
Moving Rucio to Production in
Kubernetes

Thomas Beermann
on behalf of the Rucio team

mailto:thomas.beermann@cern.ch

2020-06-03

Rucio in a nutshell

2

● Rucio provides a complete and generic scientific data management service
○ Seamless integration of scientific and commercial storage and network systems.
○ Data is stored in global single namespace and can contain any potential payload.
○ Facilities can be distributed at multiple locations belonging to different administrative domains.
○ Designed with more than a decade of operational experience in very large-scale data management.

● Rucio manages location-aware data in a heterogeneous distributed environment
○ Creation, location, transfer, deletion, and annotation of data
○ Orchestration of dataflows with both low-level and high-level policies

● Principally developed by and for ATLAS, now with many more communities

● Rucio is open source and available under Apache 2.0 license

● Open community-driven development process

2020-06-03

Data management for ATLAS

● A few numbers to set the scale
○ 1B+ files, 505 PB of data, 400+ Hz interaction rate

○ 120 data centres, 5 HPCs, 600 storage areas

○ 500 Petabytes/year transferred & deleted

○ 2.5 Exabytes/year uploaded & downloaded

● Increase 1+ order of magnitude for LHC Run 4

3

50+ PB/week Access
7+ PB/Week Transfers

2020-06-03

Rucio main functionalities

● Provides many features that can be enabled selectively
○ Horizontally scalable catalog for files, collections, and metadata

○ Transfers between facilities including disk, tapes, clouds, HPCs

○ Authentication and authorisation for users and groups

○ Web-UI, CLI, FUSE, and REST API

○ Extensive monitoring for all dataflows

○ Expressive policy engines with rules, subscriptions, and quotas

○ Automated corruption identification and recovery

○ Transparent support for caches and CDN dataflows

○ Data-analytics based flow control and SDNs

○ …

● Rucio is not a distributed file system, it connects existing storage infrastructure
○ No Rucio software needs to run at the data centres

○ Entities are free to choose what suits them best, even within a single community

M
o

re
 a

d
va

n
ce

d
 f

ea
tu

re
s

4

2020-06-03

Community

5

2020-06-03

Architecture

6

Server node

haproxy nodehaproxy nodeHAproxy

Server nodeServers

Server node

DB

Server nodeDaemon
nodes

Server nodeServer nodeAuthentication
Servers

WebUI

haproxy nodehaproxy nodeUsers

FTS

Server nodeServer nodeStorage
Elements

HAProxy sends the user requests to
different backends depending on the
account and request method

The daemons are running in the background. Resolve

the replication requests to minimal number of replicas,

submits transfers to FTS, delete replicas from the

storage elements.

The servers provide the user-facing API to search the data catalogue, add or
remove replication request, check the status of those requests.

The auth servers provide a token that is
valid for an hour and has to be used for
any API requests to Rucio.

2020-06-03

Current deployment for ATLAS

● The current deployment for ATLAS uses separate VMs deployed on the CERN-IT

provided Openstack infrastructure.

● The server and daemon services are split by integration and production. New Rucio

releases are tested for one week on the integration nodes, which get only a small

load of the production nodes. Currently we have:
○ 15 / 2 production / integration server VMs.

○ 25 / 7 production / integration daemon VMs.

○ 3 haproxy load balancers.

○ 2 / 1 production / integration webui servers + a couple of VMs for misc services, e.g., running nagios

probes, submit hadoop jobs and retrieve output, logging, etc.

● The deployment is fully managed by Puppet.

7

2020-06-03

Issues with the current model

● Our current deployment is running stable and we have a lot of experience with the

current operations model but:
○ Regular problems with Python dependencies that are overwritten by automatic package upgrade on

the VMs breaking our deployment.

○ The puppet deployment grew over time and became quite complicated.

○ Adapting the deployment to add or remove new daemons to adapt to different workloads requires

manual intervention and is rather slow.

○ Setup of a new deployment is complicated and needs a lot of support for the initial installation.

○ The VM resources are highly underutilized because of redundancies and the static deployment model

with Puppet.

○ Hunting down problems can be tedious sometimes due to the distributed nature of the deployment.

● Could benefit a lot of a more dynamic Kubernetes deployment.

8

2020-06-03

Why Kubernetes for Rucio?

● Containers provide an isolated and minimal environment with only the necessary

dependencies needed for the application.

● Initial deployment of new services becomes really easy and is quick thanks to Helm

charts.

● Changes in the deployment and software upgrades are quickly propagated through

the system.

● Auto-scaling can help in case of spikes in the workload and to better utilize the

available resources / better energy efficiency.

● Centralized monitoring and logging can make it easier to find problems.

9

2020-06-03

Deployment with Helm and Flux

● The Rucio server, daemon and webui services are fully packaged with Helm.

● Available in our own repo on Github.

● Set up of a new Rucio instance is now as simple as adapting a few configuration

parameters and installing the Helm chart.

● We use Flux to manage our Helm deployments:
○ Since we had the Helm charts already available it is rather easy to set up.

○ The Helm values are managed in a gitlab repository.

○ An agent on the cluster regularly checks for updates in the repo and automatically deploys them.

○ Changing the deployment is then done by simple git commits, similar to puppet but much quicker.

○ Upgrading to a new version or adding new daemons / servers only takes a few minutes.

○ Adds accountability which is important for us since there can be multiple people trying to change the

deployment.

○ Could bridge the gap for of our ops people not having too much experience with Kubernetes, yet.

10

https://helm.sh/
https://github.com/rucio/helm-charts
https://fluxcd.io/

2020-06-03

Monitoring

● For the cluster monitoring we are relying on the built-in Prometheus server to

monitor cluster resources and the our workloads and pod.

● But we also have some application metrics for which we are currently using

statsd/Graphite in our Puppet deployment.

● We have extended our code to also support Prometheus:
○ Can be enabled in our helm-charts.

○ Then every server and daemon pod provides a metrics endpoint that can be scraped by

Prometheus.

○ Furthermore, we have probes regularly checking various internal queues in the DB. For that we

are running Prometheus Pushgateway and the probes are sending there.

● Added our own Grafana dashboards on top of the cluster-provided ones.

11

Show dashboards

12

2020-06-03

Logging

● For the logging we are using a private monit-timber instance.

● Logs are collected from the nodes with filebeat and send to logstash.

● Logstash filters some messages and parses the messages into separate fields.

● Logstash running inside the cluster had problems keeping up with the messages.

Therefore we are currently running it on a separate VM.

● We are using it for different purposes and have some custom dashboards in Kibana:
○ Server API monitoring: showing detailed information about the API usage including hits per endpoint,

per account, error codes, etc.

○ Daemon activity monitoring: showing an overview of log messages sent from the different daemons to

spot potential problems.

13

2020-06-03

Logging examples

14

2020-06-03

Current K8s deployment for ATLAS (1/2)

● We are currently running two K8s cluster for our ATLAS deployment:
○ Integration cluster with 3 nodes running 1.18

○ Production cluster with 4 nodes running 1.15

● On the integration cluster we run both servers and daemons.

● On the production cluster we run only daemons.

● For the servers we are using a loadbalancer service with a virtual IP.

● For the moment we will keep using our own HAProxy which allows us to gradually

move over.

● The virtual IP has been added to our HAProxy as a backend receiving ~5% of the

total load.

15

2020-06-03

Current K8s deployment for ATLAS (2/2)

● The daemons are using a heartbeat mechanism to automatically share the workload

across multiple instance.

● So for the K8s deployment we could just add daemons. No need to change anything

in our Puppet deployment, yet.

● We are running three different releases:
○ Integration release with one pod per daemon and 1-10 threads.

○ Python3 integration release with the same configuration. It is used to validate our current migration

efforts to py3.

○ Production release with 1-2 pods and 5-60 threads.

● With this configuration we are already running between 30-50 percent of our total

load on K8s.

16

17

Integration cluster resources

18

Integration cluster pods

19

Production
Production cluster resources

20

Production cluster pods

2020-06-03 21

Auto-scaling

● Some of our workloads can have a spiky behaviour and sometimes need manually

intervention by adding new daemons:
○ Many transfers created at the same time, e.g., for rebalancing, can create a transfer backlog:

■ First, start more submitters, then pollers, then finishers.

○ Deletion campaigns to remove used data can create a deletion backlog:

■ Start more reapers.

● Could be a good fit for auto-scaling.

● We have all necessary metrics available in Prometheus and therefore also for the

auto-scaler.

● Did some successful basic testing but we need to put some more effort to find

reasonable thresholds.

2020-06-03

Concerns

● We are now at a point where we can easily and quickly deploy new instances of

Rucio but getting there took some time:
○ K8s has a steep learning curve with lots of new terms, concepts and tools.

○ Writing the Helm charts needed some effort and we are still constantly updating them.

○ Changing configurations in the deployment is easy and does not really need any knowledge of K8s at

all thanks to flux.

○ But if something breaks it can be a bit more difficult to fix, at least if you are used to VMs.

○ Still have to gain more experience and develop strategies in case of failures.

● Most of the issues we faced so far on the infrastructure were quickly addressed by

CERN IT.

● Only bigger issue for the moment is the lower network performance, resulting in

higher server response time.

22

2020-06-03

Deployments for other experiments / activities

● CMS:
○ The CMS experiment decided to directly use K8s for their Rucio deployment.

○ Also using the CERN Openstack infrastructure.

○ We are working closely together on common Helm charts and Kubernetes setups.

● DOMA TPC / XDC:
○ We are running a small cluster for webdav/xrootd third-party-copy transfer tests.

○ Also used for XDC/OIDC token authentication testing.

○ No HAProxy, instead using an nginx ingress needed for X509 certificate passthrough.

○ One of our longest running cluster. Helpful to gain experience.

● Folding@Home:
○ F@H expressed interest in using Rucio for their data management.

○ We set up a small demo at CERN that will be used to evaluate Rucio.

○ Setting up a new instance like this becomes really easy and quick with the Helm charts and flux.

23

2020-06-03

Where to go from here?

● We are running integration on K8s for a long time now without bigger issues.

● We reached a point where are already running a considerable load of our

deployment on K8s (at least for the daemons).

● For the moment we only added to our existing Puppet deployment and exhausted

our Openstack quota.

● We will start to remove/reshuffle some services in Puppet freeing up resources that

can be added to K8s.

● Next step would be to significantly increasing the server capacity on K8s.

● We will continue to increase our load on K8s week by week.

● When everything goes as planned we want to be completely migrated by Q3/2020.

24

Questions?

25

2017-01-01

More information

26

http://rucio.cern.ch

https://rucio.readthedocs.io

https://github.com/rucio/

https://hub.docker.com/r/rucio/

https://rucio.slack.com/messages/#support/

rucio-dev@cern.ch

https://rucio.cern.ch/publications.html

https://twitter.com/RucioData

Website

Documentation

Repository

Images

Online support

Developer contact

Publications

Twitter

http://rucio.io
https://rucio.readthedocs.io/
https://github.com/rucio/
https://hub.docker.com/r/rucio/
https://rucio.slack.com/messages/#support/
mailto:rucio-dev@cern.ch
https://rucio.cern.ch/publications.html
https://twitter.com/RucioData

