

Dust nucleation in very-low pressure plasmas

R. Clergereaux,

X. Glad, H. Sabbah, C. Joblin M. Rojo, S. Dap A. Perdrau, J. Philbrick

Outline

- CONTEXT Π
 - **MATERIALS & METHODS**
- DUST PARTICLES FORMED IN C2H2 PLASMAS III
- **DUST PARTICLES FORMED FROM PAHs** IV
- **CONCLUSION AND PERSPECTIVE** V

Couedel et al., *Self-excited void instability during dust particle growth in a dusty plasma*, PoP (2010)

Shaddix et al., Soot: Giver and Taker of Light, Am.Sci (2007)

Couedel et al., *Self-excited void instability during dust particle growth in a dusty plasma*, PoP (2010)

Shaddix et al., *Soot: Giver and Taker of Light*, Am.Sci (2007)

Couedel et al., *Self-excited void instability during dust particle growth in a dusty plasma*, PoP (2010)

→ Formation of particles

Contreras et al., Laboratory investigations of polycyclic aromatic hydrocarbon formation and destruction in the circumstellar outflows of carbon stars, ApJS (2013)

Carbon-rich star

Shaddix et al., *Soot: Giver and Taker of Light*, Am.Sci (2007)

Couedel et al., *Self-excited void instability during dust particle growth in a dusty plasma*, PoP (2010)

➔ Formation of particles

NUCLEATION \rightarrow COAGULATION \rightarrow ACCRETION

Contreras et al., Laboratory investigations of polycyclic aromatic hydrocarbon formation and destruction in the circumstellar outflows of carbon stars, ApJS (2013)

Carbon-rich star

Shaddix et al., *Soot: Giver and Taker of Light*, Am.Sci (2007)

Couedel et al., *Self-excited void instability during dust particle growth in a dusty plasma*, PoP (2010)

Nucleation deduced from combustion

Formation of linear polyalkyne

Wang and Frenklach., A detailed kinetic modeling study of aromatics formation in laminar premixed acetylene and ethylene flames, Comb. Flame (1997)

Formation of linear polyalkyne

Formation of aromatic rings

Wang and Frenklach., A detailed kinetic modeling study of aromatics formation in laminar premixed acetylene and ethylene flames, Comb. Flame (1997)

Formation of linear polyalkyne

Formation of aromatic rings

Hydrogen Abstraction Carbon Addition (HACA)

Wang and Frenklach., A detailed kinetic modeling study of aromatics formation in laminar premixed acetylene and ethylene flames, Comb. Flame (1997)

Nucleation?

PAHs formation / HACA shown in SOOTY FLAMES

Nucleation?

PAHs formation / HACA shown in SOOTY FLAMES

often used

CARBON-RICH STARS

DUSTY PLASMAS

Nucleation?

PAHs formation / HACA shown in SOOTY FLAMES

森 森 森 森

often used

CARBON-RICH STARS

 $N_{\rm n}{=}~5.10^8~cm^{\cdot3}$ / $T=2000{-}5000~K$ $N_{\rm e}\approx 2.10^2~cm^{\cdot3}$ / $T_{\rm e}=0.1~eV$

DUSTY PLASMAS

 $N_n = 10^{14} \cdot 10^{15} \text{ cm}^{-3} / \text{T} = 300 \text{ K}$ $N_e = 10^8 \cdot 10^9 \text{ cm}^{-3} / \text{T}_e = 2.4 \text{ eV}$
$$\label{eq:Nn} \begin{split} N_{\rm n} &= 5.10^{18} \ \text{cm}^{\text{-}3} \ \text{/} \ T = 1000\text{-}2000 \ \text{K} \\ N_{\rm e} &> 10^{11} \ \text{cm}^{\text{-}3} \ \text{/} \ T_{\rm e} = 0.2 \ \text{eV} \end{split}$$

R. Clergereaux - CAP DPP Symposium - June 2020

Dust particle growth in plasmas

+ In C_2H_2 dusty plasmas:

$C_2H_2 \longrightarrow PAHs \longmapsto Dust particles$

De Bleecker et al., Aromatic ring generation as a dust precursor in acetylene discharges, APL (2006)

• In C_2H_2 dusty plasmas:

MODELLING

• In C_2H_2 dusty plasmas:

EXPERIMENTS

• In C_2H_2 dusty plasmas:

$$C_2H_2 \leftrightarrow PAHs \leftrightarrow Dust particles$$

De Bleecker et al., Aromatic ring generation as a dust precursor
in acetylene discharges, APL (2006)

EXPERIMENTS

Mass spectrometry

Descheneaux et al., Investigations of CH_4 , C_2H_2 and C_2H_4 dusty RF plasmas by means of FTIR absorption spectroscopy and mass spectrometry, JPD (1999)

EXPERIMENTS

Descheneaux et al., Investigations of CH_4 , C_2H_2 and C_2H_4 dusty RF plasmas by means of FTIR absorption spectroscopy and mass spectrometry, JPD (1999)

Al Makdessi et al., Influence of a magnetic field on the formation of carbon dust particles in very low-pressure high-density plasmas, JPD (2016)

No real evidence of PAHs

• tricky under specific experimental conditions

for example, with the working pressure

tricky under specific experimental conditions

for example, with the working pressure

At low-pressure

 \rightarrow probability of recombination <<

Takahashi et al., Solid particle production in fluorocarbon plasmas. I. Correlation with polymer film deposition, JVSTA (2001)

• tricky under specific experimental conditions

for example, with the working pressure

At low-pressure→ probability of recombination <<

However...

Drenik et al., *Trajectories of dust particles in low-pressure* magnetized plasma, IEEETPS (2011)

No real evidence of PAHs

What's happening at really low-pressure?

Outline

v CONCLUSION AND PERSPECTIVE

ECR plasmas

→ static magnetic field
→ electron confinement
→ electron heating
B=875 Gauss <=> microwave (2.45 GHz)

R. Clergereaux - CAP DPP Symposium - June 2020

ECR plasmas / C_2H_2

Deposition above the magnets / edges

reflectron

Ex-situ measurments

Microscopies (SEM / TEM)

Spectroscopies Astrochemistry Research of Organics with Molecular Analyzer (AROMA)

couples laser desorption/ionization (LDI) techniques with ion trap mass spectrometry in two steps (L2MS),

Cosmic Dust Analogues: the AROMA setup, ApJ (2017)

Outline

ECR plasmas / C_2H_2

ECR plasmas / C_2H_2

ECR plasmas / C_2H_2

→ Growth in the plasma volume

Growth processes?

➔ Growth in the plasma volume➔ Local growth

Growth in the plasma volume
Local growth
Molecular composition?

m/z

m/z

m/z

m/z

 $C_xH_y \rightarrow$ Double Band Equivalent (DBE)

 $DBE(C_{x}H_{y}) = x - y/2 + 1$

 $C_xH_y \rightarrow$ Double Band Equivalent (DBE)

 $C_xH_y \rightarrow$ Double Band Equivalent (DBE)

$C_2H_2 + e^- \longrightarrow C_xH_y^{\circ,+,-}$

Nucleation...

Arc discharges

Arc discharges

Arc discharges

 \rightarrow High temperature / T > 4000K

Obviously far from our conditions...

Formation of Fullerenes?

 \rightarrow Heating ?

Drenik et al., *Trajectories of dust particles in low-pressure* magnetized plasma, IEEETPS (2011)

R. Clergereaux - CAP DPP Symposium - June 2020

Formation of Fullerenes?

 \rightarrow Heating ?

Drenik et al., *Trajectories of dust particles in low-pressure* magnetized plasma, IEEETPS (2011)

Formation of Fullerenes?

\rightarrow Heating ?

Drenik et al., Trajectories of dust particles in low-pressure magnetized plasma, IEEETPS (2011)

Formation of Fullerenes?

\rightarrow Heating ?

Drenik et al., Trajectories of dust particles in low-pressure magnetized plasma, IEEETPS (2011)
Formation of Fullerenes?

 \rightarrow Heating ?

→ Processing of PAHs on dust particles ?

Formation of Fullerenes?

 \rightarrow Heating ?

Above the magnets

Nucleation in ECR plasmas

• in our conditions

 $C_2H_2 \longrightarrow PAHs up to [$

Carbon addition Hydrogen abstraction

Nucleation in ECR plasmas

• in our conditions

$$C_2H_2 \longrightarrow PAHs$$
 up to $\longleftrightarrow \longrightarrow$ Dust particles
Carbon addition
Hydrogen abstraction

Nucleation in ECR plasmas

• in our conditions $C_2H_2 \longrightarrow PAHs$ up to $\longrightarrow Dust$ particles Carbon addition Hydrogen abstraction

? Dust particles

Outline

Plasmas seeded with PAHs

Plasmas seeded with PAHs

Anthracene Perylene Benzoperylene Coronene

Plasmas seeded with PAHs

Anthracene Perylene Benzoperylene Coronene

really larger than in C_2H_2 ECR plasmas

Hydrogen abstraction

Outline

III \rightarrow DUST PARTICLES FORMED IN C₂H₂ PLASMAS

IV DUST PARTICLES FORMED FROM PAHs

v CONCLUSION

CONTEXT

Nucleation in C_2H_2 ECR plasmas involve the formation of PAHs

Through similar Hydrogen abstraction Carbon addition pathways as described in combustion

Nucleation in C_2H_2 ECR plasmas involve the formation of PAHs

Through similar Hydrogen abstraction Carbon addition pathways as described in combustion

PAHs further stack into dust particles

Nucleation in C_2H_2 ECR plasmas involve the formation of PAHs

Through similar Hydrogen abstraction Carbon addition pathways as described in combustion

PAHs further stack into dust particles

X. Glad

C. Joblin

H. Sabbah

M. Rojo

A. Perdrau

J. Philbrick