Software implementation for RF breakdown protection and recovery

Bartosz Bielawski (BE-RF) Rolf Wegner (BE-RF)

188th Machine Protection Panel Meeting (Injectors): Special meeting on Linac4 RFQ protection

Outline

* Objectives,
- Structure,
* States \& Transitions,
* Recovery ramps,
* Interfaces,
* Modifications of the control system,
* Other details

Objectives

* Protect the RFQ (done by HW),
* Decrease downtime due to single breakdowns,
* Automate detection of breakdown clusters,
* Automate recovery after breakdown clusters,
* Provide information about RFQ breakdown rates.

Structure: general

Structure: PLCs \& Interlocks

States \& Transitions

Recovery ramps (L1, parameters)

* Number of recovery levels: 5 + conditioning,
* Parameters:
* initial delay ($\mathbf{\nabla}$),
* initial voltage:
* relative, absolute
* repetitions,
* step delta,
* repetitions with feedback (x).

Recovery ramps (L1-L5)

Interfaces

* Hardware:
* Interlock to BIS (Source RF):
* SW control over "RF not ready",
* HW control from all the other interlocks,
- Software (FESA):
* Command property to request state transition,
* Status property: current state and suggested state,
* Diagnostic interfaces for RF and OP.

Modifications of the control system

* PLCs:
* Wiring of the Watcher High (reflected power trigger) interlock,
* Update of Interlock PLC to include "RF not ready",
* Software:
* Implementation of regular readouts, (async. $2 \mathrm{~s} \rightarrow$ sync. 1.2 s),
* Update of CavityLoops (non-muxed SP scaling \& loops enable),
* Update of RF Sequencer to be aware of the BD recovery class,
* Optional:
* Beam stopper control (BE-OP).

Other details

* Parameters of recovery ramps and bins are configurable,
* Mandatory logging - interlocks are reset as they happen,
* Handling of special cases can still be redefined,
* Alarms for breakdowns and other special cases.

Thank you for your attention...

Questions?

