

EP R&D Project on Noble Liquid Calorimetry

Read-Out Electrode Design and Performance Optimisation

Marina Béguin

LAr calorimeters for Future Detectors

FCC-hh calorimetry

FCC-ee calorimetry

FCC calorimeters readout electrodes design

Design for FCC-hh

Towards a design for FCC-ee

PCBs optimisation

Conclusion

LAr calorimeters for Future Detectors

Calorimetry of a FCC-hh detector

ATLAS-like calorimeter with higher granularity (PF, particle ID, PU rejection...)

- LAr in high radiation regions: ECAL + HCAL endcap and forward regions
- Tile calorimeter (stainless steel/lead and scintillating plastic tiles) in low radiation regions: HCAL and extended barrels

1912.09962v1

Electromagnetic calorimeter barrel

Fine long. and trans. granularity:

- 8 longitudinal layers
- $\Delta \eta \times \Delta \Phi \sim 0.01 \times 0.01$ (0.0025 × 0.02 in first layer)
- → 2.5M readout channels

Possible only with straight multi-layer electrodes

- Electrode (7-layer PCB, 1.2 mm thick) and absorber (lead/steel) plates inclined by 50° from the radial direction for readout capabilities via cables arranged at the walls of the cryostat
- LAr in the gaps

LAr calorimetry for FCC-ee

- LAr active medium for ECAL has been implemented into FCCSW for a FCC-ee experiment
- Preliminary considerations: such a calorimeter could be feasible and would fulfil physics requirements for FCC-ee

FCC calorimeters readout electrodes design

Readout electrodes for FCC-hh (1)

Readout electrodes for **FCC-hh** (2)

- 1. Outside HV layers that produce the electric field
- 2. Pads that collect the signal
- 3. Signal traces connected with vias (5) to the signal pads
- 4. Ground-shields to prevent crosstalk between the trace and the pad. Shields/trace forms a $25\Omega-50\Omega$ transmission line

Towards a design of the readout electrodes for **FCC-ee**

Similar design than the FCC-hh readout electrodes

FCC-ee measures low energies, therefore:

- granularity to be studied
- the electronic noise have to be minimised
- → Detector granularity and PCB readout electrodes signal-to-noise ratio have to be optimised

Electronic noise in readout

Noise contribution is proportional to the cell capacitance

- ightarrow large shield prevents crosstalk but increases C_{cell}
- ightarrow higher the granularity, more shields are needed, $\mathcal{C}_{\textit{cell}}$ increases
- \rightarrow Requires PCB optimisation

PCBs optimisation

Milestones

- 1. Study of the readout electrodes for FCC-hh LAr calorimetry
 - 1.1 Computation of several parameters (signal attenuation, capacitance to ground, electronic noise, crosstalk between signal pads and signal traces) and comparison with analytic approximate formulas.
 - 1.2 Optimisation of the PCB dimensions to minimise noise and crosstalk while maximising the readable signal
- 2. Design of the readout electrodes for a FCC-ee LAr calorimeter
 - 2.1 Participation of the particle flow implementation into FCCSW
 - 2.2 Study the granularity requirements of an electromagnetic calorimeter for FCC-ee
 - 2.3 Optimisation of the readout electrodes by studying the above mentioned parameters

Study of the readout electrodes for FCC-hh

Computation of several parameters and comparison with analytic approximate formulas

→ Using COMSOL Multiphysics, a finite element tool

- 1. Learn COMSOL
- 2. Capacitance

$$C_{COMSOL} = 8.53 \text{ pF}$$

Layer 5 of electrode 1 $(|\eta| \leq 0.01)$

Article: approximation microstrip line on top of one ground shield:

$$C_s[pF/cm] = \frac{0.26(\varepsilon_r + 1.41)}{\log \frac{5.98h_m}{0.8w_s + t}}$$

$$C_s = 6,38 \text{ pF}$$

Schneider model:

$$C = \frac{\epsilon_i l}{60v_0 \ln\left[\frac{8h}{w} + \frac{w}{4h}\right]} \quad \text{for } \frac{w}{h} < 1$$

10.1109/SECON.2007.342939

$$C = \frac{\frac{c_f \left[\frac{w}{h} + 1.393 + 0.667 \ln \left(\frac{w}{h} + 1.444 \right) \right]}{120\pi v_0} \quad \text{for } \frac{w}{h} \ge 1$$

L = conductor lenght v₀ = speed of light

$$C = 8,95 pF$$

1912.09962v1

Study of the readout electrodes for FCC-hh

Computation of several parameters and comparison with analytic approximate formulas

→ Using COMSOL Multiphysics, a finite element tool

- Learn COMSOL
- 2. Capacitance
- Impedance

$$Z_{COMSOL} = 52.4 \Omega$$

Approximation strip line between two ground shields:

$$Z[\Omega] = \frac{60}{\sqrt{\varepsilon_r}} \log \frac{1.9(2h_s + t)}{0.8w_t + t}$$

$$Z = 49.25 \Omega$$

The formula has an accuracy of approx. $\pm 6\%$

Conclusion

- Preliminary results
- The step 1.1 should be completed soon for layer 5, the remaining will follow
 - → COMSOL need to be understood first
- A lot of interesting work to do!

Thanks for your attention :)

Questions?

