Particle Production in Pb-Pb collisions at √s_{NN} = 2.76 TeV measured by the ALICE experiment

Alberica Toia (CERN) for the ALICE Collaboration

- Start of Heavy Ion Physics at LHC goal and observables
- Soft Physics particle production
- Hard processes probe of the QGP
- Conclusions & Outlook

Winter Workshop on Recent QCD Advances at the LHC

Probing the QGP

- Penetrating beams created by parton scattering before QGP is formed
 - High transverse momentum particles \rightarrow jets
 - Heavy particles \rightarrow open and hidden charm or bottom
- Probe QGP created in Au-Au collisions as transient state after ~ 1 fm
 - Calculable in pQCD (if no medium: $dN_{AA}^{hard} = N_{coll} \times dN_{pol}^{hard}$)
 - Calibrated in control experiments: pp (QCD vacuum), p(d)A (cold medium)
- Produced hadrons lose energy by multiple final state non-Abelian (gluon) radiation in the traversed medium
- QCD Energy loss → medium properties
 - Gluon density
 - Transport coefficient
- Phenomenological implications:
 - Suppression of leading hadron
 - Disappearence of away-side jet

ALICE detector and data taking

Pb-Pb @ 2.76 TeV, ~1month data taking, ~30M nuclear collisions MB trigger with increasingly stronger conditions

- + Ultraperipheral trigger very large em cross sections:
- QED pair production: • hundreds of kbarn e+e-• very soft
- em dissociation ~ 200 barn one or several neutrons in ZDC, no central particles
- photonuclear reactions: tens of barns (kinematics very similar to pA)
 - $E_{v} \sim several 100 GeV$

3

Geometry of AA collision

b

- small impact parameter (b~0)
 - high energy density
 - large volume
 - large number of produced particles
- measured as:
 - fraction of cross section "centrality"
 - number of participants
 - number of nucleon-nucleon collisions

Centrality experimentally The collision geometry (i.e. the impact parameter) determines the number of nucleons that participate in the collision **Spectators**Only ZDCs measure N_{part}

Calculating Npart, Ncoll

- Glauber model approach: geometrical picture of a A+A collision
 - Straight-line nucleon trajectories
 - N-N cross-section independent of the number of collisions the nucleons have undergone before
- Parameters
 - Nuclear density profile (Woods-Saxon distribution)

$$\rho(r) = \rho_0 \cdot \frac{1}{1 + \exp(\frac{r - R}{d})}$$

R=6.62 fm, d=0.546 fm,

collision occurs if distance between nucleons in transverse plane≤0.4 fm

 $\frac{1}{102} \text{Mucleon-Nucleon inelastic crossesection } \sigma_{NN} = 64\pm5 \text{ mb}$

Extracting Npart, Ncoll

- Define centrality classes as in analysis of real data
- Extract mean of $N_{\mbox{\tiny part}}$ and N_{coll} distribution for each class

- N_{part}, N_{coll} agree well with true geometrical values
- Estimate uncertainty by varying model assumptions (CERN) 7

How many particles are produced?

- Multiplicity of charged particles: per unit of pseudorapidity per pair of participants (i.e. nucleons taking part in collision) dNch/dη ~1600 for 0-5% most central
- Highest ever achieved, ~ 2 x higher than at RHIC
- growth with \sqrt{s} faster in AA than pp

 → the largest energy density e ever reached

$$\varepsilon = \frac{E}{V} = A \cdot \frac{dN_{ch}}{d\eta} \cdot \left\langle \sqrt{m^2 + p_T^2} \right\rangle$$

~ few GeV/fm3 3 x higher than at RHIC (fixed t)

Multiplicity as function of centrality

- soft process dN_{ch}/dη ~ number of scattered nucleons (strings, participants) 'nuclear amplification' should be energy independent
- hard processes $dN_{ch}/d\eta \sim$ number of nucleon-nucleon collisions
- getting more important with \sqrt{s} & with centrality

- DPMJET MC (2-component + string fusion) stronger rise than data
- HIJING MC strong centrality dependent gluon shadowing

Other **saturation models:** Color Glass Condensate, 'geometrical scaling' from HERA/ photonuclear react. (CERN) 9

Azimuthal Asymmetry

Almond-shape spatial anisotropy in non-central collisions translated into boosted momentum emission along reaction plane

Liquid Li Explodes into Vacuum

 $E\frac{d^{3}N}{d^{3}p} = \frac{1}{2\pi} \frac{d^{2}N}{p_{T}dp_{T}dy} \left(1 + 2\sum_{n=1}^{\infty} v_{n} \log[n(\phi - \Phi_{RP})]\right)$

Elliptic flow $V_{2} = 2^{nd}$ Fourier coefficient

- \rightarrow The transfer of this asymmetry to momentum space provides a measure of the strength of collective phenomena
- Large mean free path
 - particles stream out isotropically, no memory of the asymmetry
 - extreme: ideal gas (infinite mean free path)
- Small mean free path
 - larger density gradient -> larger pressure gradient -> larger momentum
 - extreme: ideal liquid (zero mean free path,

10

Elliptic Flow Measurement

- v₂ as function of p_t
 - no change with energy
 - Consistent with hydro predictions
 - extends towards larger centrality/higher p_t ?
- v₂ integrated over pt
 - 30% increase from RHIC
 - $< p_t >$ increases with \sqrt{s}
 - Hydro predicts increased 'radial flow' very characteristic p_t and mass dependence

Alberica Toia

Towards the most perfect liquid?

- Large v₂ signal: reaches "hydro limit" (i.e. full thermalization)
 → Truly collective effect
- Strong partonic pressure gradient
- large & fast parton scattering:
- \rightarrow early thermalization
- Low viscosity: early hydrodynamic calculations of the medium at RHIC have assumed zero viscosity: η = 0, i.e. a "perfect fluid"
- AdS/CFT: conjectured lower quantum limit $1/4\pi$
- ... but viscous corrections should be taken into account

Extrapolation of the reference spectrum

- Use pQCD to extrapolate from existing data (0.9 → 2.76 TeV or 7 → 2.76 TeV) Arleo, d'Enterria, Yoon arXiv:1003.2963
 - Use only ALICE data
 - Parametrize $\textbf{p}_{_{T}}$ spectra to avoid fluctuations and increase $\textbf{p}_{_{T}}$ reach

→ reduces systematic scale uncertainties

High pT suppression

Suppression is more complicated at higher p₋

- •Larger suppression than at RHIC
- •Steep R_{AA} rise from 6.5 20 GeV/c (ambiguous at RHIC)
- •What happens at higher p_{τ} ?
 - ATLAS, CMS jet suppression...
- •Enough Pb-Pb and p-p event statistics to reach $p_{\tau} = 50$ GeV/c

Conclusions & Outlook

- LHC and ALICE performed well in the first Pb-Pb run
- First look at collected data
 - Few weeks of data analysis
 - Small sample of data analyzed
- Results
 - Highest charged particle density ever reached
 - Its centrality dependence saturates
 - Hadrons flow close to hydro limit
 - High p_{τ} Suppression stronger than at RHIC rises with p_{τ}

Backup

High pT suppression

The production length of a leading hadron short because of vacuum gluon radiation and energy dissipation

nuclear suppression of high-pT hadrons related to the survival probability of a colorless dipole

This is subject to color transparency, which leads to a steep rise with p

Enough Pb-Pb and p-p event statistics to reach pT = 50 GeV/c

Other centrality measures

