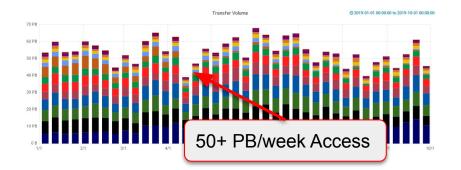
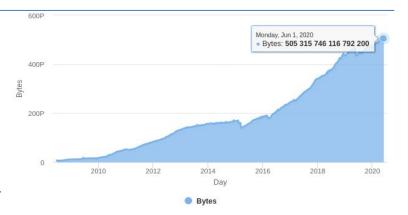
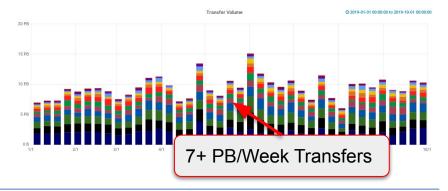
Moving Rucio to Production in Kubernetes

Thomas Beermann on behalf of the Rucio team

Rucio in a nutshell


- Rucio provides a complete and generic scientific data management service
 - Seamless integration of scientific and commercial storage and network systems.
 - Data is stored in **global single namespace** and can contain **any potential payload.**
 - Facilities can be **distributed at multiple locations** belonging to **different administrative domains.**
 - Designed with **more than a decade of operational experience** in very large-scale data management.
- Rucio manages location-aware data in a heterogeneous distributed environment
 - \circ Creation, location, transfer, deletion, and annotation of data
 - **Orchestration of dataflows** with both low-level and high-level policies
- Principally developed by and for ATLAS, now with many more communities
- Rucio is open source and available under Apache 2.0 license
- Open community-driven development process





Data management for ATLAS

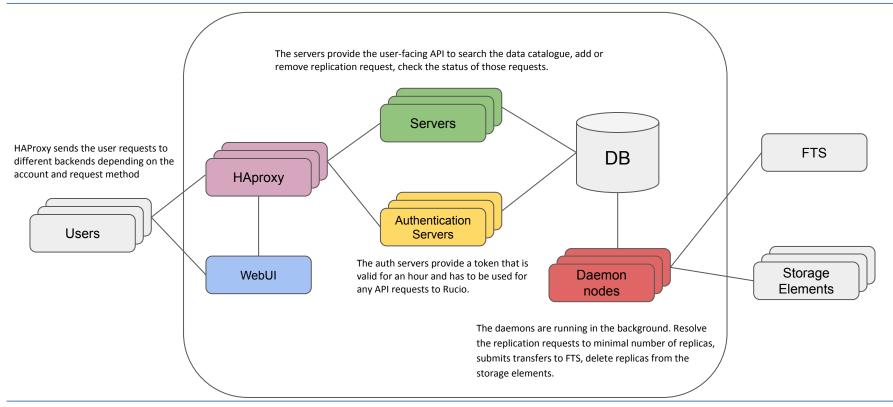
- A few numbers to set the scale
 - 1B+ files, 505 PB of data, 400+ Hz interaction rate
 - 120 data centres, 5 HPCs, 600 storage areas
 - 500 Petabytes/year transferred & deleted
 - 2.5 Exabytes/year uploaded & downloaded
- Increase 1+ order of magnitude for LHC Run 4

2020-06-03

Rucio main functionalities

- Provides many features that can be enabled selectively
 - Horizontally scalable catalog for files, collections, and metadata
 - Transfers between facilities including disk, tapes, clouds, HPCs
 - \circ \quad Authentication and authorisation for users and groups
 - Web-UI, CLI, FUSE, and REST API
 - Extensive monitoring for all dataflows
 - Expressive policy engines with rules, subscriptions, and quotas
 - \circ \quad Automated corruption identification and recovery
 - \circ \quad Transparent support for caches and CDN dataflows
 - Data-analytics based flow control and SDNs
 - 0 ...
- Rucio is not a distributed file system, it connects existing storage infrastructure
 - No Rucio software needs to run at the data centres
 - Entities are free to choose what suits them best, even within a single community

2020-06-03


Community

2020-06-03

Architecture

Current deployment for ATLAS

- The current deployment for ATLAS uses **separate VMs** deployed on the CERN-IT provided Openstack infrastructure.
- The server and daemon services are **split by integration and production**. New Rucio releases are **tested for one week** on the integration nodes, which get only a small load of the production nodes. Currently we have:
 - 15 / 2 production / integration server VMs.
 - 25 / 7 production / integration daemon VMs.
 - 3 haproxy load balancers.
 - 2 / 1 production / integration webui servers + a couple of VMs for misc services, e.g., running nagios probes, submit hadoop jobs and retrieve output, logging, etc.
- The deployment is **fully managed by Puppet**.

Issues with the current model

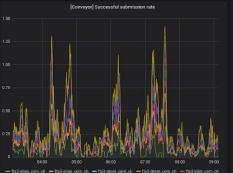
- Our current deployment is running stable and we have a lot of experience with the current operations model but:
 - Regular **problems** with **Python dependencies** that are overwritten by automatic package upgrade on the VMs breaking our deployment.
 - The **puppet deployment** grew over time and became quite **complicated**.
 - Adapting the deployment to add or remove new daemons to adapt to different workloads requires manual intervention and is rather slow.
 - Setup of a new deployment is complicated and needs a **lot of support** for the **initial installation**.
 - The VM resources are **highly underutilized** because of redundancies and the static deployment model with Puppet.
 - Hunting down problems can be tedious sometimes due to the distributed nature of the deployment.
- Could benefit a lot of a more dynamic Kubernetes deployment.

Why Kubernetes for Rucio?

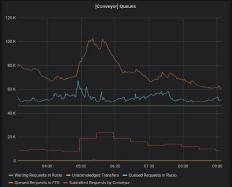
- Containers provide an **isolated and minimal environment** with only the necessary dependencies needed for the application.
- Initial deployment of new services becomes really easy and is quick thanks to Helm charts.
- **Changes** in the deployment and software upgrades are **quickly propagated** through the system.
- Auto-scaling can help in case of spikes in the workload and to **better utilize** the **available resources** / better energy efficiency.
- Centralized monitoring and logging can make it easier to find problems.

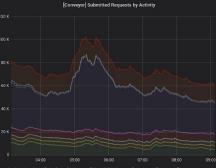
Deployment with Helm and Flux

- The Rucio server, daemon and webui services are fully packaged with <u>Helm</u>.
- Available in our own <u>repo</u> on Github.
- Set up of a new Rucio instance is now as simple as adapting a few configuration parameters and installing the Helm chart.
- We use <u>Flux</u> to manage our Helm deployments:
 - Since we had the Helm charts already available it is rather **easy to set up**.
 - The Helm values are managed in a gitlab repository.
 - An agent on the cluster regularly checks for updates in the repo and **automatically deploys** them.
 - Changing the deployment is then done by simple git commits, similar to puppet but **much quicker**.
 - Upgrading to a new version or adding new daemons / servers only takes a few minutes.
 - Adds **accountability** which is important for us since there can be multiple people trying to change the deployment.
 - Could bridge the gap for of our ops people not having too much experience with Kubernetes, yet.

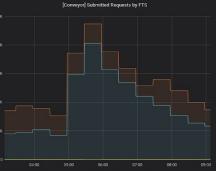

Monitoring

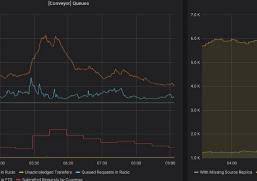
- For the cluster monitoring we are relying on the built-in Prometheus server to monitor cluster resources and the our workloads and pod.
- But we also have some **application metrics** for which we are currently using statsd/Graphite in our Puppet deployment.
- We have extended our code to also **support Prometheus**:
 - Can be enabled in our helm-charts.
 - Then every server and daemon pod provides a metrics endpoint that can be scraped by Prometheus.
 - Furthermore, we have probes regularly checking various internal queues in the DB. For that we are running Prometheus Pushgateway and the probes are sending there.
- Added our own Grafana dashboards on top of the cluster-provided ones.

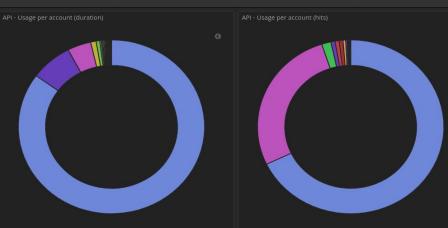

Rucio Overview -6 binning 5m -


8

(?)

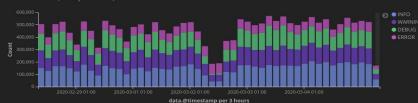






Logging

- For the logging we are using a **private monit-timber** instance.
- Logs are **collected** from the nodes with **filebeat** and send to logstash.
- Logstash filters some messages and parses the messages into separate fields.
- Logstash running inside the cluster had **problems keeping up with the messages**. Therefore we are currently running it on a **separate VM**.
- We are using it for different purposes and have some custom dashboards in Kibana:
 - Server API monitoring: showing detailed information about the API usage including hits per endpoint, per account, error codes, etc.
 - Daemon activity monitoring: showing an overview of log messages sent from the different daemons to spot potential problems.



Search... (e.g. status:200 AND extension:PHP)

Add a filter 🕂

aemons Overview (Conveyor Finisher)

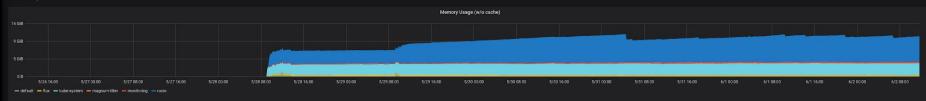
11											
	Time	data.severity_label	data.kubernetes.pod.name	data.kubernetes.node.name	data.message						
				atlasrucioint-n3zjupjhp5uc-minion-3	[broker] 0:11 - event_type: transfer-done, scope: mc15_valid, name: TXT.13000324_0001901tmgz1, rse: TRUMF-LG2_DATAD6K; request id: 31bfridesbir1418139585B/50-481971, transferd; dc48e38-474a-5860- ba4b-070cf7c796e3, created_at: 2020-03-05 11:46:13						
			daemonint-judge-repairer- 6ff476f675-79lt5	atlasrucioint-n3zjupjhp5uc-minion-1	Finished resetting counters for rule 339f448cf04f476f814613bfeccd7c1d [0/0/2]						
			daemonint-undertaker- 8545b95679-58lxv	atlasrucioint-n3zjupjhp5uc-minion-1							
		INFO	daemonint-judge-repairer- 6ff476f675-79lt5	atlasrucioint-n3zjupjhp5uc-minion-1	Rule 93269ea40f144c9198550e1b0b29f8aa [0/1/1] state=STUCK						
			daemonint-judge-repairer- 6ff476f675-79lt5	atlasrucioint-n3zjupjhp5uc-minion-1	Resetting counters for rule 2d7932f84e4f4a9692cd44d7dc3c64ea [14/0/0]						
			daemonint-conveyor-poller- 9c8bfd898-k5cj9	atlasrucioint-n3zjupjhp5uc-minion-0	Thread [2/41] : Correct RSE: TOKYO-LCG2_DATADISK for source suri: gsiftp://kg- se01.icepp.jp:2811/dpm/icepp.jp/home/atlas/atlasdatadisk/rucio/mc16_5TeV /40/a0/log.20701585_003227.job.log.tgz.1						
	March 5th 2020, 17:11:41.179	DEBUG	daemonint-judge-repairer- 6ff476f675-79lt5	atlasrucioint-n3zjupjhp5uc-minion-1	InsufficientAccountLimit while repairing rule fe1867abff804e6481fdd6eb0d2c900e						
			daemonint-judge-repairer- 6ff476f675-79lt5	atlasrucioint-n3zjupjhp5uc-minion-1	rule_repairer{0/62}: repairing of 2d7932f84e4f4a9692cd44d7dc3c64ea took 0.264885						
			daemonint-conveyor-poller- 9c8bfd898-k5cj9	atlasrucioint-n3zjupjhp5uc-minion-0	Thread [0/41] : Request c947fc341eb74bc5803df6aa2da30788 is already in DONE state, will not update						
				atlasrucioint-n3zjupjhp5uc-minion-3	[broker] 0:11 - event_type: transfer-done, scope: mc16_13TeV, name: HTIS.20095577. 203192.pool.root.1, res: SAR4-MATRX, DATADISK, request-id: e122d9/21e443a3ad2de0c0bat135, transfer-id: e242431F abd3-5869-9c10-99438ca33a22, created_at: 2020-03-05 11:46:09						
			daemonint-judge-repairer-	atlasrucioint-n3zjupjhp5uc-minion-1	Finding and repairing stuck locks for rule 28076fb7731f489b941982aac29ce849						

Current K8s deployment for ATLAS (1/2)


- We are currently running two K8s cluster for our ATLAS deployment:
 - Integration cluster with 3 nodes running 1.18
 - Production cluster with 4 nodes running 1.15
- On the **integration** cluster we run **both servers and daemons**.
- On the **production** cluster we run **only daemons**.

- For the servers we are using a loadbalancer service with a virtual IP.
- For the moment we will **keep using our own HAProxy** which allows us to gradually move over.
- The virtual IP has been added to our HAProxy as a backend receiving ~5% of the total load.

- The daemons are using a **heartbeat** mechanism to **automatically share** the workload across **multiple instance**.
- So for the K8s deployment we could just add daemons. **No need to change** anything in our **Puppet deployment**, yet.
- We are running three different releases:
 - Integration release with one pod per daemon and 1-10 threads.
 - Python3 integration release with the same configuration. It is used to validate our current migration efforts to py3.
 - Production release with 1-2 pods and 5-60 threads.
- With this configuration we are already running between **30-50 percent of our total** load on K8s.


Integration cluster resources

🗸 CPU Quota

CPU Quota								
rucio							31.34%	
monitoring								
magnum-tiller								
kube-system							54.83%	
flux			0.09		62.38%			

Memory

Integration cluster pods

	CPU Usage			CPU Limits	CPU Limits %
daemonint-conveyor-finisher-7bb559f68-kgh2c	0.21	0.70	29.58%	1.20	17.26%
daemonint-conveyor-poller-64768bdb6d-8xh5b	0.01	0.20	3.37%	0.50	1.35%
daemonint-conveyor-receiver-67545576f4-lzhrt	0.05	0.20	25.53%	0.50	10.21%
daemonint-conveyor-submitter-5cf766d7b7-vpwct	0.78	0.70	111.60%	1.00	78.12%
daemonint-conveyor-throttler-5cd474f888-jkqdz	0.00	0.10	1.48%	0.50	0.30%
daemonint-hermes-5d8b7f4f4b-qj8mt	0.01	0.05	24.28%	0.20	6.07%
daemonint-judge-cleaner-57b688dd59-gt724	0.00	0.05	6.35%	0.10	3.17%
daemonint-judge-evaluator-659c5dbffc-bz8sg	0.02	0.05	30.13%	0.20	7.53%
daemonint-judge-repairer-647bdc86cc-2s4x6	0.01	0.05	13.08%	0.20	3.27%
daemonint-minos-76bcdd6fbf-zjxbj	0.00	0.10	0.91%	0.20	0.46%
daemonint-minos-temporary-expiration-784c589569-8jc4q	0.00	0.10	1.00%	0.20	0.50%
daemonint-reaper2-664fdcc4d4-pp76x	1.07	1.20	89.30%	2.00	53.58%
daemonint-tracer-kronos-7fcd8b98fd-fkp64	0.94	0.50	188.58%	1.20	78.57%
daemonint-transmogrifier-848d59cbf-wz5n2	0.08	0.10	83.31%	0.70	11.90%
daemonint-undertaker-cd4f754f9-q5bp9	0.04	0.20	20.63%	0.70	5.89%
daemonintpy3-conveyor-finisher-55c45699f5-k2frp	0.34	0.70	48.72%	1.20	28.42%
daemonintpy3-conveyor-poller-59cf475f95-xkvhb	0.24	0.10	242.52%	0.50	48.50%
daemonintpy3-conveyor-receiver-68ddc967bf-lgrwx	0.01	0.20	6.74%	0.50	2.70%
daemonintpy3-conveyor-submitter-7d69867fff-d6p68	0.67	0.70	95.35%	0.70	95.35%
daemonintpy3-hermes-868c967fb4-j6jlr	0.01	0.05	13.23%	0.20	3.31%
daemonintpy3-judge-cleaner-665654f99d-bj2m7	0.01	0.05	10.46%	0.10	5.23%
daemonintpy3-judge-evaluator-847db6f5bd-zfhpg	0.01	0.05	14.99%	0.20	3.75%
daemonintpy3-judge-repairer-86ddb8ff54-q547g	0.01	0.05	20.37%	0.20	5.09%
daemonintpy3-minos-5f798c6d58-h6m6v	0.00	0.10	0.71%	0.20	0.35%
daemonintpy3-minos-temporary-expiration-746ccbc55b-lrwzg	0.00	0.10	0.84%	0.20	0.42%
daemonintpy3-undertaker-55c48f978b-g4tlc	0.00	0.20	1.78%	0.70	0.51%
serverint-rucio-server-ccfb8df5-sq8jg	0.29	0.75	38.83%	2.00	14.56%
serverint-rucio-server-ccfb8df5-tpfj8	1.06	0.75	141.30%	2.00	52.99%

Production cluster resources

CPU Quota

故

		CPU Quota		
rucio			45.88%	20.31%
monitoring				
magnum-tiller				
kube-system				
flux			45.73%	

Production cluster pods

Pod 🔺	CPU Usage	CPU Requests	CPU Requests %	CPU Limits	CPU Limits %
daemonprod-conveyor-finisher-5879bd9759-4m947	0.09	1.00	8.87%	1.50	5.91%
daemonprod-conveyor-finisher-5879bd9759-bxbcc	0.10	1.00	10.41%	1.50	6.94%
daemonprod-conveyor-poller-845bc4f476-h92mf	0.16	1.00	15.98%	1.50	10.65%
daemonprod-conveyor-poller-845bc4f476-nrl8f	0.20	1.00	20.40%	1.50	13.60%
daemonprod-conveyor-receiver-6c9cdb6d9d-vd2l2	0.04	0.20	21.16%	0.70	6.05%
daemonprod-conveyor-submitter-5c57486546-bw2gv	0.98	1.00	97.92%	1.50	65.28%
daemonprod-conveyor-submitter-5c57486546-kvfvk	1.13	1.00	113.07%	1.50	75.38%
daemonprod-conveyor-throttler-74bb587cc-sgcbp	0.00	0.20	0.53%	0.70	0.15%
daemonprod-hermes-84bc7c8c89-s8vpc	0.02	0.10	16.61%	0.30	5.54%
daemonprod-hermes-84bc7c8c89-zmqsr	0.02	0.10	24.77%	0.30	8.26%
daemonprod-judge-cleaner-5f46d9cc58-4v5dk	0.04	0.20	20.79%	1.00	4.16%
daemonprod-judge-cleaner-5f46d9cc58-mjzdq	0.06	0.20	32.25%	1.00	6.45%
daemonprod-judge-evaluator-dbdf4959f-f9dng	0.30	0.20	149.34%	1.00	29.87%
daemonprod-judge-evaluator-dbdf4959f-rxh9m	0.46	0.20	229.78%	1.00	45.96%
daemonprod-judge-repairer-6d598487b7-4hvdq	0.11	0.20	53.17%	0.70	15.19%
daemonprod-judge-repairer-6d598487b7-cgcxs	0.08	0.20	41.66%	0.70	11.90%
daemonprod-minos-7575f4f4bc-mtsgd	0.00	0.10	1.42%	0.70	0.20%
daemonprod-minos-temporary-expiration-5f9bf76fb5-h8czd	0.00	0.10	3.50%	0.30	1.17%
daemonprod-reaper2-685599c6c7-5bcw4	0.79	1.20	65.67%	2.50	31.52%
daemonprod-reaper2-685599c6c7-xqtjt	0.95	1.20	79.24%	2.50	38.03%
daemonprod-tracer-kronos-684d7f7b48-xqhrw	0.65	0.50	130.31%	1.20	54.30%
daemonprod-transmogrifier-776f78cfd7-gvc8z	0.10	0.10	99.55%	0.70	14.22%
daemonprod-undertaker-b4dcdd55b-mjpft	0.02	0.20	8.23%	1.00	1.65%

Auto-scaling

- Some of our workloads can have a **spiky behaviour** and sometimes **need manually intervention** by adding new daemons:
 - Many transfers created at the same time, e.g., for rebalancing, can create a transfer backlog:
 - First, start more submitters, then pollers, then finishers.
 - Deletion campaigns to remove used data can create a deletion backlog:
 - Start more reapers.
- Could be a **good fit for auto-scaling**.
- We have all necessary **metrics available in Prometheus** and therefore also for the auto-scaler.
- Did some successful basic testing but we need to put some more effort to find reasonable thresholds.

Concerns

- We are now at a point where we can easily and quickly deploy new instances of Rucio but getting there took some time:
 - K8s has a **steep learning curve** with lots of new terms, concepts and tools.
 - Writing the **Helm charts needed some effort** and we are still constantly updating them.
 - Changing configurations in the deployment is easy and does not really need any knowledge of K8s at all thanks to flux.
 - But if something breaks it can be a bit **more difficult to fix**, at least if you are used to VMs.
 - Still have to **gain more experience** and develop strategies in case of failures.
- Most of the issues we faced so far on the infrastructure were quickly addressed by CERN IT.
- Only bigger issue for the moment is the **lower network performance**, resulting in **higher server response time**.

Deployments for other experiments / activities

• CMS:

- The CMS experiment decided to directly use K8s for their Rucio deployment.
- Also using the CERN Openstack infrastructure.
- We are working closely together on common Helm charts and Kubernetes setups.
- DOMA TPC / XDC:
 - We are running a small cluster for webdav/xrootd third-party-copy transfer tests.
 - \circ $\,$ Also used for XDC/OIDC token authentication testing.
 - No HAProxy, instead using an nginx ingress needed for X509 certificate passthrough.
 - One of our longest running cluster. Helpful to gain experience.
- Folding@Home:
 - F@H expressed interest in using Rucio for their data management.
 - We set up a small demo at CERN that will be used to evaluate Rucio.
 - Setting up a new instance like this becomes really easy and quick with the Helm charts and flux.

Where to go from here?

- We are running integration on K8s for a **long time** now **without bigger issues**.
- We reached a point where are already running a **considerable load** of our deployment on K8s (at least for the daemons).
- For the moment we only added to our existing Puppet deployment and exhausted our Openstack quota.
- We will start to **remove/reshuffle** some **services in Puppet** freeing up resources that can be added to K8s.
- Next step would be to **significantly increasing the server** capacity on K8s.
- We will continue to increase our load on K8s week by week.
- When everything goes as planned we want to be completely **migrated by Q3/2020**.

Questions?

More information

