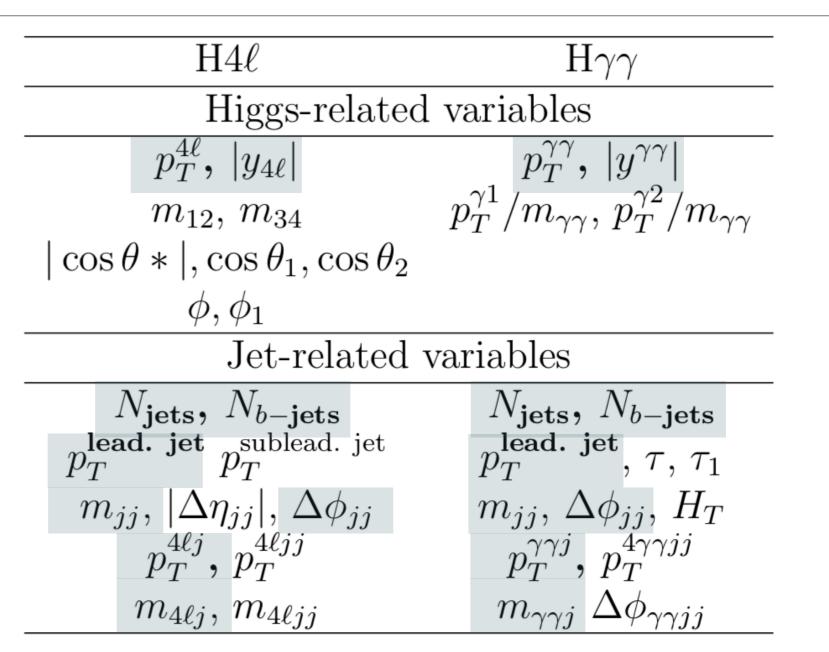
ATLAS Fiducial and Differential Cross Sections

Laurelle Veloce on behalf of DiffXS

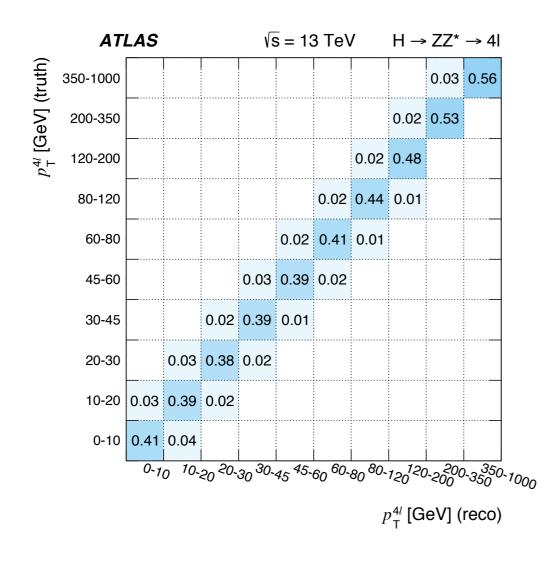

Introduction

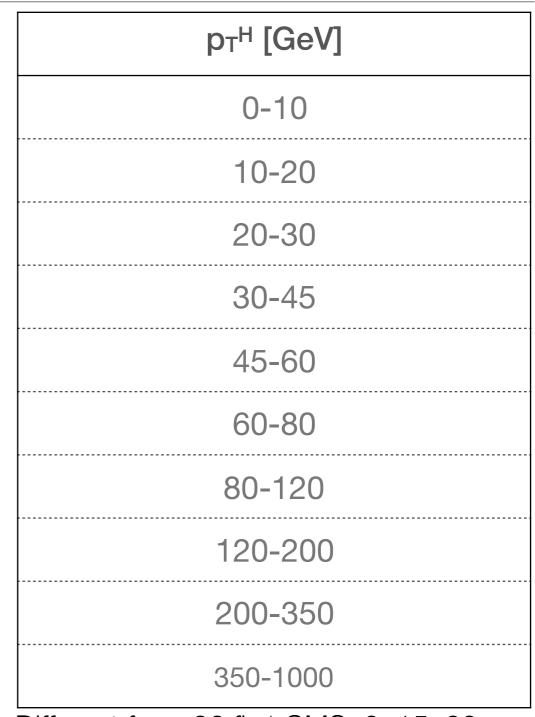
- H4I recently published fiducial & differential cross section results with 139 fb⁻¹
- Hγγ and other channel results are in progress
- We are interested in an ATLAS-CMS combination with 4I, γγ, possibly with additional channels if available
- Possibility to also plan for a 4I-4I (and $\gamma\gamma-\gamma\gamma$) combination with ATLAS and CMS
- Today we will be discussing:
 - 1. Binning for differential variables
 - 2. Signal extraction and unfolding
 - 3. Modelling uncertainties
 - 4. Additional details about fiducial selection and truth object definitions for 4I

Set of differential XS variables

Common variables are highlighted.

H4I variable set is published, Hγγ variables are planned.

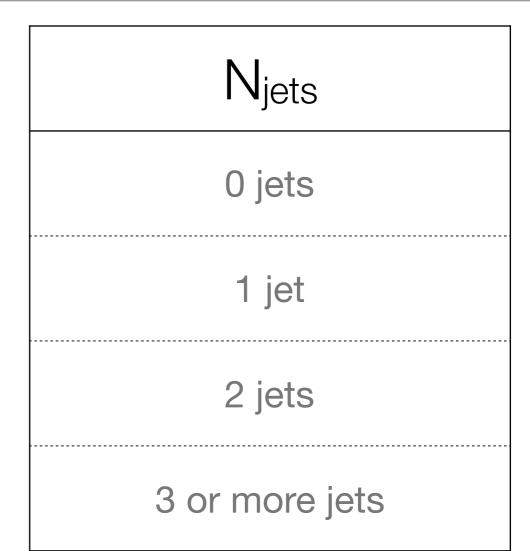



+ Double Differential

 $\begin{array}{l} m_{12} \ vs. \ m_{34}, \ p_T^{4l} \ vs. \ N_{jets}, \ p_T^{4l} \ vs. \\ p_T^{lead.jet}, \ p_T^{4l} \ vs \ p_T^{4lj}, \ p_T^{4l} \ vs \ |y_{4l}|, \ p_T^{4lj} \ vs. \\ m_{4lj}, \ p_T^{lead.jet} \ vs. \ p_T^{sublead.jet}, \ and \ p_T^{lead.jet} \\ vs. \ |y^{lead.jet}| \end{array}$

 $\begin{array}{l} \left| y^{\gamma\gamma} \right| \text{ vs. } p_{T}^{\gamma\gamma}, \\ (p_{T}^{\gamma1} + p_{T}^{\gamma2})/m_{\gamma\gamma} \text{ vs. } (p_{T}^{\gamma1} - p_{T}^{\gamma2})/m_{\gamma\gamma}, \\ p_{T}^{\gamma\gammaj} \text{ vs. } p_{T}^{\gamma\gamma} \end{array}$

- H4l binning schemes are shown
- All bin edges agree between H4I and Hγγ, though in some cases Hγγ has finer binning

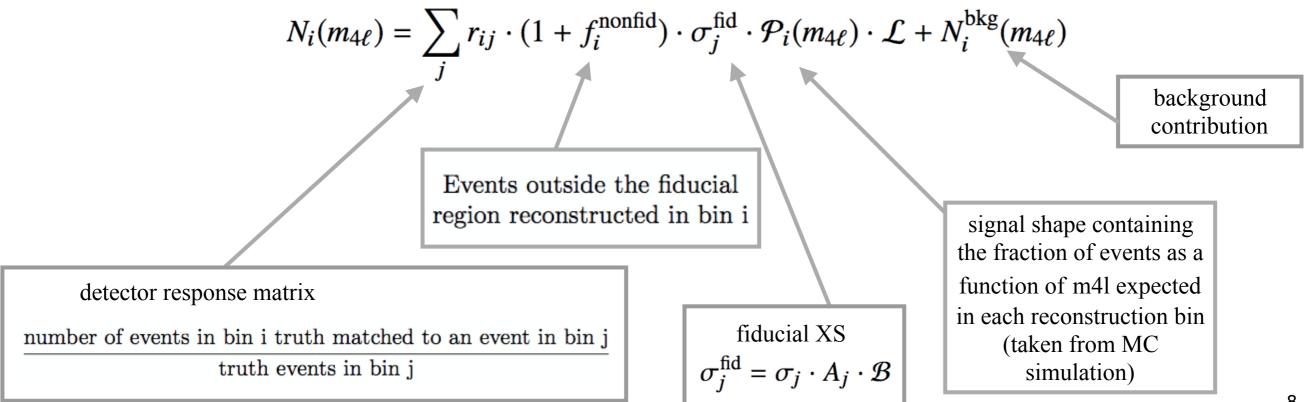

Different from 36 fb⁻¹ CMS: 0, 15, 30 GeV - our goal is to be sensitive to light quark couplings

- H4l binning schemes are shown
- All bin edges agree between H4I and Hγγ, though in some cases Hγγ has finer binning

y ^H
0.0-0.15
0.15-0.30
0.30-0.45
0.45-0.60
0.60-0.75
0.75-0.90
0.90-1.2
1.2-1.6
1.6-2.0
2.0-2.5

No changes to bin edges for this variable.

- H4l binning schemes are shown
- All bin edges agree between H4I and Hγγ, though in some cases Hγγ has finer binning
- note: full jet phase space uses STXS jets
 - all stable particles clustered using anti-kt algorithm with R=0.4; particles from Higgs and leptonic vector boson decays are excluded



Changed from last round to remove bin 4 (four or more jets) due to low stats, high migrations, no accurate predictions

рт ^{lead. jet} [GeV]	m _{jj} [GeV]
0 jets	Events with less than two jets
30-60	0-120
60-120	120-450
120-350	450-3000
Different from 36 fb ⁻¹ CMS (30, 55, 95, 120, 200, 200+ GeV). Updated bin edge from 55 to 60 due to large bin migrations.	Changed from last round to match STXS bin definitions.

Signal extraction and unfolding

- H4I method shown here, but H $\gamma\gamma$ is very similar
 - Data are unfolded using the detector response matrix
 - Higgs mass is set to 125 GeV
 - (for H4I only) XS fit is performed in $105 < m_{41} < 160$ mass window to obtain ZZ • background normalization from data

Model uncertainties propagated through response matrix and acceptance factors

QCD scale systematics

 ggF, VBF - LHCXSWG recommendations (STXS scheme), all other production modes use envelope of µR/µF variations

PDF systematics

 individual eigenvector variations from PDF4LHC_30

- Shower systematics
 - internal Pythia8
 weights, comparison
 with Herwig samples
- Signal composition
 - vary production mode XS individually by experimental uncertainties

Additional information about 4I: Truth Objects and Fiducial Selection

		Leptons and jets	
	T		
• W	Leptons	$p_{\rm T} > 5 \text{ GeV}, \eta < 2.7$	
	Jets	$p_{\rm T} > 30 {\rm ~GeV}, y < 4.4$	
V	Lepton selection and pairing		
	Lepton kinematics	$p_{\rm T} > 20, 15, 10 {\rm GeV}$	
Born	Leading pair (m_{12})	SFOC lepton pair with smallest $ m_Z - m_{\ell \ell} $	
Born	Subleading pair (m_{34})	remaining SFOC lepton pair with smallest $ m_Z - m_{\ell\ell} $	
F 1	Event selection (at most one quadruplet per event)		
	Mass requirements	$50 \text{ GeV} < m_{12} < 106 \text{ GeV}$ and $12 \text{ GeV} < m_{34} < 115 \text{ GeV}$	
	Lepton separation	$\Delta R(\ell_i, \ell_j) > 0.1$	
Dressed (() Y)	Lepton/Jet separation	$\Delta R(\ell_i, \text{jet}) > 0.1$	
	J/ψ veto	$m(\ell_i, \ell_j) > 5$ GeV for all SFOC lepton pairs	
Bare	Mass window	$105 \text{ GeV} < m_{4\ell} < 160 \text{ GeV}$	
	If extra lepton with $p_{\rm T} > 12 \text{ GeV}$	Quadruplet with largest matrix element value	

- Leptons are dressed i.e.: photons within $\Delta R < 0.1$ are added to lepton to mimic QED FSR recovery
- No isolation, d0sig, or vertex selection
- m4l mass window 105 < m4l < 160 GeV

Additional information about 4I: Truth particle definitions

- Leptons: required to originate from Z and W decays (not from hadron decays)
- · Jets
 - **Full Phase Space**: all stable particles clustered using anti-kt algorithm with R=0.4; particles from Higgs and leptonic vector boson decays are excluded (**STXS jets**)
 - Fiducial Phase Space: clustered using anti-kt algorithm with R=0.4; muons and electrons from W/Z/H/tau are not included, nor are photons from Higgs decays or those used in dressing
 - **b-jets**: b-hadron within a cone around the jet axis of radius DeltaR = 0.3 with pT > 5 GeV
- Photons (for FSR recovery): stable, do not come from hadrons, and are within ΔR of 0.1 from a lepton that itself comes from a W/Z boson
 - For $H\gamma\gamma$ two highest pT photons not originating from a hadron

Backup

Summary of H4I variables and binning choices

Binning schemes for Higgs-related variables:

Variable	Bin Edges	$N_{\rm bins}$	ZZ Sidebands Bin Edges	$N_{ZZ \ \rm bins}$
p_T	0, 10, 20, 30, 45, 60, 80, 120, 200, 350, 1000 GeV	11	0, 10, 20, 30, 60, 1000	5
m_{12}	50, 73, 64, 85, 106 GeV	4	50, 73, 85, 106	3
<i>m</i> ₃₄	12, 20, 24, 28, 32, 40, 55, 65 GeV	7	12, 24, 32, 65	3
<i>y</i>	0.0, 0.15, 0.3, 0.45, 0.6, 0.75, 0.9, 1.2, 1.6, 2.0, 2.5	10	0.0, 0.15, 0.3, 0.45, 0.6, 0.75, 1.2, 2.5	7
$ \cos(\theta^*) $	0, 0.125, 0.25, 0.375, 0.5, 0.625, 0.75, 0.875, 1.0	8	0, 0.25, 0.5, 0.75, 1.0	4
$cos(\theta_1)$	-1.0, -0.75, -0.50, -0.25, 0.0, 0.25, 0.50, 0.75, 1.0	8	-1.0, -0.5, 0.0, 0.5, 1.0	
$cos(\theta_2)$	-1.0, -0.75, -0.50, -0.25, 0.0, 0.25, 0.50, 0.75, 1.0	8	-1.0, -0.5, 0.0, 0.5, 1.0	
ϕ	$-\pi, -\frac{3\pi}{4}, -\frac{2\pi}{4}, -\frac{\pi}{4}, 0, \frac{\pi}{4}, \frac{2\pi}{4}, \frac{3\pi}{4}, \pi$	8	$-\pi, -\frac{2\pi}{4}, 0, \frac{2\pi}{4}, \pi$	4
ϕ_1	$-\pi, -\frac{3\pi}{4}, -\frac{2\pi}{4}, -\frac{\pi}{4}, 0, \frac{\pi}{4}, \frac{2\pi}{4}, \frac{3\pi}{4}, \pi$	8	$-\pi, -\frac{2\pi}{4}, 0, \frac{2\pi}{4}, \pi$	4

Summary of H4I variables and binning choices

Binning schemes for jet-related variables:

Variable	Bin Edges	$N_{\rm bins}$	ZZ Sidebands Bin Edges	$N_{ZZ \ \rm bins}$
Njets	$0, 1, 2, \geq 3$	5	$0, 1, \ge 2$	3
N _{b-jets}	0 jets, 0 <i>b</i> -jets, ≥ 1 <i>b</i> -jets	2	0 jets, ≥ 0 <i>b</i> -jets	1
$p_T^{\text{lead. jet}}$	N _{jets} =0, 30, 60, 120, 350 GeV	4	N _{jets} =0, 30, 60, 120, 350	4
$p_T^{ ext{sublead. jet}}$	N _{jets} =0, 30, 60, 120, 350 GeV	4	$N_{\rm jets} < 2, 30, 60, 350$	4
m_{jj}	$N_{\rm jets} < 2, 0, 120, 450, 3000 {\rm GeV}$	4	$N_{\rm jets} < 2, 0, 120, 3000$	3
$\Delta \eta_{jj}$	$N_{\rm jets} < 2, 0, 1, 2.5, 9$	4	$N_{\rm jets} < 2, 0, 1, 9$	3
$\Delta \phi_{jj}$	$N_{\text{jets}} < 2, 0, \frac{1}{2}\pi, \pi, \frac{3}{2}\pi, 2\pi$	5	$N_{\rm jets} < 2, 0, \pi, 2\pi$	3

Summary of H4I variables and binning choices

Binning schemes for Higgs+jet-related variables:

Variable	Bin Edges	N _{bins}	ZZ Sidebands Bin Edges	$N_{ZZ \ bins}$
$m_{4\ell j}$	N _{jets} =0, 120, 180, 220, 300, 400, 600, 2000 GeV	7	N _{jets} =0,120, 220, 2000	3
$m_{4\ell jj}$	N _{jets} <2, 180, 320, 450, 600, 1000, 2500 GeV	6	N _{jets} <2, 180, 450, 2500	3
$p_{T,4\ell j}$	N _{jets} =0, 0, 60, 120, 350 GeV	4	$N_{\text{jets}}=0, 0, 350$	2
₽T,4ℓjj	N _{jets} <2, 0, 60, 120, 350 GeV	4	$N_{\rm jets} < 2, 0, 350$	2

	Variable		n Edges	$N_{ m bins}$	
Cummon of 11/1 variables	$p_{T,4\ell}$ vs. N_{jets}	$N_{\rm jets} = 0$	$p_{T,4\ell} \; \{0,15,30,120,350\}$		
Summary of H4I variables		$N_{\rm jets} = 1$	$p_{T,4\ell} \; \{0,60,80,120,350\}$	12	
-		$N_{\rm jets} = 2$	$p_{T,4\ell} \{0, 120, 350\}$		
and binning choices		$N_{\rm jets} \ge 3$	$p_{T,4\ell}$ {0, 120, 350}		
	m_{12} vs. m_{34}	$m_{12} < 82$	$m_{34} < 32$		
		$m_{12} < 74$	$m_{34} > 32$		
		$m_{12} > 74$	$m_{34} > 32$	5	
		$m_{12} > 82$	$24 < m_{34} < 32$		
		$m_{12} > 82$	$m_{34} < 24$		
	$p_{T,4\ell}$ vs. $ y $	0.0 < y < 0.5	$p_{T,4\ell} \{0, 45, 120, 350\}$		
		0.5 < y < 1.0	$p_{T,4\ell} \{0, 45, 120, 350\}$	12	
		1.0 < y < 1.5	$p_{T,4\ell}$ {0, 45, 120, 350}		
		1.5 < y < 2.5	$p_{T,4\ell} \{0, 45, 120, 350\}$		
	$p_{T,4\ell}$ VS. $p_{T,\text{lead.jet}}$	N	$u_{ets} = 0$		
		$30 < p_{T, \text{lead.jet}} < 60$	$p_{T,4\ell}$ {0, 80, 350}	7	
Binning schemes for		$60 < p_{T, \text{lead.jet}} < 120$	$p_{T,4\ell}$ {0, 120, 350}		
		$120 < p_{T, \text{lead.jet}} < 350$	$p_{T,4\ell}$ {0, 120, 350}		
double-differential variables:	$p_{T,4\ell}$ vs. $p_{T,4\ell,j}$	N	$t_{ets} = 0$		
double uncrential variables.		$0 < p_{T,4\ell,j} < 60$	$p_{T,4\ell}$ {0, 120, 350}	5	
		$60 < p_{T,4\ell,j} < 350$	$p_{T,4\ell}$ {0, 120, 350}		
	$p_{T,4\ell,j}$ vs. $m_{4\ell,j}$		$N_{\rm jets} = 0$		
		$120 < m_{4\ell,j} < 220$	$0 < p_{T,4\ell,j} < 350$		
		$220 < m_{4\ell,j} < 350$	$p_{T,4\ell,j} \{0, 60, 350\}$	4	
	land int multiplicat int	$350 < m_{4\ell,j} < 2000$	$0 < p_{T,4\ell,j} < 350$		
	$p_T^{\text{lead. jet}}$ vs. $p_T^{\text{sublead. jet}}$		$_{\rm jets} = 0$		
		$p_T^{\text{lead. jet}}$ {30, 60, 350}	$N_{\text{jets}} = 1$		
		$30 < p_T^{\text{lead. jet}} < 60$	$30 < p_T^{\text{sublead. jet}} < 60$	6	
		$60 < p_T^{\text{lead. jet}} < 350$	$30 < p_T^{\text{sublead. jet}} < 60$		
	laad int	$60 < p_T^{\text{lead. jet}} < 350$	$60 < p_T^{\text{sublead. jet}} < 350$		
	$p_T^{\text{lead. jet}}$ vs. $ y^{\text{lead. jet}} $		$e_{ets} = 0$		
		$30 < p_T^{\text{lead. jet}} < 120$	$0.0 < y^{\text{lead. jet}} < 0.8$		
		$30 < p_T^{\text{lead. jet}} < 120$	$0.8 < y^{\text{lead. jet}} < 1.7$		
		$30 < p_T^{\text{lead. jet}} < 120$	$ y^{\text{lead. jet}} > 1.7$	6	
		$120 < p_T^{\text{lead. jet}} < 350$	$0 < y^{\text{lead. jet}} > 1.7$		
		$120 < p_T^{\text{lead. jet}} < 350$	$ y^{\text{lead. jet}} > 1.7$		

Summary of $H\gamma\gamma$ variables and binning choices

Binning schemes for Higgs-related variables:

Variable	Bin Edges	N _{bins}
$p_{\mathrm{T}}^{\gamma\gamma}$	0, 5, 10, 15, 20, 25, 30, 35, 45, 60, 80, 100, 120, 140, 170, 200, 250, 350, 450, 1000	19
	0, 0.15, 0.3, 0.45, 0.6, 0.75, 0.9, 1.2, 1.6, 2.0, 2.5	11
$p_{\rm T}^{\gamma 1}/m_{\gamma \gamma}$	0.35, 0.45, 0.5, 0.55, 0.6, 0.65, 0.75, 0.85, 0.95, 4	9
$ y_{\gamma\gamma} \\ p_{\rm T}^{\gamma 1}/m_{\gamma\gamma} \\ p_{\rm T}^{\gamma 2}/m_{\gamma\gamma}$	0.25, 0.35, 0.4, 0.45, 0.5, 0.55, 0.65, 0.75, 0.85, 4	9

Summary of Hyy variables and binning choices

Binning schemes for jet-related variables:

Variable	Bin Edges	N _{bins}
$N_{\rm jets}^{\geq 30 { m GeV}}$	0, 1, 2, ≥3	4
$N_{\rm b-jets}^{\geq 30 {\rm GeV}}$	TODO	
$p_{\mathrm{T}}^{j_{1}} \ p_{\mathrm{T}}^{\gamma\gamma j}$	$N_{\text{jets}} = 0, 30, 60, 90, 120, 350, 999$	6
$p_{\mathrm{T}}^{\gamma\gamma j}$	$N_{\rm jets} = 0, 0, 30, 60, 120, 350$	5
H _T	$N_{\rm jets} = 0, 30, 70, 140, 200, 500, 999$	6
$\tau_{C,j1}$	$N_{\rm jets} = 0, 0, 5, 15, 25, 40, 400$	6
$\sum \tau_{C,j}$	$N_{\rm jets} = 0, 5, 15, 25, 40, 80, 200$	6
$m_{\gamma\gamma j}$	$N_{\text{jets}} = 0, 120, 180, 220, 300, 400, 600, 900, 2000$	8
m_{jj}	$N_{\rm jets} < 2, 0, 120, 450, 3000, 9999$	5
$\Delta \phi_{jj, signed}$	$N_{\text{jets}} < 2, -\pi, -\frac{\pi}{2}, 0, \frac{\pi}{2}, \pi$	5
$p_{\mathrm{T},\gamma\gamma j j}$	$N_{\rm jets} < 2, 0, 30, 60, 120, 350$	5
$\Delta \phi_{\gamma\gamma,jj}$	$N_{\rm jets} < 2, 0, 2.5, 3.0, 3.15$	4

Summary of Hyy variables and binning choices

Binning schemes for double-differential variables:

Variable	В	Bin Edges	Nbins
$p_{\rm T}^{\gamma\gamma}$ vs $ y_{\gamma\gamma} $	$0.0 < y_{\gamma\gamma} < 0.5$	$p_{\rm T}^{\gamma\gamma}$: 0, 45, 120, 350	
	$0.5 < y_{\gamma\gamma} < 1.0$	$p_{\rm T}^{\gamma\gamma}$: 0, 45, 120, 350	12
	$1.0 < y_{\gamma\gamma} < 1.5$	$p_{\rm T}^{\gamma\gamma}$: 0, 45, 120, 350	
	$1.5 < y_{\gamma\gamma} < 2.5$	$p_{\rm T}^{\gamma\gamma}$: 0, 45, 120, 350	
$(p_{\rm T}^{\gamma 1} + p_{\rm T}^{\gamma 2})/m_{\gamma\gamma} \operatorname{vs} (p_{\rm T}^{\gamma 1} - p_{\rm T}^{\gamma 2})/m_{\gamma\gamma}$	$0.6 < (p_{T_1}^{\gamma 1} + p_{T_2}^{\gamma 2})/m_{\gamma \gamma} < 0.8$	$(p_{\rm T}^{\gamma 1} - p_{\rm T}^{\gamma 2})/m_{\gamma\gamma}: 0, 0.3$	
	$0.8 < (p_{\rm T}^{\gamma 1} + p_{\rm T}^{\gamma 2})/m_{\gamma\gamma} < 1.1$	$(p_{\rm T}^{\gamma 1} - p_{\rm T}^{\gamma 2})/m_{\gamma \gamma}$: 0,0.05,0.1,0.2,0.8	8
	$1.1 < (p_{\mathrm{T}}^{\gamma 1} + p_{\mathrm{T}}^{\gamma 2})/m_{\gamma\gamma} < 4$	$(p_{\rm T}^{\gamma 1} - p_{\rm T}^{\gamma 2})/m_{\gamma \gamma}$: 0,0.3,0.6,4	
$p_{\rm T}^{\gamma\gamma}$ vs $p_{\rm T}^{\gamma\gamma j}$	$N_{\text{jets}} = 0$		
	$0 < p_{\rm T}^{\gamma\gamma j} < 30$	$p_{\rm T}^{\gamma\gamma}$: 0,45,120,350	10
	$30 < p_{\rm T}^{\gamma\gamma j} < 60$	$p_{\rm T}^{\gamma\gamma}$: 0,45,120,350	
	$60 < p_{\mathrm{T}}^{\dot{\gamma}\gamma j} < 350$	$p_{\rm T}^{\dot{\gamma}\gamma}$: 0,45,120,350	
$p_{\rm T}^{\gamma\gamma}$ vs $\tau_{C,j1}$	$N_{\rm jets} = 0$		
	$0 < \tau_{C,j1} < 15$	$p_{\rm T}^{\gamma\gamma}$: 0,45,120,350	
	$15 < \tau_{C,j1} < 25$	$p_{T_{rev}}^{\gamma\gamma}: 0,120,350$	10
	$25 < \tau_{C,j1} < 40$	$p_{T_{xx}}^{\gamma\gamma}: 0,120,350$	
	$40 < \tau_{C,j1} < 200$	$p_{\rm T}^{\gamma\gamma}$: 0,200,350	