

## Kinetic simulations of electron transport in plasmas

### relevant for fusion and space applications

Salomon Janhunen<sup>1</sup>, Gabriele Merlo<sup>1</sup>, Alexey Gurchenko<sup>2</sup>, Evgeniy Gusakov<sup>2</sup>, Frank Jenko<sup>4</sup>, Timo Kiviniemi<sup>3</sup>, Andrei Smolyakov<sup>5</sup>, Dmytro Sydorenko<sup>6</sup>, Yevgeny Raitses<sup>7</sup>, Igor Kaganovich<sup>7</sup>

<sup>1</sup>Oden Institute, University of Texas at Austin, <sup>2</sup>Ioffe Institute, <sup>3</sup>Aalto University School of Science, <sup>4</sup>Max-Planck Institut für Plasma Physik <sup>5</sup>University of Saskatchewan, <sup>6</sup>University of Alberta, <sup>7</sup>Princeton Plasma Physics Lab



#### **Contents**

- 1. Gyrokinetic continuum simulations of electron transport in FT-2 tokamak.
- 2. 1D PIC simulations of electron transport in Hall-effect thruster.



# Continuum gyrokinetic simulations of electron transport in FT-2



#### FT-2 tokamak at loffe Institute



 $R_0 = 0.55 \text{ m}, a = 0.08 \text{ m}, B_t = 2.2 \text{ T}, q = 2.1, \hat{s} = 1.1, O^{6-8+} \text{ impurity } (Z_{\text{eff}} = 3), \tau = 7.1$ 

A D Gurchenko and E Z Gusakov, PPCF 52 124035 (2010)



#### Enhanced scattering



- enhancement at UHR
- $k_r$  range <= 150  $/\rho_s$
- location through frequency & antenna positioning



#### The GENE code

- gyrokinetic Eulerian
- electromagnetic
- local / global
- various coll. models
  & sources
- shaped geometries





#### Linear characteristics of FT-2

- low k: TEM
- high k: ETG

Modes overlap due to  $Z_{eff}$ . ETG is well-known for streamers. Here at high  $k_y$  largest growth at finite  $k_y$ .





#### Linear ETG with adiabatic ions

Largest growth rate at high k occurs at a finite ballooning angle.

Growth rate is symmetric with respect to the sign of the ballooning angle. We find that in nonlinear simulations this symmetry is broken.





#### Nonlinear simulation

ETG spectrum chooses sign of ballooning angle later in saturation / inverse





#### Nonlinear spectrum of ETG turbulence

Spontaneous symmetry breaking a robust and distinct feature of NL simulation with flux-tube GENE. Direction of broken symmetry depends on the relative directions of plasma current and toroidal field.





#### Summary of ETG

GENE used in new regime (high v,  $\tau$ ,  $Z_{eff}$ , low  $T_{e}$ ).

Largest growth rate of ETG at finite ballooning angle, symmetry spontaneously broken.

Symmetry breaking dependent on directions of  $B_T$ ,  $j_p$ .

Theoretical explanation still elusive.

Paper on this arXiv:2005.14581



## PIC simulations relevant to the ECDI



#### Background (Janhunen PoP 2018)





#### Ridiculous scaling of particle number



Particle number increase seems to make simulation converge to another unknown solution.

Same rate of heating long-term.



#### PIC noise can affect results in various ways

- artificial collisionality introducing spurious damping (and generation of entropy).
- sampling-noise driven fluctuations interacting with physical modes (detuning).
- exists mostly in accessible physical modes of the system.

Noise is a stochastic model of a deterministic process.



#### Collisions with finite-sized particles

- Particle size limits interaction due to screening. For sub-Debye ranges collisions can occur.
- Okuda & Birdsall (PoF 13 8 2123):  $\nu\approx nv_t\sigma=\frac{\pi\omega_{pe}}{16N_D}$  for Janhunen et al. PoP 2018:  $\nu=5\cdot 10^{-6}\omega_{pe}$  for Croes et al. 2017:  $\nu=4.5\cdot 10^{-5}\omega_{pe}$
- Turner (PoP 13 033506):
  - "... kinetic properties of the simulation are appreciably degraded when the  $\nu \geq 10^{-4} \omega_{pe}$ , ..."



#### Noise spectrum due to (thermal) fluctuations

Langdon (PoF 22 163),
 Krommes, Nevins, Decyk:

$$\begin{split} L|E(k,\omega)|^2/8\pi &= -\frac{T}{\omega}\Im(\frac{1}{\varepsilon(k,\omega)})\\ \langle \frac{E_k^2L}{8\pi}\rangle &= \frac{T_p}{2}\left(1 + \frac{k^2\lambda_{De}^2}{S^2(k)W^2(k)}\right) \end{split}$$

Limiting cases:

$$|e\phi(k,\omega_{pe})/T_e| = \frac{1}{\sqrt{N}k\lambda_{De}}$$

Plasma waves



$$|e\phi(k,\omega_s)/T_e| = \frac{1}{\sqrt{N}}$$

**IAW** 



Noise in a stable system exists in the normal modes of the plasma (here Bernstein modes).

In an unstable system, it will be determined by nonlinear damping.



SymPIC result:B=200 G,  $T_e$ =20 eV,  $T_i$ =1 eV,  $n_0$ =10 $^{1/}$  1/m3.



Noise in a stable system exists in the normal modes of the plasma (here Bernstein modes).

In an unstable system, it will be determined by nonlinear damping.



EDIPIC result:B=200 G,  $T_e$ =20 eV,  $T_i$ =1 eV,  $n_0$ =10<sup>17</sup> 1/m<sup>3</sup>.



#### Conclusions

- Particle noise influences through:
  - effective collisionality (helped by finite sized particles).
  - fluctuations induced by thermal noise.
- Noise energy concentrates on physical modes.
- Effect on instability by nonlinear damping.
- Noise could change the nature of ECDI making it unphysical.



#### Radial spectra for electron density fluctuations







#### Transport in ion/electron scales

While 99% of transport happens at ion scales for this case, fluctuations at electron scale still measurable. Electron fluctuations used for measuring  $E_r$ , and radial correlation of zonal modes.

GENE transport levels by about 20% higher in electron heat transport (at ion scales) vs. ASTRA; neoclassical transport important (not included in these flux-tube simulations). Also 20% error in experimental profiles.