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Overview

Prompt photon studies at ATLAS began with a measurement
of the inclusive isolated photon cross section with the earliest
2010 data.

http://arxiv.org/abs/1012.4389 (accepted by PRD)

(Very) quick overview of prompt
photon physics/challenges
Quick review of the ATLAS
detector

Inner Tracker
EM and Hadronic Calorimetry

Photon Reconstruction and ID
Shower evolution in the
calorimeter
Efficiencies

Isolation

Background Estimation
Using shower shapes and
isolation

Cross Section Measurement
Using 880 nb−1 of pp collision
data at

√
s = 7 TeV

Covering |η| < 1.81,
15 < EγT < 100 GeV

Current/Future Work
Extended inclusive photon
studies
Diphotons
Future plans
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Prompt Photons at Hadron Colliders

What are prompt photons?
Photons emerging intact from the hard scatter or parton fragmentation
Not the products of secondary hadronic decays

Prompt photons are clean probes of hard collisions at relatively high rates
Sensitive to gluon content of proton via QCD Compton-like process
A good QCD measurement without using jets

But, large backgrounds make this a challenging signal to extract:
Primary background is π0 → γγ (two photons faking a single photon)
Additional contributions from η, ρ, ω

“Isolation” used to reduce backgrounds
“Isolation Energy” means “additional hadronic energy near the photon
axis”
Signal has low isolation energy, background (from jets) has higher
isolation
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The ATLAS Detector



A Toroidal LHC ApparatuS



Inner Detector

Transition Radiation Tracker

350k channel tracker
4mm (diameter) straws
TR detection: e/π±

discrimination
≈36 hits on track
≈130µm resolution

Semi-Conductor Tracker

6.3M channels
4 cylinders, 8 hits/track
≈17µm resolution

Pixel Tracker

80M channels, 3 layers
≈10µm resolution
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Calorimetry

EM Calorimeter
PB-LAr Accordion
∆E/E =

(
10%/

√
E
)
⊕ .7%

.025×.025 cells (η × φ)
Angular res.: 50 mrad /

√
E

Hadronic Calorimeter

Fe-scintillator for |η| < 1.7
∆E/E =

(
50%/

√
E
)
⊕ 6%

Cu-LAr for 1.5 < |η| < 3.2
∆E/E =

(
50%/

√
E
)
⊕ 3%
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Photon Reconstruction and ID



Photon/π0 Discrimination

Single Photon π0 Candidate
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Shower Evolution - Layer 2

The layer 2 (primary calorimeter sampling layer) shower shape cuts require
compact clusters consistent with single photons:
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Energy distribution - width in η (Rη)
Energy distribution - width in φ (Rφ)
Leakage into hadronic calorimeter
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Shower Evolution - Strips

The layer 1 (strips) provide excellent eta resolution, and allow increased
discrimination of single photons from π0’s

Peak-to-trough in strips Spread of Energy in Strips
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|<2.37η|≤1.8

Look for two local maxima, or wider showers in η or φ
Usually measured over the equivalent of a few cells at layer 2

⇒ Largely uncorrelated with isolation variables
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Measured Efficiencies
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Trigger Efficiency: 99.5%
Reconstruction efficiency: 82%

Including recoverable acceptance
losses

ID efficiency determined from MC:
Shift shower-shapes in MC to match
data
Separately for converted/unconverted
Verified using W → eν
Systematics from:

Material effects
Pileup
Conversions
Many more....

Overall systematics ≈15% (relative)
Will improve with Z → llγ (several inverse femtobarns)
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Isolation



Calorimeter Isolation
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ATLAS
-1Ldt = 878 nb∫ = 7 TeV,  s

(Uncalibrated) sum of cells outside of 5×7 central core:
In this case: ∆R =

√
∆φ2 + ∆η2 < .4

Need to correct for out-of-core leakage
Also need to account for non-perturbative effects....
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Ambient Energy Corrections

(Courtesy of Wikipedia)
Ambient Transverse Energy Density [GeV/Unit Area]
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Tight Photons

 > 15 GeV
γ
TE

Method proposed by Cacciari,
Salam, Sapeta, and Soyez
(http://arxiv.org/abs/
0912.4926)
Take median jet-energy density to be
representative of the ambient energy
in the event

For events with 1 primary vertex (no pileup):

PYTHIA: 440 MeV
HERWIG: 550 MeV
Data: 540 MeV
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Background Estimation



Background Estimates

To estimate the residual background: use isolation.

vs

Main challenge: modeling signal and background isolation profiles:
Stay data-driven as much as possible
Avoid biases from untuned MC
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Background Estimates

Strong desire to extract the isolation profile of the background directly
from data.

Signal should be well understood, but background modeling in MC
may not be as good.

To model the background - reverse some photon ID cuts:
Cuts on the strip (layer-1) variables are good candidates
Not strongly correlated with isolation
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2-D Sideband (ABCD) Technique
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Cross Section Measurement



Cross Section Measurement

We now have most of the ingredients for the cross section measurement:

dσ
dEγ

T
= Nyield U

(∫ Ldt) ∆Eγ
T εtrigger εreco εID

Nyield (= N · P) extracted from purity measurements, ε from efficiency
measurements.

Unfolding coefficients (U) evaluated using PYTHIA signal MC:
Compare with theoretical predictions from JETPHOX:

CTEQ 6.6 PDFs (also done with MSTW 2008)
Standard choice of scales: µR = µF = µf = EγT

Vary scales independently from µ = .5EγT to µ = 2EγT
Largest source of uncertainty

Isolation requirement: Iso < 4 GeV (cone ∆R = .4)
Vary isolation from 2 GeV to 6 GeV
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Cross Section Measurement
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Cross Section: Higher |η|
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Results compared with theoretical predictions from JETPHOX

Systematically limited across the full ET range
Good agreement at high ET, where the systematics on both experiment
and theory are smallest
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Most Recent Photon Studies with
ATLAS



To higher energies....

November 29, 2010 – 18 : 09 DRAFT 2
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Figure 1: Inclusive ET spectrum of isolated photon candidates passing the robust tight selection. The
marker positions correspond to the bin weighted averages.

A factor of 40 more data has been ac-
cumulated since the last analysis was
frozen....

Can extend the ET-reach to
≈400 GeV
Tight, isolated photons above
100 GeV are very pure
(> 90%)

Compton process still dominant at high ET → constrain gluon content of
proton for PDFs.

In addition to the inclusive analysis, we plan to measure the γ+jet cross
section separately:

Event kinematics provide more information
Angular separation sensitive to fragmentation component
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Diphoton Measurements

Born Brem Box
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SM Diphoton Production

Around 1 nb for ET > 15 GeV
Largest (irreducible)
background to H → γγ

Biggest challenge is extending
the analysis to low ET

GeV−1. All background measurements are in agreement with the predictions made in [2] as illustrated in89

Table 1. Those background estimates using the simulations described in Section 2 have been corrected90

to take into account the effects of data quality, pile-up and the new identification criteria described in91

Section 3.92

Table 1: The number of irreducible and reducible background events to theH→ γγ search in the 100-150
GeV mass range. For the measured event numbers, the errors are statistical and systematic, respectively,

and are the result of the double-sideband method. For the expected event numbers, the errors arise from

the theoretical uncertainty on the prediction.

Nγγ Nγ j+N jγ N j j

Data 68.6±11.0±3.4 10.6±4.8±4.1 1.2±0.6±0.5
Expected 86±23 27±14 1±1
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Figure 1: The diphoton invariant mass for the 83 events composing the 2010 data sample. The overlaid

exponential curves in blue represent the cumulative dijet (dotted), jet-photon plus photon-jet (dashed)

and diphoton (solid) components of the background, according to the results obtained with the double-

sideband method, and assuming exponentially decaying distributions. The red dashed curve corresponds

to the Drell-Yan contribution. The yellow band is the prediction for the sum of reducible and irreducible

background components, where the reducible background is normalized to the result of the double-

sideband method, and the irreducible component is normalized to the diphoton NLO prediction. The

lines are all stacked in this figure.

The performance of fake rejection after the isolation cut is checked by re-evaluating the number93

of diphoton, photon-jet and dijet events for increasing values of the cut on the isolation variable. The94

relative change of each of the components follows the expected pattern for photon efficiency and fake95

rejection, with a small increase in the diphoton event yield, and a rapidly increasing photon-jet and dijet96

event yield for looser isolation requirements. The robustness of the double-sideband technique is further97

4
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Conclusion



Conclusion

First ATLAS measurement of prompt photon production

Photons are characterized for the first time by ATLAS
Good efficiency for very high purity, especially at high ET

Cross-section measurement up to 100 GeV, in three η regions
Extending to ≈ 500 GeV with all 2010 data

Good agreement with theory for EγT > 30 GeV
Some things to be understood at lower EγT

Lots of interesting γ physics to come

Inclusive photons to much higher EγT
Di-photon cross section
Photon+Jet measurements
More studies of photon isolation
Higgs, SUSY, Exotics signatures with photons... all start with this work
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Good efficiency for very high purity, especially at high ET

Cross-section measurement up to 100 GeV, in three η regions
Extending to ≈ 500 GeV with all 2010 data

Good agreement with theory for EγT > 30 GeV
Some things to be understood at lower EγT

Lots of interesting γ physics to come

Inclusive photons to much higher EγT
Di-photon cross section
Photon+Jet measurements
More studies of photon isolation
Higgs, SUSY, Exotics signatures with photons... all start with this work
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Bonus



Calorimeter Clusters

Sliding Window cluster finding (5×5
cells)
Clusters of different sizes for photons
and electrons:

Electrons: 3×7 cells
Unconverted photons: 3×5 cells
Converted photons: 3×7 cells

Electrons identified by associated track
∆ϕ = 0.0245

∆η = 0.025
37.5mm/8 = 4.69 mm∆η = 0.0031

∆ϕ=0.0245x436.8mmx4=147.3mm

Trigger Tower

TriggerTower∆ϕ = 0.0982

∆η = 0.1

16X0

4.3X0

2X0

15
00

 m
m

47
0 

m
m

η

ϕ

η = 0

Strip towers in Sampling 1

Square towers in 
Sampling 2

1.7X0

Towers in Sampling 3
∆ϕ×�∆η = 0.0245×�0.05

Clusters are fully calibrated offline:
Simulation tuned using Test Beam data
Energy scale uncertainty: 3% in TB, better than that with Z → ee
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Conversion Finding

All that ID material comes at a price....

|η|
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Conversion reconstruction is critical, especially outside of central barrel:
Look for secondary vertices consistent with pair production
Also a clean source of low ET electrons
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Conversion Finding
Dedicated algorithms reconstruct conversion vertices with high efficiency up
to R ≈ 800 mm:

Back-tracking, from TRT into Si detectors, for vertex finding
Cluster-seeded vertex matching to ’recover’ photons tagged as electrons

Conversion finding is also a powerful way to map the detector material:
Material mapping (only uses vertices) is critical for precision
measurements (W mass)
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Isolation Templates
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Subtracting the Non-perturbative Contributions
Basic procedure of the jet area correction method:

Bin the detector in strips of η
In our case: 0.00, 1.50, 3.00, 4.00, 5.00
If bins are too small, results are not
stable

Run jet finding
kT algorithm, to avoid overly smoothed
jet shapes
Minimum pT at 0, to allow for very soft
objects

Courtesy of Wikipedia

Compute Voronoi areas of jets (partitioning the (η, φ) space into
regions defined by nearest jet)
From the jets and their areas, find the median energy density for the η
bin

Median helps to avoid any scale effects from setting an upper bound on jet
pT

For events with low multiplicity and hard interactions, can remove n most
energetic jets from event (where n ≈ 2)

Correction to isolation variables made based on the cone size
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Isolation Studies
Stefano Frixione proposed an isolation prescription for reducing the
fragmentation component in the inclusive analysis:

Eisolation
T (R) < (εs · EγT) ·

(
1− cos(R)
1− cos(R0)

)n

Apply progressively tighter cuts on smaller and smaller cones
Terminates at R = 0 with a cut at 0
Eliminates collinear fragmentation component, leaving only the direct
component

Theoretically attractive, as the fragmentation component is less well
understood

We worked with Frixione and the JETPHOX authors to modify the
prescription to take into account experimental constraints:

Discrete calorimeter granularity→ discrete cone sizes
Molière radius not zero→ terminate at R ≈ .1
Needs ’corrections’ to to reconstructed isolation to properly remove
non-perturbative contributions to the isolation cone
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Frixione Isolation

A discrete, generalized form of this prescription will be used in the next
analysis:

Eisolation
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Single Photon Trigger Efficiency
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Higgs
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Previous Measurements
7
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FIG. 2: Fraction of isolated prompt photons as a function of
Eγ

T . The systematic uncertainty band is discussed in the text.

Eγ
T

dσ/dEγ
T

dηγ Syst. Unc.
(GeV) (pb/GeV) (%)
30–34 (1.23±0.01)×102 +15.5,−14.5
34–39 (6.21±0.03)×101 +10.8, −9.8
39–44 (3.10±0.02)×101 +9.8, −8.4
44–50 (1.72±0.02)×101 +10.2, −8.1
50–60 (7.93±0.08)×100 +10.1, −8.4
60–70 (3.54±0.05)×100 +9.8, −8.5
70–80 (1.76±0.03)×100 +10.0, −9.1
80–90 (9.08±0.14)×10−1 +9.3, −7.9
90–110 (4.41±0.05)×10−1 +8.8, −8.7
110–130 (1.68±0.03)×10−1 +8.6, −8.7
130–150 (7.25±0.16)×10−2 +7.8, −8.0
150–170 (3.41±0.08)×10−2 +8.8,−10.0
170–200 (1.46±0.04)×10−2 +8.8, −9.1
200–230 (5.66±0.24)×10−3 +9.0,−10.6
230–300 (1.38±0.08)×10−3 +10.0,−10.7
300–400 (1.49±0.21)×10−4 +15.2,−13.4

TABLE I: Measured inclusive isolated prompt photon cross
section for photons in the pseudorapidity region |ηγ | < 1.0
and 30 < Eγ

T < 400 GeV. The uncertainties in the central col-
umn are statistical. The additional 6% luminosity uncertainty
is not included in the table. A parton-to-hadron correction
(Chad = 0.91 ± 0.03) is applied to the pQCD predictions.
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FIG. 4: The inclusive cross section for the production of
isolated photons as a function of pγ

T . The results from the
NLO pQCD calculation with jetphox are shown as solid line.

than 0.3% for pγ
T > 70 GeV. The measured cross section,

together with statistical and systematic uncertainties, is
presented in Fig. 4 and Table I. (The data points are
plotted at the pT value for which a smooth function de-
scribing the cross section is equal to the average cross
section in the bin [22].) Sources of systematic uncer-
tainty include luminosity (6.5%), event vertex determi-
nation (3.6%− 5.0%), energy calibration (9.6%− 5.5%),
the fragmentation model (7.3%− 1.0%), photon conver-
sions (3%), and the photon purity fit uncertainty (shown
in Fig. 3) as well as statistical uncertainties on the de-
termination of geometrical acceptance (1.5%), trigger ef-
ficiency (11% − 1%), selection efficiency (5.4% − 3.8%)
and unsmearing (1.5%). The uncertainty ranges above
are quoted with the uncertainty at low pγ

T first and the
uncertainty at high pγ

T second. Most of these systematic
uncertainties have large (> 80%) bin-to-bin correlations
in pγ

T . Varying the choice of NN cut from 0.3 to 0.7
changed the measured cross section by less than 5%.

Results from a next-to-leading order (NLO) pQCD cal-
culation (jetphox [23, 24]) are compared to our mea-
sured cross section in Fig. 4. These results were derived
using the CTEQ6.1M [25] PDFs and the BFG [26] frag-
mentation functions (FFs). The renormalization, fac-
torization, and fragmentation scales were chosen to be
µR =µF =µf =pγ

T . Another NLO pQCD calculation [27],
based on the small-cone approximation and utilizing dif-
ferent FFs [28], gave consistent results (within 4%). As
shown in Fig. 5, the calculation agrees, within uncertain-
ties, with the measured cross section. The scale depen-
dence in the NLO pQCD theory, estimated by varying
scales by factors of two, are displayed in Fig. 5 as dashed
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cates just the statistical uncertainty. Dashed lines represents
the change in the cross section when varying the theoretical
scales by factors of two. The shaded region indicates the un-
certainty in the cross section estimated with CTEQ6.1 PDFs.

TABLE I: The measured differential cross section for the pro-
duction of isolated photons, averaged over |η| < 0.9, in bins
of pγ

T . 〈pγ
T 〉 is the average pγ

T within each bin. The columns
δσstat and δσsyst represent the statistical and systematic un-
certainties respectively. (Five events with pγ

T > 300 GeV,
including one with pγ

T = 442 GeV, were not considered in
this analysis.)

pγ
T 〈pγ

T 〉 d2σ/dpγ
T dη δσstat δσsyst

(GeV) (GeV) (pb/GeV) (%) (%)

23−25 23.9 4.14×102 0.1 23
25−30 26.9 2.21×102 0.1 19
30−34 31.7 1.01×102 0.2 16
34−39 36.0 5.37×101 0.2 15
39−44 41.1 2.88×101 0.3 14
44−50 46.5 1.58×101 0.4 13
50−60 53.8 7.90×100 0.4 13
60−70 63.9 3.39×100 0.6 13
70−80 74.1 1.68×100 0.9 12
80−90 84.1 9.34×10−1 1.3 12
90−110 97.2 4.38×10−1 1.4 12

110−130 118 1.66×10−1 2.3 12
130−150 138 7.61×10−2 3.5 13
150−170 158 3.20×10−2 5.6 13
170−200 181 1.59×10−2 6.5 14
200−230 212 7.36×10−3 9.8 14
230−300 256 1.81×10−3 13 15
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Purity Estimates
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Non-Collision Backgrounds
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Non-collision backgrounds not an issue for this analysis:
Will become more critical when extending past 100 GeV
Also more serious issue when requiring Emiss
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Preliminary Preliminary
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MSTW PDFs
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MSTW PDFs
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