Global-local schemes for gyrokinetic simulations

Denis St-Onge
Felix Parra and Michael Barnes

CAP DPP online symposium

June 9, 2020
Local (flux-tube) simulation

the good:

✔ spectral accuracy in the perpendicular dynamics
✔ gyro-averaging is simple

the bad:

✗ simple background profiles
✗ boundary conditions sensible only in a statistical sense

Global simulation

the good:

✔ arbitrary profile variation
✔ large-scale coherent structures

the bad:

✗ lose spectral accuracy in radial direction
✗ Dirichlet BCs typical – not much better than periodic BCs
IDEA: Use additional flux-tube simulations at different radial locations to determine the boundary conditions in the ‘main’ simulation.

See Parra & Barnes, PPCF 57 (2015) for motivation.
METHOD:

$g_-(\psi, \alpha)$ $g_c(\psi, \alpha)$ $g_+(\psi, \alpha)$

boundary region ψ
Figure: Terry-Horton model with identical parameters and different ICs.
Figure: Terry-Horton model with density gradient profile.
Figure: Terry-Horton model with $\text{sech}^2(x/\rho_s)$ density gradient profile.
FUTURE STEPS:

▶ Implement in a gyrokinetic flux-tube code.
▶ Add profiles in pressure and magnetic geometry.
▶ Add finite-ρ_* effects.