GAmma Nuclear Decays Hiding from Investigators Experiment (GANDHI)

Surjeet Rajendran with

Giovanni Benato, Alexey Drobizhev and Hari Ramani

Proof of Concept: Rupak Mahapatra (TAMU)

Aim: Single Event for Discovery

Aim: Single Event for Discovery

How well can we do?

Baryonically coupled φ, mass <~ MeV

Outline

- 1. Nuclei
- 2. Setup
- 3. Theory/Reach
- 4. Conclusions

Lifetime, Cascade Efficiency, Availability

Lifetime, Cascade Efficiency, Availability

t_{1/2} ~ 5 years Similar energy Gammas

Lifetime, Cascade Efficiency, Availability

t_{1/2} ~ 5 years Similar energy Gammas

 $t_{1/2} \sim 15 \text{ hr}$ Medical Isotope

Lifetime, Cascade Efficiency, Availability

t_{1/2} ~ 5 years

Similar energy Gammas

 $t_{1/2} \sim 15 \text{ hr}$ Medical Isotope

Parity of States -> scalars and vectors

Initial Goal: 10-11

Eventual Goal: 10⁻¹⁴

Observe Individual Event
No pile up

High Event Rate Fast Scintillator

Plastics or Crystals ~ ns response

Initial Goal: 10-11

Eventual Goal: 10⁻¹⁴

Observe Individual Event
No pile up

High Event Rate Fast Scintillator

Plastics or Crystals ~ ns response

~ 30 radiation lengths

Initial Goal: 10-11

Eventual Goal: 10⁻¹⁴

Observe Individual Event
No pile up

High Event Rate Fast Scintillator

Plastics or Crystals ~ ns response

~ 30 radiation lengths

Plastics: ~ 10 m, cheap, make large modules

Initial Goal: 10-11

Eventual Goal: 10⁻¹⁴

Observe Individual Event
No pile up

High Event Rate Fast Scintillator

Plastics or Crystals ~ ns response

~ 30 radiation lengths

Plastics: ~ 10 m, cheap, make large modules

Crystals: ~ 2 m, harder to grow. CMS E-cal

Protocol

Protocol

Signal

- 1. Observe β activity consistent with initial decay
- 2. Within \sim ns, observe 1st γ in inner module
- 3. In that \sim ns, no other energy in detector

Protocol

Signal

- 1. Observe β activity consistent with initial decay
- 2. Within \sim ns, observe 1st γ in inner module
- 3. In that ~ ns, no other energy in detector

Backgrounds?

Intrinsic Background for 60Co

Can 2nd y fake 1st?

Intrinsic Background for 60Co

Can 2nd y fake 1st?

Energy Resolution

Produce both. Confuse 1.33 MeV γ for 1.17 MeV γ

Requiring single γ only eliminates background

Intrinsic Background for 60Co

Can 2nd γ fake 1st?

Soft β + Soft 1.33 MeV = β to 4+ and 1.17 γ ?

Soft β + Energy Resolution of 1.33 MeV?

Soft β to 2+ and Soft Compton γ

Soft β to 2+ and Soft Compton γ

Geometry separates β & γ .

Confusion only if both hit same scintillator (~ cm)

Simulated reach ∼ 10⁻¹¹

Soft β to 2+ and Soft Compton γ

Geometry separates β & γ .

Confusion only if both hit same scintillator (~ cm)

Simulated reach ∼ 10⁻¹¹

Possible Elimination?

Separate source from inner module. Require well separated $\beta \& \gamma$

Soft β to 2+ and Soft Compton γ

Geometry separates β & γ .

Confusion only if both hit same scintillator (~ cm)

Simulated reach $\sim 10^{-11}$

Possible Elimination?

Separate source from inner module. Require well separated β & γ

Absent in 24 Na where $E_1 >> E_2$

Energy Resolution

Soft β to 2+ and mis-measured energy

Measure energy from light yield (LY)

Light yield set by quantum efficiency of photodetector (Q)

Plastic Scintillators: LY ~ 10000/MeV

PMT: $Q \sim 0.25$

Energy Resolution

Soft β to 2+ and mis-measured energy

Measure energy from light yield (LY)

Light yield set by quantum efficiency of photodetector (Q)

Plastic Scintillators: LY ~ 10000/MeV

PMT: $Q \sim 0.25$

$$LY \times E \times Q \pm \sqrt{E \times LY \times Q} \implies E_m$$

Energy Resolution

Soft β to 2+ and mis-measured energy

Measure energy from light yield (LY)

Light yield set by quantum efficiency of photodetector (Q)

Plastic Scintillators: LY ~ 10000/MeV

PMT: $Q \sim 0.25$

$$LY \times E \times Q \pm \sqrt{E \times LY \times Q} \implies E_m$$

Simulated reach ∼ 10⁻¹¹

Absent in 24 Na where $E_1 >> E_2$

Other Backgrounds

Detector Dead Volumes?

Well calibrated inner modules

Radiation Damage < 10⁴ Grays

Further limit through separation

Other Backgrounds

Detector Dead Volumes?

Well calibrated inner modules

Radiation Damage < 10⁴ Grays

Further limit through separation

Radioactive Contaminants

Long lived β at right energy?

None for ²⁴Na.

⁴⁰K for ⁶⁰Co - mBq/gm in some plastics.

Demand well separated β and γ in central module, ns timing

Triggers

Cosmic Rays

Veto event with energy outside inner module

Require well separated β and γ in inner modules within \sim ns

Many radiation lengths separate inner module from environment

Triggers

Trigger

- @ 10-11, not as hard as LHC
- @ 10-14, comparable to LDMX

Cosmic Rays

Veto event with energy outside inner module

Require well separated β and γ in inner modules within \sim ns

Many radiation lengths separate inner module from environment

Theory/Reach

Model

$$\mathcal{L} \supset g_p \phi \bar{\Psi}_p \Psi_p + \mu^2 \phi^2$$

Model

$$\mathcal{L} \supset g_p \phi \bar{\Psi}_p \Psi_p + \mu^2 \phi^2$$

Need Branching fraction in E2 transitions.

Similar to γ transitions

$$H_{\rm int}^{\phi} = g_p R_p^i R_p^j \nabla_i \nabla_j \phi \qquad H_{\rm int}^{\gamma} = e R_p^i R_p^j \nabla_i \epsilon_j$$

$$\frac{\Gamma_{\phi}}{\Gamma_{\gamma}} \sim \frac{g_p^2}{e^2}$$

Model

$$\mathcal{L} \supset g_p \phi \bar{\Psi}_p \Psi_p + \mu^2 \phi^2$$

Need Branching fraction in E2 transitions.

Similar to γ transitions

$$H_{\rm int}^{\phi} = g_p R_p^i R_p^j \nabla_i \nabla_j \phi \qquad H_{\rm int}^{\gamma} = e R_p^i R_p^j \nabla_i \epsilon_j$$

$$\frac{\Gamma_{\phi}}{\Gamma_{\gamma}} \sim \frac{g_p^2}{e^2}$$

Poor constraints on baryonic forces > 100 keV

Relevant for light dark matter experiments

Potentially cause Type 2 Supernova

Constraints

Conclusions

Not limited by availability of source. Complex Handling!

Not limited by availability of source. Complex Handling!

Avoid pile up?

Resolve individual events - hard to get good energy resolution beyond ns response times

Geometric Separation of Events

Not limited by availability of source. Complex Handling!

Avoid pile up?

Resolve individual events - hard to get good energy resolution beyond ns response times

Geometric Separation of Events

Hard Limit: Trigger Electronics!

Not limited by availability of source. Complex Handling!

Avoid pile up?

Resolve individual events - hard to get good energy resolution beyond ns response times

Geometric Separation of Events

Hard Limit: Trigger Electronics!

Better Nuclear Levels?

Gamma Cascades in forbidden channels? Enhanced branching fraction for scalars?

Not limited by availability of source. Complex Handling!

Avoid pile up?

Resolve individual events - hard to get good energy resolution beyond ns response times

Geometric Separation of Events

Hard Limit: Trigger Electronics!

Better Nuclear Levels?

Gamma Cascades in forbidden channels? Enhanced branching fraction for scalars?

Axions: M1 transitions - 65Cu -> 65Ni?