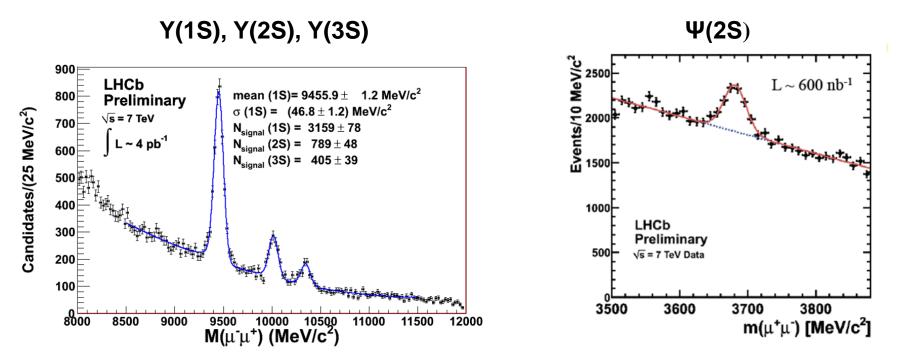
Using the LHCb Monte Carlo simulation based on PYTHIA 6.4, the measurement is extrapolated to the full angular acceptance:

$$\sigma(pp \to b\overline{b}X) = \alpha_{4\pi} \frac{\sigma(J/\psi \text{ from } b, p_T < 14 \text{GeV}/c, 2 < y < 4.5)}{2Br(b \to J/\psi X)}$$


where where $a_{4\pi} = 5.88$ is the ratio of J/ ψ from b events in the full range over the number of events in the region 2 < y < 4.5. The results is:

 $\sigma(pp \rightarrow bbX) = 295 \pm 4 \text{ (stat)} \pm 48 \text{ (sys)} \mu b$

- The systematic uncertainty includes the uncertainties on the b fractions (2%) and on $Br(b \rightarrow J/\Psi X)$. No additional uncertainty is assigned to the extrapolation factor $a_{4\pi}$ estimated from the simulation.
- □ The above result is in excellent agreement with that obtained from b decays into $D^0\mu vX$ [*Phys.Lett.B694 (2010) 209*]: $\sigma(pp \rightarrow bb X) = 284 \pm 20 \pm 49 \mu b$.


Prospects for future measurements Hick

- **Polarization**: with full data sample, possible (ongoing analysis) to measure the polarization of prompt J/ψ , in bins of p_T and y.
- □ Measurement of χ_c cross-section will be possible (will also allow to know proportion of J/ ψ from feed-down).

Prospects for future measurements Hick

Using the $\mu^+ \mu^-$ decay channel, with the full data sample, LHCb will also measure other quarkonium states $\psi(2S)$, Y(1S), Y(2S), Y(3S).

Les Houches 17.02.2012

Conclusions

- New measurements of the J/Ψ cross sections (prompt and from B decays) have been presented, with 5.2 pb⁻¹ of data at the LHCb experiment.
- Cross sections have been measured as a function of p_T and y, extending the range of the first measurement presented
 - ICHEP 2010: 14.2 nb⁻¹ with only 10 p_T bins and no bins in rapidity
 - Actual measurement 5.2 pb⁻¹
 - Full statistics analysis (37 pb⁻¹) ongoing
- Large uncertainty is due to unknown J/Ψ polarization: measurement of the polarization is ongoing to address this issue.
- Measurement of Ψ(2S) and Y(1S), Y(2S), Y(3S) cross sections will allow to provide a complete picture of quarkonium production in the forward rapidity region.