Photon production at hadronic colliders

J. Ph. Guillet

LAPTH CNRS/Université de Savoie

Winter Workshop - February 2011

J. Ph. Guillet Photon production at hadronic colliders

Outline

Inclusive photon production

- Production at fixed target
- Isolation criterion
- Production at colliders
- Conclusion

▲□ ▼ ▲ □ ▼ ▲ □ ▼ →

Outline

- Inclusive photon production
- Production at fixed target
- Isolation criterion
- Production at colliders
- Conclusion

▲□ ▼ ▲ □ ▼ ▲ □ ▼ →

- Inclusive photon production
- Production at fixed target
- Isolation criterion
- Production at colliders
- Conclusion

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

- Inclusive photon production
- Production at fixed target
- Isolation criterion
- Production at colliders
- Conclusion

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

- Inclusive photon production
- Production at fixed target
- Isolation criterion
- Production at colliders
- Conclusion

・ 戸 ・ ・ ヨ ・ ・ ヨ ・ ・

Inclusive photon production

<個>< 回> < 回> < 回> -

æ

Inclusive photon production

Additional component for photon production

▲ロ → ▲圖 → ▲ 画 → ▲ 画 → …

æ

Inclusive photon production

• Only the sum $\sigma^{D} + \sigma^{F}$ is a physical observable

• When $M_F \gg$ hadronic scale $D_{\gamma/k}(z, M_F)$ behaves like $\alpha/\alpha_s(M_F)$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- Only the sum $\sigma^D + \sigma^F$ is a physical observable
- When $M_F \gg$ hadronic scale $D_{\gamma/k}(z, M_F)$ behaves like $\alpha/\alpha_s(M_F)$

Inclusive photon production Why NLO?

$$\frac{\partial}{\partial \ln(M)} \left(\frac{d\sigma}{d\vec{P}_{T\gamma} dy_{\gamma}} \right) = O(\alpha_s^{n+1})$$

< □ > < 同 >

æ

• $\hat{\sigma}_{ij}^{(1)}$ contains other logarithmic terms such as $\ln(\hat{x}_T)$,

$$\ln(1-\hat{x}_T)$$
, where $\hat{x}_T = 2 P_{T\gamma}/\sqrt{\hat{s}}$.

- when $P_{T\gamma}$ is close to $\sqrt{S}/2$, the extra gluons are forced to be soft \rightarrow large logarithms of infra-red origin
- when P_{T γ} ≪ √S, two scale problem, in this regime, the assumptions of the QCD improved parton model may not be valid → The Altarelli-Parisi evolution may be not valid.
- assumption that the γ produced is collinear to the parent parton → inter jet activity cannot be described by this type of calculation
- the fragmentation functions are extracted from e⁺ e⁻ data in a range .1 < z < .8. What are the errors due to FF?

・ ロ マ ・ 雪 マ ・ 雪 マ ・ 日 マ

• $\hat{\sigma}_{ij}^{(1)}$ contains other logarithmic terms such as $\ln(\hat{x}_T)$,

 $\ln(1-\hat{x}_T)$, where $\hat{x}_T = 2 P_{T\gamma}/\sqrt{\hat{s}}$.

- when $P_{T\gamma}$ is close to $\sqrt{S}/2$, the extra gluons are forced to be soft \rightarrow large logarithms of infra-red origin
- when P_{T γ} ≪ √S, two scale problem, in this regime, the assumptions of the QCD improved parton model may not be valid → The Altarelli-Parisi evolution may be not valid.
- assumption that the γ produced is collinear to the parent parton \rightarrow inter jet activity cannot be described by this type of calculation
- the fragmentation functions are extracted from e⁺ e⁻ data in a range .1 < z < .8. What are the errors due to FF?

・ ロ マ ・ 雪 マ ・ 雪 マ ・ 日 マ

• $\hat{\sigma}_{ij}^{(1)}$ contains other logarithmic terms such as $\ln(\hat{x}_T)$,

 $\ln(1-\hat{x}_T)$, where $\hat{x}_T = 2 P_{T\gamma}/\sqrt{\hat{s}}$.

- when $P_{T\gamma}$ is close to $\sqrt{S}/2$, the extra gluons are forced to be soft \rightarrow large logarithms of infra-red origin
- when P_{T γ} ≪ √S, two scale problem, in this regime, the assumptions of the QCD improved parton model may not be valid → The Altarelli-Parisi evolution may be not valid.
- assumption that the γ produced is collinear to the parent parton → inter jet activity cannot be described by this type of calculation
- the fragmentation functions are extracted from e⁺ e⁻ data in a range .1 < z < .8. What are the errors due to FF?

・ ロ ト ・ 雪 ト ・ 目 ト ・ 日 ト

• $\hat{\sigma}_{ij}^{(1)}$ contains other logarithmic terms such as $\ln(\hat{x}_T)$,

 $\ln(1-\hat{x}_T)$, where $\hat{x}_T = 2 P_{T\gamma}/\sqrt{\hat{s}}$.

- when $P_{T\gamma}$ is close to $\sqrt{S}/2$, the extra gluons are forced to be soft \rightarrow large logarithms of infra-red origin
- when P_{T γ} ≪ √S, two scale problem, in this regime, the assumptions of the QCD improved parton model may not be valid → The Altarelli-Parisi evolution may be not valid.
- assumption that the γ produced is collinear to the parent parton → inter jet activity cannot be described by this type of calculation
- the fragmentation functions are extracted from e⁺ e⁻ data in a range .1 < z < .8. What are the errors due to FF?

・ロン ・聞と ・ ほとし

• Large domain of energies experimentally studied.

- Used to constrain the proton gluon density $\sigma_{q+g \rightarrow \gamma+X} \gg \sigma_{q+\bar{q} \rightarrow \gamma+X}$ (but banished from the PDF fits)
- probe of energy loss processes in quark-gluon plasma

・ 戸 ト ・ ヨ ト ・ ヨ ト

- Large domain of energies experimentally studied.
- Used to constrain the proton gluon density $\sigma_{q+g \rightarrow \gamma+X} \gg \sigma_{q+\bar{q} \rightarrow \gamma+X}$ (but banished from the PDF fits)
- probe of energy loss processes in quark-gluon plasma

・ 戸 ト ・ ヨ ト ・ ヨ ト

- Large domain of energies experimentally studied.
- Used to constrain the proton gluon density $\sigma_{q+g \rightarrow \gamma+X} \gg \sigma_{q+\bar{q} \rightarrow \gamma+X}$ (but banished from the PDF fits)
- probe of energy loss processes in quark-gluon plasma

・ 同 ト ・ ヨ ト ・ ヨ ト

	type of code	Direct	Fragmentation
INCNLO (*)	I/FO	NLO	NLO
Vogelsang, Gordon (*)	I/FO	NLO	NLO
Owens et al.	G/FO	NLO	LO
Frixione, Vogelsang	G/FO	NLO	LO
JETPHOX (*)	G/FO	NLO	NLO

1	:	Inclusive
G	:	Generator
FO	:	Fixed Order

(*) http://lapth.in2p3.fr/PHOX_FAMILY/main.html

Threshold resummation:(*) Catani et al., Vogelsang, Sterman (*) Kidonakis, Owens

▲ロト ▲圖 ト ▲ 国 ト ▲ 国 ト

∃ \0<</p> \0

Production at fixed target

Comparison with existing data

Disagreement between data and theory

 $23 \le \sqrt{S} \le 1800$ GeV: fixed target + ISR data + Tevatron data

< □ > < 同 >

Production at fixed target

Comparison with existing data

Disagreement between data and theory or disagreement among experimental data???

 $23 \le \sqrt{S} \le 1800$ GeV: fixed target + ISR data + Tevatron data

< □ > < 同 >

 $\exists \mapsto$

Summation of logs of infra-red origin $\ln(1 - \hat{x}_T)$ (Catani, Nason, Vogelsang) and even conjoint summation of $\ln(1 - \hat{x}_T)$ and $\ln(\hat{x}_T)$ (Sterman, Laenen, Vogelsang).

To get agreement with E706 experiments, a large non perturbative input (intrinsic k_T) is needed but incompatible with other experiments ...

Re-add of photon data in the PDF fits???? (d'Enterria, Ichoux)

ヘロト 人間 ト イヨト イヨト

Apart from the PDF :

- Knowledge of photon fragmentation function
- isolation criterion (no more inclusive!)

・ 戸 ・ ・ ヨ ・ ・ ヨ ・ ・

Apart from the PDF :

- Knowledge of photon fragmentation function
- isolation criterion (no more inclusive!)

・ 同 ト ・ ヨ ト ・ ヨ ト

Isolation criterion Standard criterion

$$egin{array}{l} E_{T}^{had} \leq E_{T\,max} ext{ inside} \ (y-y_{\gamma})^{2} + (\phi-\phi_{\gamma})^{2} \leq R_{exp}^{2} \end{array}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Isolation criterion Standard criterion

$$egin{aligned} E_{T}^{had} &\leq E_{T\,max} ext{ inside} \ (y-y_{\gamma})^{2} + (\phi-\phi_{\gamma})^{2} &\leq R_{exp}^{2} \end{aligned}$$

Large Log. when $R_{exp} \rightarrow 0$ and $E_{T\,max} \rightarrow 0$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Isolation criterion Standard criterion

$$egin{aligned} E_{T}^{had} &\leq E_{T\,max} ext{ inside} \ (y-y_{\gamma})^{2} + (\phi-\phi_{\gamma})^{2} &\leq R_{exp}^{2} \end{aligned}$$

Large Log. when $R_{exp} \rightarrow 0$ and $E_{T\,max} \rightarrow 0$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Underlying events, pile up,

Other isolation criterion (s. Frixione) where $E_{T had} < f(r)$

$$f(r) \rightarrow 0$$
 when $r \rightarrow 0$ like r^{2n}

kill the fragmentation contribution

伺 とく ヨ とく ヨ とう

Isolation criterion

Discrete version

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ …

æ

6 nested cones : 0.1, 0.16, 0.22, 0.28, 0.34, 0.4

3 k 3

Production at colliders PT distribution CDF

high energy resummation ($P_{T\gamma} << \sqrt{S}$) is negligible at Tevatron : G. Diana, J. Rojo and R. D. Ball (arXiv:1006.4250 [hepph])

< □ > < 同 > < 回 > <

Production at colliders P_T distribution ATLAS

э

Production at colliders

P_T distribution ATLAS (bis)

< □ > < 同 >

문 🛌 🗄

Production at colliders *P*_T distribution CMS

J. Ph. Guillet Photon production at hadronic colliders

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶

ъ

Inclusive photon production is well undercontrol (if we remove E706 data)

 More work to know as accurately as possible the uncertainties coming from photon fragmentation functions and isolation criteria

・ 戸 ・ ・ ヨ ・ ・ ヨ ・ ・

- Inclusive photon production is well undercontrol (if we remove E706 data)
- More work to know as accurately as possible the uncertainties coming from photon fragmentation functions and isolation criteria

・ 戸 ト ・ ヨ ト ・ ヨ ト