Prompt Photons at ATLAS

Mike Hance, UPenn For the ATLAS Collaboration Les Houches Winter Workshop 16 February 2011

Overview

Prompt photon studies at ATLAS began with a **measurement** of the inclusive isolated photon cross section with the earliest 2010 data.

- http://arxiv.org/abs/1012.4389 (accepted by PRD)
- (Very) quick overview of prompt photon physics/challenges
- Quick review of the ATLAS detector
 - Inner Tracker
 - EM and Hadronic Calorimetry
- Photon Reconstruction and ID
 - Shower evolution in the calorimeter
 - Efficiencies
- Isolation

- Background Estimation
 - Using shower shapes and isolation
- Cross Section Measurement
 - Using 880 nb⁻¹ of *pp* collision data at $\sqrt{s} = 7$ TeV
 - Covering $|\eta| < 1.81$, $15 < E_{\mathrm{T}}^{\gamma} < 100 \ \mathrm{GeV}$
- Current/Future Work
 - Extended inclusive photon studies
 - Diphotons
 - Future plans

What are prompt photons?

- Photons emerging intact from the hard scatter or parton fragmentation
- Not the products of secondary hadronic decays

Prompt photons are clean probes of hard collisions at relatively high rates

- Sensitive to gluon content of proton via QCD Compton-like process
- A good QCD measurement without using jets

- Primary background is $\pi^0 \rightarrow \gamma \gamma$ (two photons faking a single photon)
- Additional contributions from η, ρ, ω
- "Isolation" used to reduce backgrounds
 - "Isolation Energy" means "additional hadronic energy near the photon axis"
 - Signal has low isolation energy, background (from jets) has higher isolation

What are prompt photons?

- Photons emerging intact from the hard scatter or parton fragmentation
- Not the products of secondary hadronic decays

Prompt photons are clean probes of hard collisions at relatively high rates

- Sensitive to gluon content of proton via QCD Compton-like process
- A good QCD measurement without using jets

- Primary background is $\pi^0 \rightarrow \gamma \gamma$ (two photons faking a single photon)
- Additional contributions from η, ρ, ω
- "Isolation" used to reduce backgrounds
 - "Isolation Energy" means "additional hadronic energy near the photon axis"
 - Signal has low isolation energy, background (from jets) has higher isolation

What are prompt photons?

- Photons emerging intact from the hard scatter or parton fragmentation
- Not the products of secondary hadronic decays

Prompt photons are clean probes of hard collisions at relatively high rates

- Sensitive to gluon content of proton via QCD Compton-like process
- A good QCD measurement without using jets

- Primary background is $\pi^0 \rightarrow \gamma \gamma$ (two photons faking a single photon)
- Additional contributions from η, ρ, ω
- "Isolation" used to reduce backgrounds
 - "Isolation Energy" means "additional hadronic energy near the photon axis"
 - Signal has low isolation energy, background (from jets) has higher isolation

What are prompt photons?

- Photons emerging intact from the hard scatter or parton fragmentation
- Not the products of secondary hadronic decays

Prompt photons are clean probes of hard collisions at relatively high rates

- Sensitive to gluon content of proton via QCD Compton-like process
- A good QCD measurement without using jets

- Primary background is $\pi^0 \rightarrow \gamma \gamma$ (two photons faking a single photon)
- Additional contributions from η, ρ, ω
- "Isolation" used to reduce backgrounds
 - "Isolation Energy" means "additional hadronic energy near the photon axis"
 - Signal has low isolation energy, background (from jets) has higher isolation

The ATLAS Detector

A Toroidal LHC ApparatuS

Inner Detector

Transition Radiation Tracker

- 350k channel tracker
- 4mm (diameter) straws
- TR detection: e/π^{\pm} discrimination
- \approx 36 hits on track
- $\approx 130 \mu m$ resolution

Semi-Conductor Tracker

- 6.3M channels
- 4 cylinders, 8 hits/track
- $\approx 17 \mu m$ resolution

Pixel Tracker

- 80M channels, 3 layers
- $\approx 10 \mu m$ resolution

Calorimetry

EM Calorimeter

- PB-LAr Accordion
- $\Delta E/E = (10\%/\sqrt{E}) \oplus .7\%$
- $.025 \times .025$ cells $(\eta \times \phi)$
- Angular res.: 50 mrad / \sqrt{E}

Hadronic Calorimeter

Fe-scintillator for |η| < 1.7
ΔE/E = (50%/√E) ⊕ 6%
Cu-LAr for 1.5 < |η| < 3.2
ΔE/E = (50%/√E) ⊕ 3%

Photon Reconstruction and ID

Photon/ π^0 Discrimination

Shower Evolution - Layer 2

The layer 2 (primary calorimeter sampling layer) shower shape cuts require compact clusters consistent with single photons:

- Energy distribution width in η (R $_{\eta}$)
- Energy distribution width in $\phi(\mathbf{R}_{\phi})$
- Leakage into hadronic calorimeter

Shower Evolution - Strips

Peak-to-trough in strips

The layer 1 (strips) provide excellent eta resolution, and allow increased discrimination of single photons from π^{0} 's

Entries/0.025 Entries/0.025 ATLAS Preliminary ATLAS Preliminary 10^{4} $\sqrt{s} = 7 \text{ TeV}, \text{ Ldt} = 15.8 \text{ nb}^{-1}$ 10 $\sqrt{s} = 7 \text{ TeV}$. Ldt = 15.8 nb⁻¹ 1.8≤|η|<2.37 1.8≤|η|<2.37 10 Data 2010 Data 2010 10 Simulation (all y candidates) Simulation (all y candidates) 10³ Simulation (prompt y) Simulation (prompt y) 10² 10² 10 0.3 0.4 0.5 0.8 0.9 0.3 0.5 0.6 07 0.8 0.2 0.6 0.4 0.9 F_{side}

Spread of Energy in Strips

- Look for two local maxima, or wider showers in η or ϕ
- Usually measured over the equivalent of a few cells at layer 2
 - $\bullet \Rightarrow$ Largely uncorrelated with isolation variables

Measured Efficiencies

Trigger Efficiency: **99.5%** Reconstruction efficiency: **82%**

• Including recoverable acceptance losses

ID efficiency determined from MC:

- Shift shower-shapes in MC to match data
- Separately for converted/unconverted
- Verified using $W \rightarrow e\nu$
- Systematics from:
 - Material effects
 - Pileup
 - Conversions
 - Many more....

Overall systematics $\approx 15\%$ (relative)

• Will improve with $Z \rightarrow ll\gamma$ (several inverse femtobarns)

Isolation

Calorimeter Isolation

(Uncalibrated) sum of cells outside of 5×7 central core:

- In this case: $\Delta R = \sqrt{\Delta \phi^2 + \Delta \eta^2} < .4$
- Need to correct for out-of-core leakage
- Also need to account for non-perturbative effects....

Ambient Energy Corrections

100 MeV

10000L

2000

6000

4000

(Courtesy of Wikipedia)

• Take median jet-energy density to be representative of the ambient energy in the event

For events with 1 primary vertex (no pileup):

Tight Photons $E_{\tau}^{\gamma} > 15 \text{ GeV}$

• PYTHIA: 440 MeV

Ambient Transverse Energy Density [GeV/Unit Area]

ATLAS

J L dt = 880 nb⁻¹ • Data 2010,√s = 7 TeV

- HERWIG: 550 MeV
- Data: 540 MeV

Background Estimation

Background Estimates

To estimate the residual background: use isolation.

Main challenge: modeling signal and background isolation profiles:

- Stay data-driven as much as possible
- Avoid biases from untuned MC

Background Estimates

Strong desire to extract the isolation profile of the background directly from data.

• Signal should be well understood, but background modeling in MC may not be as good.

To model the background - reverse some photon ID cuts:

- Cuts on the strip (layer-1) variables are good candidates
- Not strongly correlated with isolation

2-D Sideband (ABCD) Technique

Cross Section Measurement

Cross Section Measurement

We now have most of the ingredients for the cross section measurement:

$$\frac{d\sigma}{dE_{\rm T}^{\gamma}} = \frac{N_{\rm yield} U}{\left(\int \mathcal{L} dt\right) \ \Delta E_{\rm T}^{\gamma} \ \varepsilon_{\rm trigger} \ \varepsilon_{\rm reco} \ \varepsilon_{\rm ID}}$$

 N_{yield} (= $N \cdot P$) extracted from purity measurements, ε from efficiency measurements.

Unfolding coefficients (U) evaluated using PYTHIA signal MC:

Compare with theoretical predictions from JETPHOX:

- CTEQ 6.6 PDFs (also done with MSTW 2008)
- Standard choice of scales: $\mu_R = \mu_F = \mu_f = E_T^{\gamma}$
 - Vary scales independently from $\mu = .5E_{\rm T}^{\gamma}$ to $\mu = 2E_{\rm T}^{\gamma}$
 - Largest source of uncertainty
- Isolation requirement: Iso < 4 GeV (cone $\Delta R = .4$)
 - Vary isolation from 2 GeV to 6 GeV

Cross Section Measurement

Cross Section: Higher $|\eta|$

Results compared with theoretical predictions from JETPHOX

- Systematically limited across the full $E_{\rm T}$ range
- Good agreement at high $E_{\rm T}$, where the systematics on both experiment and theory are smallest

Most Recent Photon Studies with ATLAS

A factor of 40 more data has been accumulated since the last analysis was frozen....

- Can extend the $E_{\rm T}$ -reach to $\approx 400 {\rm ~GeV}$
- Tight, isolated photons above 100 GeV are very pure (> 90%)

Compton process still dominant at high $E_T \rightarrow$ constrain gluon content of proton for PDFs.

In addition to the inclusive analysis, we plan to measure the $\gamma+{\rm jet}$ cross section separately:

- Event kinematics provide more information
- Angular separation sensitive to fragmentation component

Diphoton Measurements

SM Diphoton Production

- Around 1 nb for $E_{\rm T} > 15 {\rm GeV}$
- Largest (irreducible) background to $H \rightarrow \gamma \gamma$
- Biggest challenge is extending the analysis to low *E*_T

Conclusion

Conclusion

First ATLAS measurement of prompt photon production

- Photons are characterized for the first time by ATLAS
- Good efficiency for very high purity, especially at high $E_{\rm T}$
- Cross-section measurement up to 100 GeV, in three η regions
 - Extending to $\approx 500 \text{ GeV}$ with all 2010 data
- Good agreement with theory for $E_{\rm T}^{\gamma} > 30 {\rm ~GeV}$
 - Some things to be understood at lower $E_{\rm T}^{\gamma}$

Lots of interesting γ physics to come

- Inclusive photons to much higher $E_{\rm T}^{\gamma}$
- Di-photon cross section
- Photon+Jet measurements
- More studies of photon isolation
- Higgs, SUSY, Exotics signatures with photons... all start with this work

Conclusion

First ATLAS measurement of prompt photon production

- Photons are characterized for the first time by ATLAS
- Good efficiency for very high purity, especially at high $E_{\rm T}$
- Cross-section measurement up to 100 GeV, in three η regions
 - Extending to $\approx 500 \text{ GeV}$ with all 2010 data
- Good agreement with theory for $E_{\rm T}^{\gamma} > 30 {\rm ~GeV}$
 - Some things to be understood at lower $E_{\rm T}^{\gamma}$

Lots of interesting γ physics to come

- Inclusive photons to much higher $E_{\rm T}^{\gamma}$
- Di-photon cross section
- Photon+Jet measurements
- More studies of photon isolation
- Higgs, SUSY, Exotics signatures with photons... all start with this work

Calorimeter Clusters

- Sliding Window cluster finding (5×5 cells)
- Clusters of different sizes for photons and electrons:
 - Electrons: 3×7 cells
 - Unconverted photons: 3×5 cells
 - Converted photons: 3×7 cells
- Electrons identified by associated track

Clusters are fully calibrated offline:

- Simulation tuned using Test Beam data
- Energy scale uncertainty: 3% in TB, better than that with $Z \rightarrow ee$

All that ID material comes at a price....

Conversion reconstruction is critical, especially outside of central barrel:

- Look for secondary vertices consistent with pair production
- Also a clean source of low $E_{\rm T}$ electrons

Conversion Finding

Dedicated algorithms reconstruct conversion vertices with high efficiency up to $R \approx 800$ mm:

- Back-tracking, from TRT into Si detectors, for vertex finding
- Cluster-seeded vertex matching to 'recover' photons tagged as electrons

Conversion finding is also a powerful way to map the detector material:

• Material mapping (only uses vertices) is critical for precision measurements (*W* mass)

Isolation Templates

Subtracting the Non-perturbative Contributions

Basic procedure of the jet area correction method:

- Bin the detector in strips of η
 - In our case: 0.00, 1.50, 3.00, 4.00, 5.00
 - If bins are too small, results are not stable
- Run jet finding
 - k_T algorithm, to avoid overly smoothed jet shapes
 - Minimum *p*_T at 0, to allow for very soft objects

Courtesy of Wikipedia

- Compute Voronoi areas of jets (partitioning the (η, ϕ) space into regions defined by nearest jet)
- From the jets and their areas, find the **median** energy density for the η bin
 - Median helps to avoid any scale effects from setting an upper bound on jet $p_{\rm T}$
 - For events with low multiplicity and hard interactions, can remove *n* most energetic jets from event (where $n \approx 2$)
- Correction to isolation variables made based on the cone size

Isolation Studies

Stefano Frixione proposed an isolation prescription for reducing the fragmentation component in the inclusive analysis:

$$E_{T}^{isolation}(R) < (\epsilon_{s} \cdot E_{T}^{\gamma}) \cdot \left(\frac{1 - \cos(R)}{1 - \cos(R_{0})}\right)^{n}$$

- Apply progressively tighter cuts on smaller and smaller cones
- Terminates at R = 0 with a cut at 0
- Eliminates collinear fragmentation component, leaving only the direct component
 - Theoretically attractive, as the fragmentation component is less well understood

We worked with Frixione and the JETPHOX authors to modify the prescription to take into account experimental constraints:

- Discrete calorimeter granularity \rightarrow discrete cone sizes
- Molière radius not zero \rightarrow terminate at $R \approx .1$
- Needs 'corrections' to to reconstructed isolation to properly remove non-perturbative contributions to the isolation cone

Frixione Isolation

A discrete, generalized form of this prescription will be used in the next analysis:

Single Photon Trigger Efficiency

Higgs

Previous Measurements

Non-Collision Backgrounds

Non-collision backgrounds not an issue for this analysis:

- Will become more critical when extending past 100 GeV
- Also more serious issue when requiring $E_{\rm T}^{\rm miss}$

MSTW PDFs

MSTW PDFs

MSTW PDFs

