7–12 Jun 2020
Virtual Platforms
America/Toronto timezone
Welcome to the 2020 CAP Virtual Congress Program website! / Bienvenue au siteweb du programme du Congrès virtuelle de l'ACP 2020!

Study of Tumour Intracellular pH (pHi) in a Rat Model of Glioblastoma Using CEST-MRI

8 Jun 2020, 14:21
15m
Virtual Platforms

Virtual Platforms

Oral Competition (Graduate Student) / Compétition orale (Étudiant(e) du 2e ou 3e cycle) Physics in Medicine and Biology / Physique en médecine et en biologie (DPMB-DPMB) DPMB Best Student Oral Presentations

Speaker

Ms Maryam Mozaffari (Department of Medical Biophysics, Robarts Research Institute-Western Ontario)

Description

Introduction: The non-invasive chemical exchange saturation transfer (CEST) MRI method measures pHi with high spatial and temporal resolution. In CEST, exchangeable protons on proteins can be selectively excited and detected through the transfer of magnetization to bulk water; the rate of which is pH-dependent. We have previously developed a CEST-MRI technique, amine and amide concentration-independent detection (AACID), to measure absolute tissue pH that is heavily weighted to the intracellular compartment. The AACID value is inversely related to tissue pH. This study is focused on the change in tumour pHi over time in a rat C6 glioma model.
Methods: C6 glioma cells were injected into the right frontal lobe of fifteen rats. CEST-MRI was performed at baseline, 7-11 days, and 14-16 days post-implantation on a 9.4T MRI. CEST images were acquired at saturation frequencies from 1.2-6.6 ppm to create CEST spectra for each pixel in the image, AACID maps were then produced.
Results: The average AACID values at day 0 were similar to the values in contralateral tissue at days 7-11 and days 14-16 post-implantation. The AACID value was significantly lower in the tumour compared to the contralateral region at day 7-11. At day 7-11, the average AACID value was 4.8% lower in the tumour compared to the contralateral side indicating a 0.24 higher pH. Surprisingly, at day 14-16 the average tumour AACID value was no longer significantly different than the contralateral region.
Discussion: The difference between tumour pH and contralateral pH is expected to increase over time in this model. However, this was not observed. One potential explanation is the temporal stability of the AACID CEST measurement and the emergence of an altered physiological state within the contralateral tissue as tumours increase. Future work will explore different MRI acquisition sequences and coils to improve temporal stability.

Primary author

Ms Maryam Mozaffari (Department of Medical Biophysics, Robarts Research Institute-Western Ontario)

Co-authors

Ms Nivin Nystrom (Department of Medical Biophysics, Robarts Research Institute-Western Ontario) Dr Li Alex (Robarts Research Institute-Western Ontario) Ms Bellyou Miranda (Robarts Research Institute-Western Ontario) Dr Timothy Scholl (Department of Medical Biophysics, Robarts Research Institute-Western Ontario) Dr Robert Bartha (Department of Medical Biophysics, Robarts Research Institute-Western Ontario)

Presentation materials

There are no materials yet.