ML4DQM Updates

Pritam Palit, Shamik Ghosh, Subir Sarkar Saha Institute of Nuclear Physics, India 11/05/2020

² Topics to report

Anomaly detection with Autoencoder for 2017 data

- As a beginner, I first used Autoencoder architecture as given in Francesco's Code for : chargeInner_PXLayer_1
 - Checked the distribution of Reconstruction Error (mseTop10)
 - Checked the Precision-Recall curve , F1 score and corresponding best Threshold
 - Checked the Confusion Matrix
- Then, I checked the sequence of the consecutive bins and decided to use LSTM Autoencoder
 - Compared the results.

³ Standard Autoencoder

- The total dataset is split into Train Validation Test (72 8 20)%
 - We Trained only on Good runs and lumis of Train dataset
 - Good runs and lumis selected from Golden json file
 - \circ $\,$ Test is done on the whole test dataset (including both good and bad)
- Standard DNN based autoencoder with tanh activation in all layers : input 10 3 10 output
- Optimizer = adam , loss = mseTop10 (Mean of Top 10 highest error)

Layer (type)	Output Sha	ape Param#	
input_1 (InputLayer)	(None, 100	Э) О	=
dense_1 (Dense)	(None, 10)) 1010	- 1
dense_2 (Dense)	(None, 3)	33	-
dense_3 (Dense)	(None, 10)) 40	
dense_4 (Dense)	(None, 100	9) 1100	

Reconstruction error For Test Data

0.0002 < Error < 0.0006

0.0006 < Error < 0.0007

0.0007 < Error < 0.0009

⁹ ROC Curve

¹⁰ Precision - Recall (PR) Curve for Imbalanced Dataset

Confusion Matrix

Confusion matrix for Test, th = 0.000013

40000 Want to reduce both F.P & F.N - 35000 FP = 0.21 % of N - 30000 F.N. = 44.2 % of P25000 Suggestions? 20000 Should we call it Positive or Bad lumi - 15000 at all? - 10000 - 5000

^a Reconstruction error for test dataset (Good & Bad)

Reconstruction error Global Trend over runs

¹⁴ Mean and Std of Good and Bad data over all lumis

Good : Possibility of some correlation over the sequence of bins

Bad : random fluctuation of std => Poor correlation

=> We try to investigate the sequential information of bins by LSTM AE

¹⁵ LSTM Autoencoder

- Using individual bin as a step in a sequence, we tried to encode histogram as sequence in LSTM (timestep = 100, no, of features = 1)
- Tried to keep no. of parameters as close possible to the standard AE to compare

Reconstruction error (mseTop10)

¹⁷ PR Curve

Recall vs Precision for Test Precision and recall for different threshold values for Test 1.0 1.0 0.8 0.8 Precision/Recall 9.0 Precision 9.0 Precision Recall 0.4 0.2 0.2 0.0 0.000 0.002 0.004 0.006 0.008 0.010 0.012 0.8 0.2 0.4 0.0 0.6 10 Threshold Recall

Best Threshold = 0.000102, F1 Score = 0.709 (Same as Standard AE)

Confusion Matrix

True label

¹⁹ Reconstruction error for test dataset (Good & Bad)

²⁰ Future plan & Acknowledgements

- We further want to investigate the models and the parameters more.
- On behalf of Tracker, we want to start looking into Hist1D Normalized HitResiduals_TIB_layer* for 2017 data.
- Reference for LSTM & PR Curve:
 - <u>https://towardsdatascience.com/step-by-step-understanding-lstm-autoencoder-layers-ffab055b6352</u>
 - <u>https://machinelearningmastery.com/roc-curves-and-precision-recall-curves-for-classification-in-pyth</u> on/
- Thanks Francesco for sharing the code snippets! It helped me a lot as a beginner.

Thank you!

²² Standard Autoencoder

- Standard DNN based autoencoder with tanh activation in intermediate layers final layer. input 10 3 10 output
- Optimizer = adam , loss = mseTop10

Good runs and lumis selected from Golden json file

²³ GlobalMSETrend

²⁴ Deep autoencoder

• Deeper DNN based autoencoder with relu activation in intermediate layers and tanh in the final layer. (input - 20 - 10 - 20 - output)

Optimizer = adam , loss = mseTop10

Good runs and lumis selected from the delage file autoencoder

GlobalMSETrend

Deep AE works better in global mse trend Good and bad lumis are not well separated.

Predictions for good lumis [Raw reco = first AE, Reco = Deep AE]

Predictions for bad lumis [Raw reco = first AE, Reco = Deep AE]

²⁸ Using LSTM autoencoder for chargeInner_PXLayer_1

Using individual bin as a step in a sequence, we tried to encode histogram as sequence in LSTM.

60

Epoch

architecture.

Work in progress.

Predicted class

Confusion matrix for Validation, th = 0.000014

Predicted class

Figure 2.3. LSTM Autoencoder Flow Diagram.

³⁴ LSTM ROC

Precision and recall for different threshold values for Test

