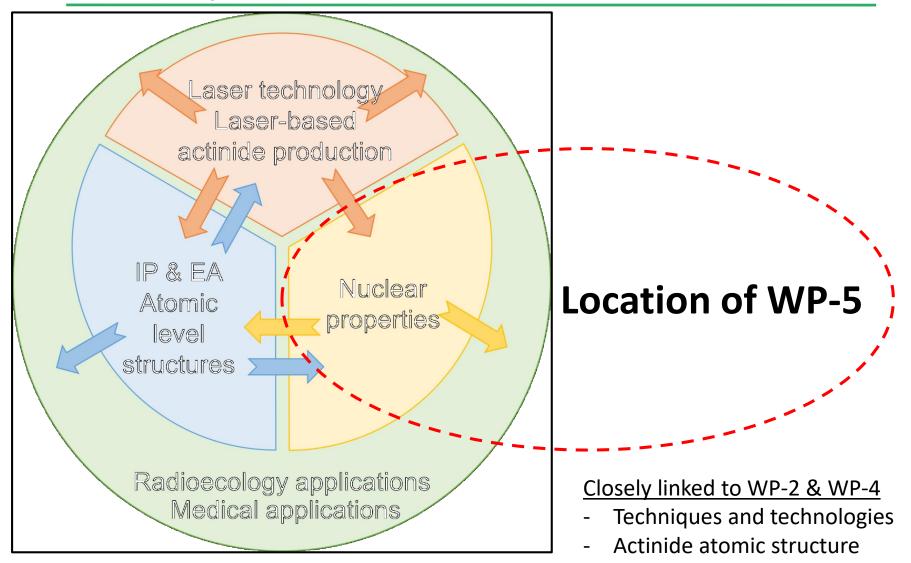
Exploring the limits of nuclear existence

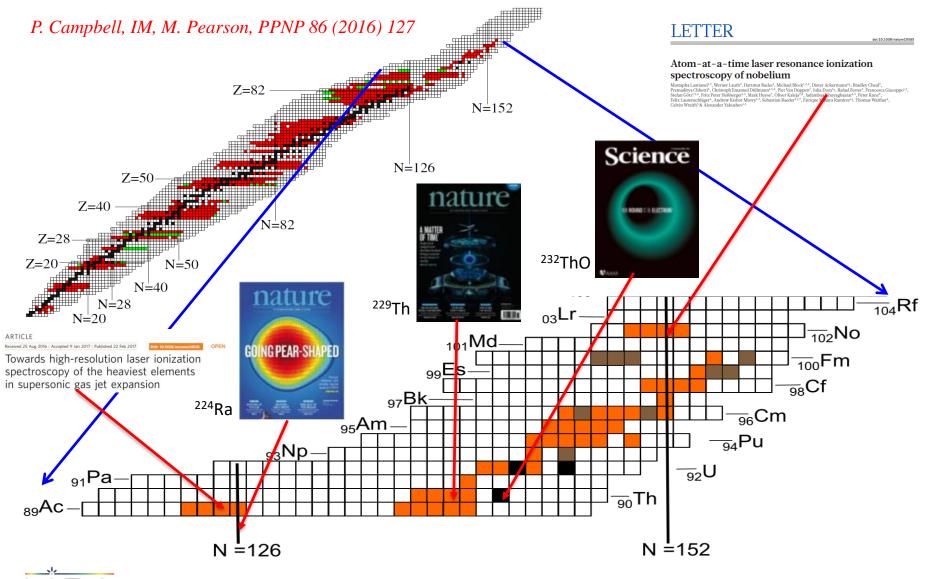
Work Package 5

lain D. Moore – University of Jyväskylä, Finland


This Marie Sklodowska-Curie Action (MSCA) Innovative Training Networks (ITN) receives funding from the European Union's H2020 Framework Programme under grant agreement no. 861198

Content

- Introduction and objectives of WP-5
- Description of work and role of partners
- Milestones
- Deliverables
- Research highlights
- Conclusions



Interplay between LISA R&D activities

Optical spectroscopy of heavy elements

LISA mid-term review meeting. 25-26 November 2020.

Objectives and partner institutes in WP-5

- 1. Optimize actinide sample preparation and characterization techniques for the LISA network.
- 2. Perform laser spectroscopy using highly sensitive techniques on isotopes of both actinide and trans-actinide elements with the goal of probing fundamental atomic and nuclear properties and to benchmark state-of-the-art atomic and nuclear theoretical calculations.
- 3. Characterize and optimize the novel in-gas-jet spectroscopy technique for final implementation at GANIL-S3.

ESRs and Work Package 5

Andrea Raggio (JYU) – ESR 4

• Vaila Leask (KUL) – ESR 7

Lauren Reed (JGU) – ESR 11

Description of work

TASK	SUMMARY	BENEFICIARIES
1	Advanced molecular plating & DOD printing for high- performance targets and picoliter applications; CLS of U isotopes/isomers	JGU, <i>LUH IRS (WP3), JYU</i>
2	Laser ablation source and time-gating techniques for collinear LS (CLS); laser ablation for gas cell approaches	JYU <i>, KUL</i>
3	CLS on ^{235m}U isomer following enriched ^{239}Pu α decay	JYU, <i>JGU</i>
4	CLS on n-deficient U isotopes produced on-line	JYU, <i>JGU</i>
5	RIS of heaviest actinides to Lr using RADRIS and atomic properties	GSI
6	Supersonic gas jet developments using de Laval nozzles	KUL, <i>GANIL (WP2)</i>

Atomic and nuclear structure theory support from WP4 (Task 3 & 4) – FSU/RUG

Milestones & schedule

MS21	Optimum filament setup for efficient Lr evaporation	GSI	M12	LISA technical design report
MS22	Pu targets for JYU	JGU	M15	Target delivered and verified with γ-ray spectroscopy
MS23	Offline study of atomic transitions in U: dye and Ti:sa	JYU	M18	Laser spectroscopy results on ^{234,235,238} U
MS24	Identification of atomic states in Lr	GSI	M24	LISA scientific report
MS25	Picoliter injection system	JGU	M24	LISA technical design report
MS26	Setup for high- resolution in gas-jet spectroscopy	GSI	M36	LISA technical design report
MS27	First high-res online LS at GANIL-S3	KUL	M42	Resonance peak linewidth <300 MHz online
SA start date 1 N	ov. 2019; WP-5 start 1 Mar	ch 2020.		M21 see highlight later; report in 1 mon M22 moved \sim 4-5 months

LISA mid-term review meeting. 25-26 November 2020.

NI22 moved \sim 4-5 months ESR 11 (Lauren) starts this week.

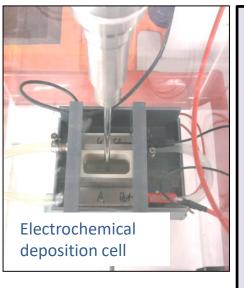
Deliverables

Deliverable	Deliverable title	Lead beneficiary	Due date		
D5.1	Optimized geometry of the gas cell nozzle	KUL	24		
D5.2	Laser ablation source	JYU	24		
D5.3	Off-line U studies	JYU	30		
D5.4	Preparation of characterization of samples for LISA	JGU	36		
D5.5	Precise data of atomic and nuclear properties of Lr	GSI	42		
D5.6	Exotic U studies (off- and on- line production)	JYU	48		

Deliverables primarily produced as reports. D5.5 and D5.6 are "other".

Research highlights

LISA mid-term review meeting. 25-26 November 2020.


Preparation of actinide targets

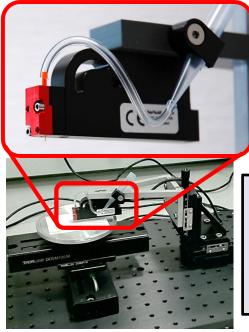
Task 1

Production methods

Molecular plating

Electrochemical deposition from organic solution onto conducting substrate

W. Parker et al., NIM 16 (1962) 355 A. Vascon et al., NIMA 696 (2012) 180


Ch.E. Düllmann, D. Renisch et al.

 $^{\rm 233}{\rm U}$ recoil source for $^{\rm 229m}{\rm Th}$

Wense et al., Nature 533 (2016) 47 Thielking et al., Nature 556 (2018) 321 Seiferle et al., Nature 573 (2019) 243

Drop-on-Demand Inkjet printing (DoD)

BioFluidix PipeJet[®] P9 NanoDispenser with 200 µm tip

Deposition on substrate on xy translation stage

0.0.0.0.0.0.0.0.0.0.	0, 6. 4. 4 4 4 4 4 4 4. 4.	0.0.0.0.0.0.0.0.0.0.	6.0.0.0.0.0.0.0.0.0.0.0	a.a.a.a.a.a.a.a.a	.0.0.0.0.0.0.0.0	0.0.0.0 0 0.0.0.0.0.	0.0.0.0.0.0.0.0.0.	4.4.0.0.0.0.0.0.0.0.				2.4.000000000	mm f	.000100000	
Ind	ndividual drops with ³² P/ ³⁵ S)					

R. Haas et al., NIMA 874 (2017) 43

LISA mid-term review meeting. 25-26 November 2020.

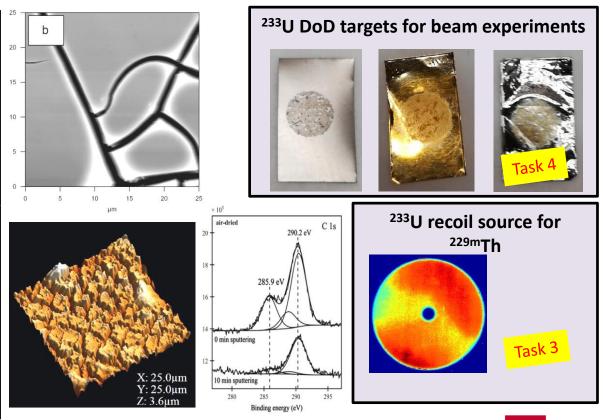
Characterization of actinide targets

Task 1

Characterization techniques

Deposition yield:

Direct:

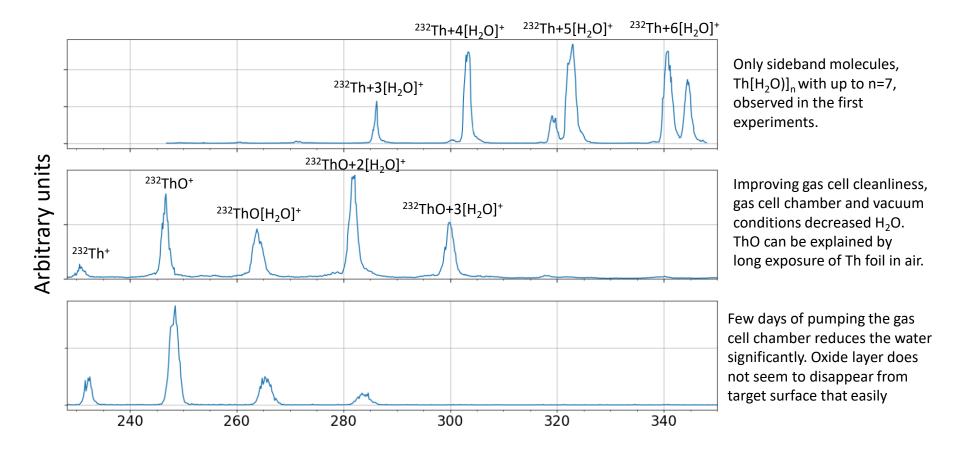

- α-particle decay spectroscopy
- γ-ray spectroscopy

Indirect:

Neutron Activation Analysis

<u>Layer morphology / homogeneity /</u> <u>composition:</u>

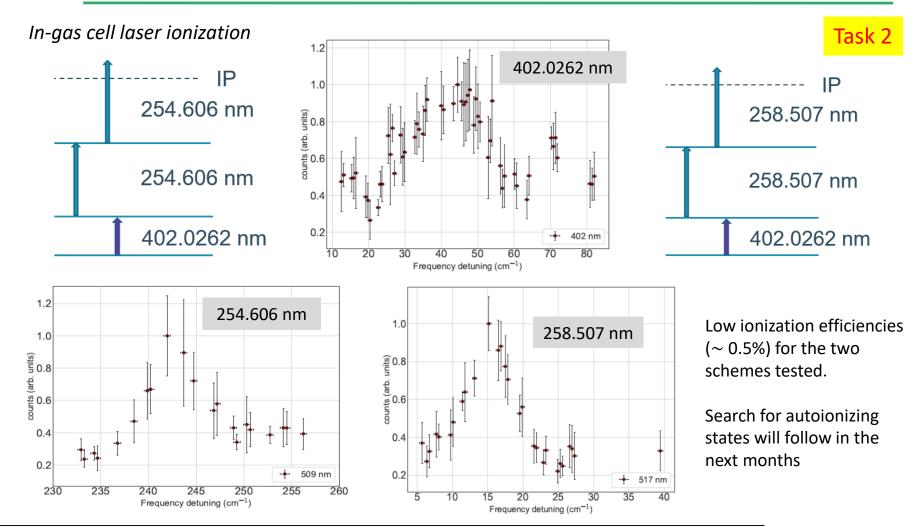
- α-particle decay spectroscopy
- Radiographic Imaging
- Electron Microscopy (w/ EDX)
- Atomic force microscopy
- X-ray Photoelectron Spec.



Ch.E. Düllmann, D. Renisch et al.

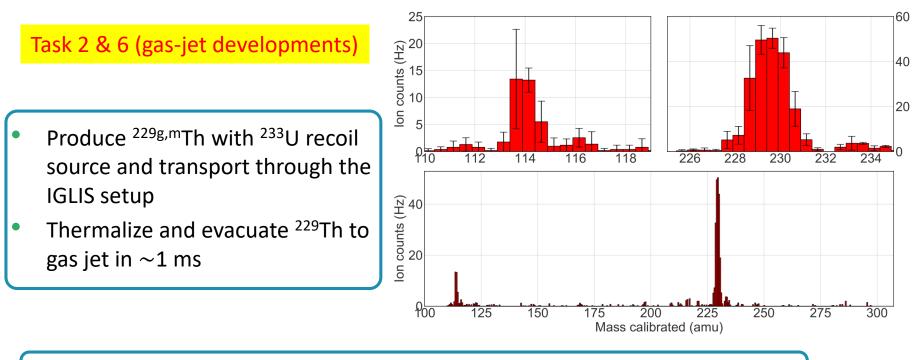
²³²Th production via laser ablation

Task 2 In-gas cell laser ablation at KU Leuven



R. Ferrer *et al*.

Two-color, three-step ionization of ²³²Th



R. Ferrer *et al*.

KU LEUVEN

²²⁹Th production

- Introduce tailor mode 233 U sources with 330 Bq (2 π) recoil activity
- Design/construction/testing gas cell
- ²²⁹Th II/III extraction and transport after purification studies IGLIS beam line

R. Ferrer *et al*.

On-line production of light actinides

Proton-induced fusion-evaporation reactions at IGISOL

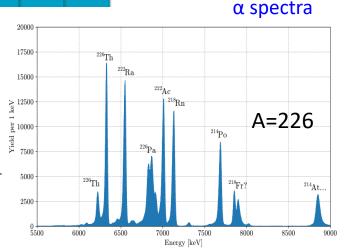
J. Ärje, J. Äystö et al., Phys. Rev. Lett. 54 (1985) 99 DoD targets provided from JGU 1 cm 208 Ri 206 EFFICIENCY [%] 207 PH 201_{TI} 90 ND Metallic Inkjet Au Inkjet Ti 0.4 15 0.1 1000 FCE2 HALF-LIFE [ms] SWS FCS 65 MeVAcceleration protons 55° dipole -3kV Th Targe maget Kickers SPIG -30 kV Gas 15° kicker cell **Detector setup** Differential pumping He 100-200mbar Spectroscopy Setup **Production** Small volume gas cell

Task 4

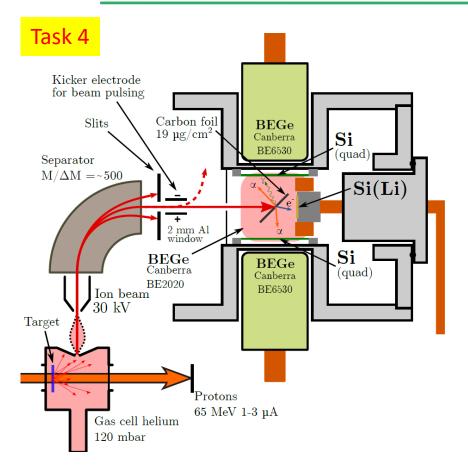
Proof-of-principal: ²³²Th(p,X)Y

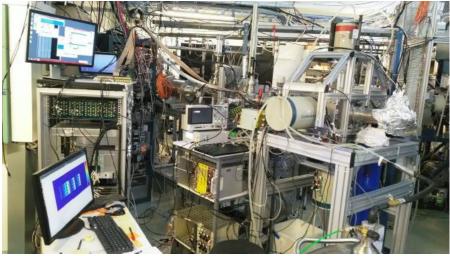
First test Nov. 2018; metallic ²³²Th vs. DoD ²³²Th

Task 4



- Different reaction channels populate different isotopes
- Identification via alpha & gamma spectroscopy
- Build up of alpha recoils in the target
- Production of ²²⁹Th?
- Explore available yields (at 60 MeV)


I.D. Moore, I. Pohjalainen et al.



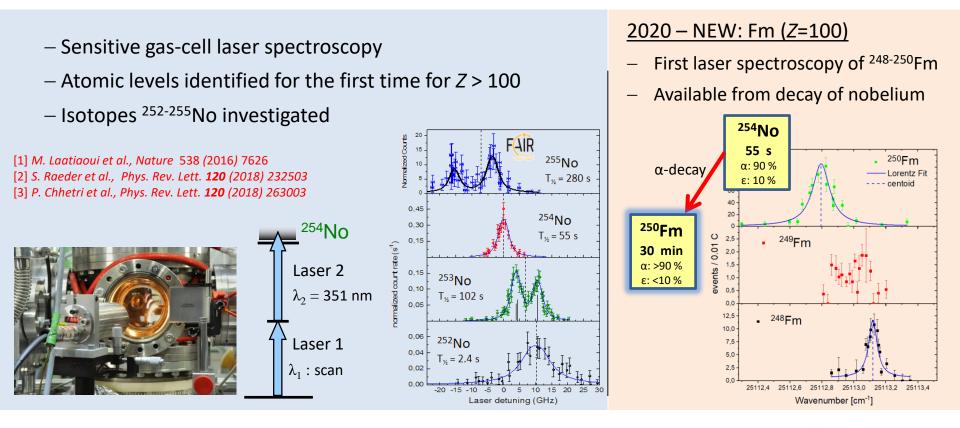
LISA mid-term review meeting. 25-26 November 2020.

New experiment – summer 2020

- Optimized decay spectroscopy station (α, γ, conversion electrons)
- Pulsing of mass-separated beam (lifetimes)
- Higher beam energy (= more exotic isotopes)
- Data analysis Andrea Raggio (ESR 4)

Accepted proposal for ²³³U targets (access to Np isotopes)

I. Pohjalainen, A. Raggio, IM et al.



Laser spectroscopy of heavy elements

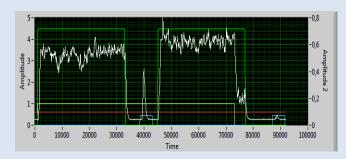
Task 5

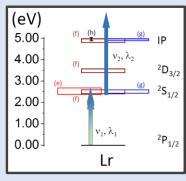
Nobelium and Fermium isotopes produced in on-line fusion reactions at GSI

M. Block, S. Raeder, M. Laatiaoui et al.

HIM

HELMHOLTZ

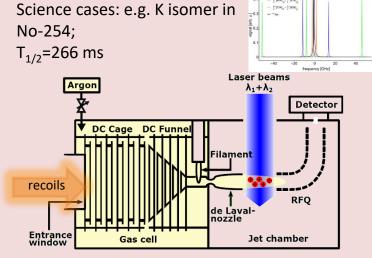

Laser spectroscopy of heavy elements


Task 5

Next steps: GSI and JGU

Tackling the next heavier element - lawrencium (Z=103)

- Challenges: Atomic structure only known from theory
 - Production rate 3 x lower compared to No
 - Lower ionization potential



Off-line studies of the filament for desorption of Lu/Lr T. Murböck et al., Hyp. In. 241 (2020) 35

 \rightarrow Hf is the best filament

• Implementation of a new laser system Science cases: e.g. K isomer in

Improved resolution for nobelium

Development of gas-jet spectroscopy

M. Block, S. Raeder, M. Laatiaoui et al.

Conclusions

- Despite the effect of COVID, WP-5 is generally moving ahead according to plan.
- Small adjustments expected for the secondments to account for the different starting dates of our ESRs.
- All beneficiaries of WP-5 are active in related actinide developments required to realize our objectives.
- Our ESR's will get a truly multidisciplinary training within LISA!

