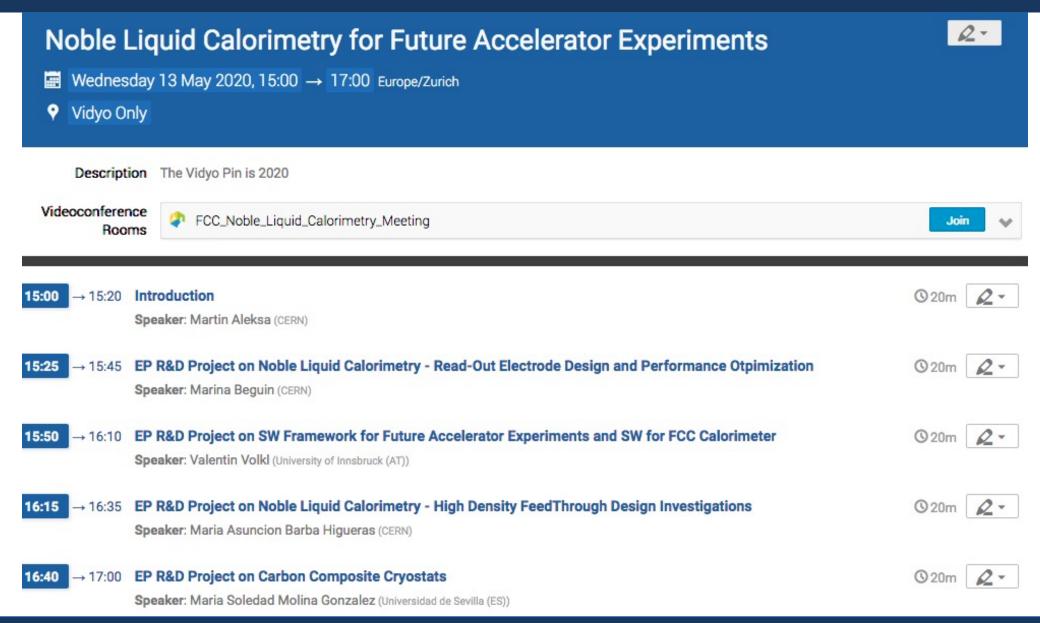


R&D on Experimental Technologies

High Granularity Noble Liquid Calorimetry for Future Accelerator Experiments Contributions by EP R&D WG3, WG4, WG7


May 2020 Martin Aleksa (CERN)

Introduction

Noble Liquid Calorimetry

Requirements for e⁺e⁻ Collider Experiments

Agenda

Introduction – Meeting Scope

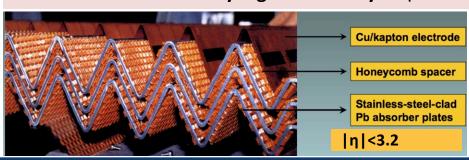
- This meeting is the first meeting of a series
 - bi-weekly, slot to be defined
- It should be seen as a continuation of the R&D effort during the last 5 years that was focused on developing an FCC-hh Calorimeter in the framework of the international FCC Study (documented in https://arxiv.org/abs/1912.09962).
- The scope has changed during last year. This meeting will now **focus on** an application of noble liquid calorimetry in e⁺e⁻ collider experiments, but parts of the R&D will be generic and independent of the experiment.
- The scope of this series of meetings will be to create a forum to present, discuss and follow-up on the R&D work that is related to high-granularity noble liquid calorimetry for future accelerator experiments
- Today: Introduction followed by overview talks of the different activities

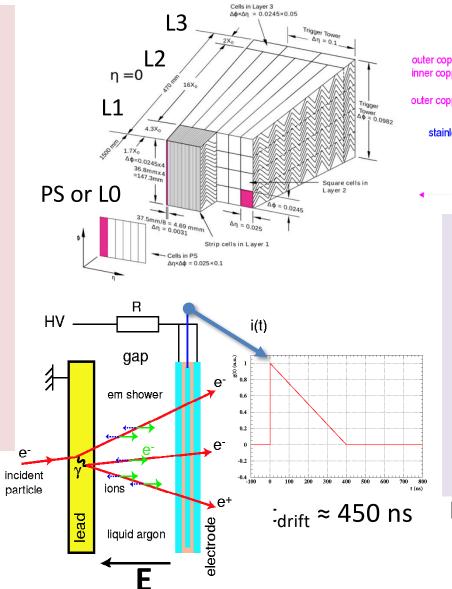
Introduction - CERN EP R&D

- The CERN EP R&D Program was initiated two years ago, a report was published end 2018 (link) and funding has started beginning of 2020.
- Work on noble liquid calorimetry related subjects is starting as part of this EP R&D program
 - WG3 (Calorimetry and light based detectors)
 - 1 fellow: Performance & Physics simulation to define necessary granularity. Read-out PCB design for required granularity while keeping low noise requirement. Studies on optimization of timing resolution.
 - 1 fellow: Cryogenic feed-through design for high-density signal feed-throughs
 - WG4 (Detector mechanics)
 - 1 technical student: R&D on low-mass composite cryostats
 - WG7 (Software)
 - 1 fellow: General SW framework & support for finalization of LAr calorimeter implementation into FCC SW.
 Work on implementation of particle flow
 - Related, but not directly linked: WG8 (Detector magnets)
 - 1 fellow will start on R&D on low-mass superconducting coils and cryostats
- In addition interest by institutes in F, CZ and US to collaborate
- In July 2019 submitted Expressions of Interest (EoI) for H2020 Innovation Pilot,
 AIDANova some funding for collaboration has been allocated (waiting for final OK)

Noble-Liquid Calorimetry – ATLAS LAr EM Calorimeter

Sampling calorimeter


 with Pb absorbers and active LAr gaps (2mm in barrel, 1.2 – 2.7mm in endcap)


Advantages of liquid argon (LAr) as active material

- linear behavior
- stability of the response over time
 - ideal to understand systematic effects using large statistics of e.g. Z→ee events and develop corrections
- radiation tolerance

Advantages of accordion geometry

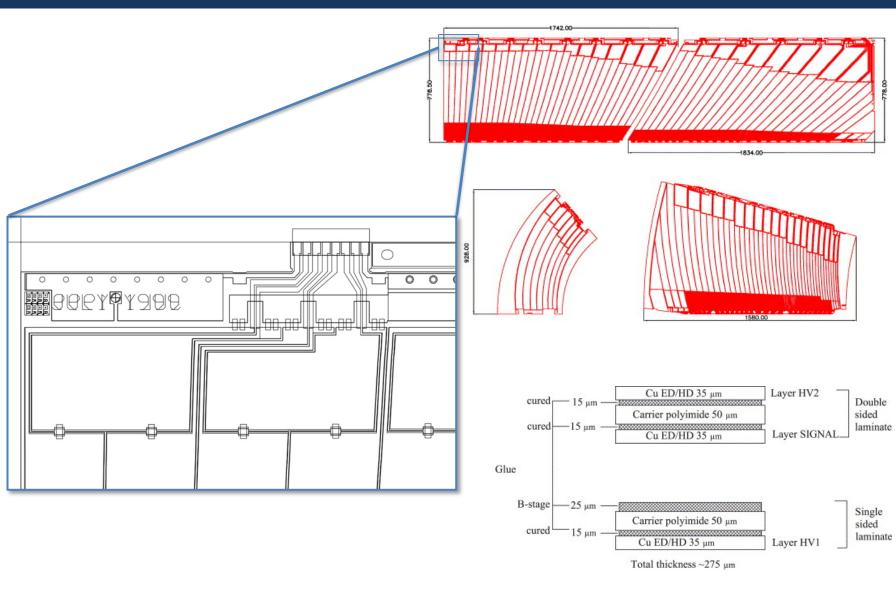
- it allows a very high η-φ granularity and longitudinal segmentation (PS, L1, L2, L3)
- it allows for very good hermeticity since HV and signal cables run only at front and back faces of the detector
- it allows for a very high uniformity in φ

Incident electrons create **EM showers** in Pb $(X_0=0.56cm)$ and LAr gaps $(X_0=14.2cm)$

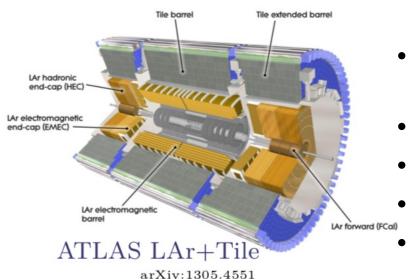
secondary e⁺ and e⁻ create e⁻– ion pairs in LAr (W=23.3eV)

Ionized electrons and ions drift in electric field (2kV for 2mm gaps in barrel) and induce triangular signal (≈450ns e⁻ drift time)

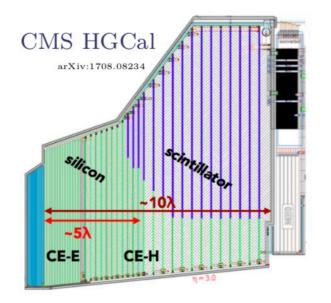
Design resolution:

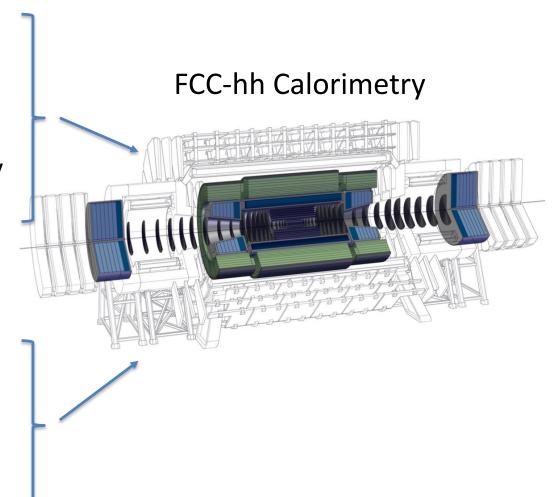

$$\frac{\sigma(E)}{E} = \frac{10\%}{\sqrt{E}} \oplus \frac{0.2}{E} \oplus 0.2\%$$

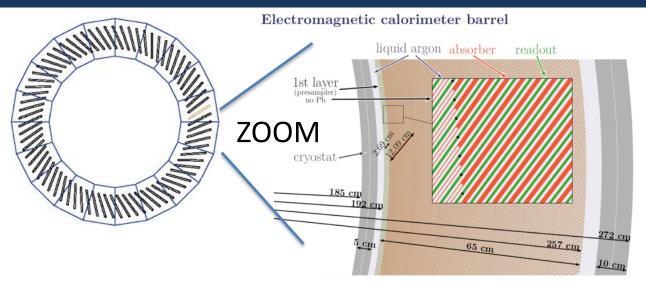
May 13, 2020 M. Aleksa (CERN) 5

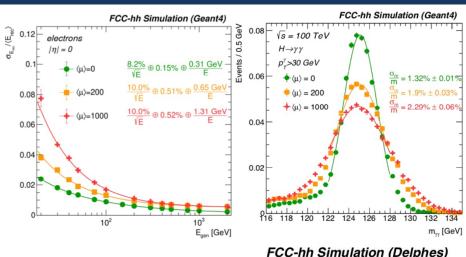

What Limits Granularity in ATLAS LAr?

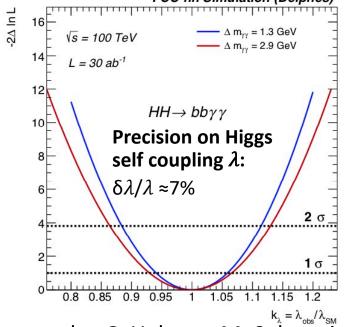
- In the ATLAS LAr calorimeter electrodes have 3 layers that are glued together (~275µm thick)
 - 2 HV layers on the outside
 - 1 signal layer in the middle
- All cells have to be connected with fine signal traces (2-3mm) to the edges of the electrodes
 - Front layer read at inner radius
 - Middle and back layer read at outer radius
- → limits lateral and longitudinal granularity
- → maximum 3 long. layers




FCC-hh Calorimetry

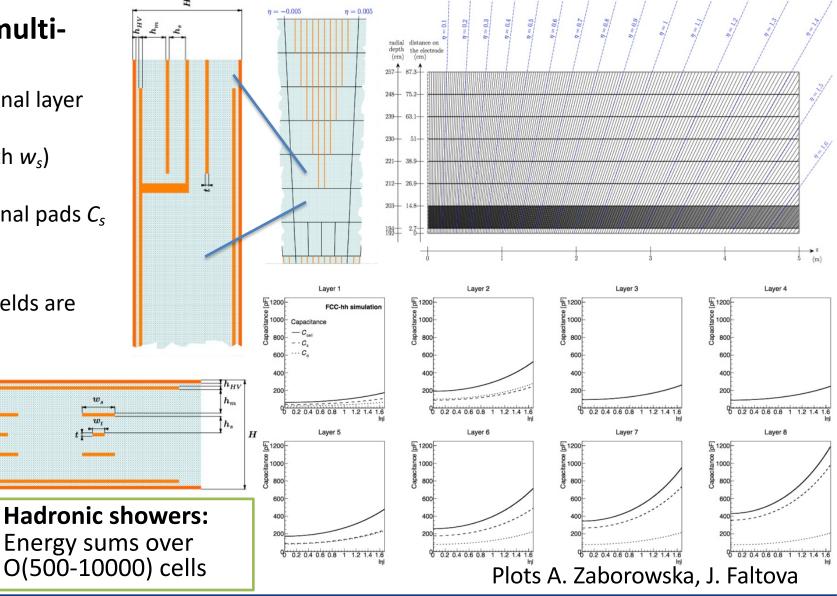

- Good instrinsic energy resolution
- Radiation hardness
- High stability
 - Linearity and uniformity
 - Easy to calibrate


- High granularity
 - → Pile-up rejection
 - → Particle flow
 - → 3D/4D/5D imaging


FCC-hh Electromagnetic Calorimeter (ECAL)

- 2 mm absorber plates inclined by 50° angle;
- LAr gap increases with radius: 1.15 mm-3.09 mm;
- 8 longitudinal layers (first one without lead as a presampler);
- $\Delta \eta = 0.01 \ (0.0025 \ \text{in 2nd layer});$
- $\Delta \phi = 0.009;$

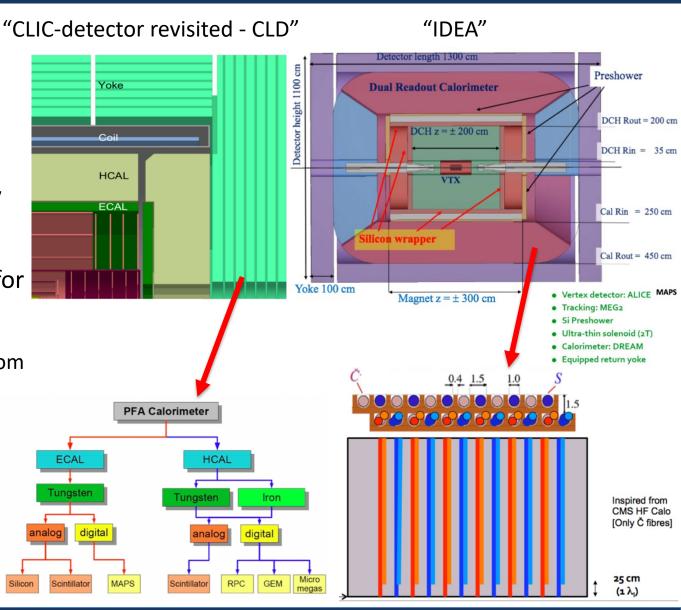
- Compared to ATLAS, FCC-hh Calo needs finer longitudinal and lateral granularity
 - Optimized for particle flow
 - 8 longitudinal compartments, fine lateral granularity
 - **Granularity:** Δη x Δφ ≈ 0.01 x 0.01; first layer Δη x Δφ ≈ 0.0025 x 0.02 → ~2.5M channels
- Possible only with straight multilayer electrodes (no accordion)
 - Active material LAr
 - Straight absorbers (Pb + stainless steel sheets), 50° inclined with respect to radial direction
 - Readout and HV on straight multilayer electrodes (PCBs, 7 layers, 1.2mm thick)
 - → Sampling fraction changes with depth $f_{sampl} \approx 1/7$ to 1/4 (LAr gap 2 x 1.15mm to 2 x 3.09mm)
- Required energy resolution achieved
 - Sampling term ≤ 10%/√E, only ≈300 MeV electronics noise despite multilayer electrodes
 - Impact of in-time pile-up at $\langle \mu \rangle$ = 1000 of ≈ 1.3GeV pile-up noise
 - → Efficient in-time pile-up suppression will be crucial (using the tracker)



Plots A. Zaborowska, C. Helsens, M. Selvaggi

How to Achieve High Granularity?

Realize read-out electrodes as multilayer PCBs (1.2mm thick)


- Signal traces (width w_t) in dedicated signal layer connected with vias to the signal pads
- Traces shielded by ground-shields (width w_s) forming $25\Omega 50\Omega$ transmission lines
- \rightarrow capacitance between shields and signal pads C_s will add to the detector capacitance C_d
- $\rightarrow C_{cell} = C_s + C_d \approx 100 1000 \text{pF}$
- The higher the granularity the more shields are necessary $\rightarrow C_{cell}$ increases
- → Serial noise contribution proportional to capacitance $C_{\alpha \alpha \beta}$
- → 4 40MeV noise per read-out channel assuming ATLAS-like electronics

Future e⁺e⁻ Collider Experiments (FCC-ee, CepC, ...)

Calorimetry requirements:

- Excellent jet energy resolution (~30%/√Ē)
- Particle ID
- → High granularity calorimetry based on particle flow
 - Same technologies as for CLIC/ILC under study
 - e.g. Si/W ECAL and Scintillator/Iron HCAL
 - On top of that fibre-sampling dual-readout calorimetry could be a very interesting option for future leptonic colliders
 - Fine transverse granularity
 - Need longitudinal segmentation to separate e/γ from $\pi^{\pm}! \rightarrow$ Idea with fibres of different length
 - Excellent hadronic resolution (simulation ~35%/√E)
 - Noble liquid based calorimetry
 - Calo only: Simulation with DNN calib. for LAr ECAL + TileCal HCAL: ~37%/VĒ
 - Fine granularity \rightarrow particle flow reco with ID

May 13, 2020 M. Aleksa (CERN) 10

Requirements for e⁺e⁻ Collider Experiments' Calorimetry

- Energy range of particles:
 - All particles ≤ 182.5 GeV \rightarrow 22X₀ and 5-7 λ sufficient
 - EM Calorimetry in Δr = 60 cm radial space for FCC-hh type LAr/Pb calorimeter (including 15cm cryostat thickness), Δr = 45 cm for LAr/W
- Measure particles down to 300 MeV (e.g. photons)
 - — → Little material in front of the calorimeter → low-mass cryostats and coils (EP R&D program WG4, WG8)
 - — → Low noise (noise term dominant at small energies, b ≪ 300 MeV)! → Electrode optimization (EP R&D WG3)
- EM resolution as good as possible (≤ 15%/√Ē)
 - e.g. for CLFV τ decays $\tau \rightarrow \mu \gamma$
 - → Optimization of read-out electrode (EP R&D WG3)
- **Jet resolution must be excellent** (~ 30%/√Ē) to separate W and Z decays
 - Such excellent jet resolution can be achieved with particle flow techniques (EP R&D WG7, WG3)
 - → High granularity of read-out (3D or 4D imaging) (EP R&D WG3, FT design, electrode design)
- Position resolution of photons: $\sigma_x = \sigma_v = (6 \text{ GeV/E} \oplus 2) \text{ mm Particle ID:}$
 - e^{\pm}/π^{\pm} separation,
 - τ decays with collimated final states, separate different decay modes with minimal overlap (e.g. π_0 close to π^{\pm})
 - → High granularity of read-out (3D or 4D imaging) (EP R&D WG3, FT design, electrode design)

Outlook

- I am confident that with your help these meetings will become a forum where we can exchange, discuss and follow-up the progress of the work done in the different working groups
- We hope that these meetings will foster exchange and collaboration between the different working groups, especially between the fllows and technical students who have started work
- To give a perspective we will also include physics related topics (probably mainly from FCC-ee)
 that have an impact on calorimetry requirements
- Format and frequency of the meetings can of course be adjusted to our needs
- Common cernbox folder for exchanging information: "/eos/project/e/ep-rdet/WG3-Calorimetry-and-light-based-detectors/Noble Liquid Calorimetry for Future Accelerator Experiments".
 - Please drop me a mail, if you want to access this folder
- E-group has been created (<u>ep-rdet-WG3-Cal-Noble-Liquid@cern.ch</u>) Please subscribe!
- Possible slots for bi-weekly meeting:
 - Tuesdays 9:00 11:00
 - Thursdays 9:00 11:00
 - Fridays 9:00 11:00

Backup