

Motivation

- In the last few years there has been significant progress in understanding correlation functions and scattering amplitudes, often driven by insights from $\mathcal{N}=4 \mathrm{SYM}$.

[Coronado, Korchemsky, Belitsky, ...]

[Del Duca, Duhr et al.]

See e.g. "What can we learn about QCD and Collider Physics from $\mathcal{N}=4$ " by Henn

[Dixon et al.]

Collinear:

- Exploits enhanced symmetries, behavior in kinematic limits and functional/analytic properties of these objects.

Motivation

- Another class of field theoretic quantities that has received much less attention from the formal community are cross section level observables that measure the flow of energy (i.e. event shapes).

- Such observables have a long history for studying QCD in $e^{+} e^{-}$ colliders, but have had a massive renewal of interest due to the invention of jet substructure at the LHC.

Jet Substructure: Searches

- Observables that probe complicated energy flows play a central role in jet substructure searches.

Jet Substructure: Precision

- Precision calculations of energy flow within jets offer new opportunities to measure fundamental constants with jet substructure.

Soft Drop Mass

Using [Frye, Larkoski, Schwartz, Yan]

Rethinking Jet Substructure

- Unfortunately, there has been limited interaction between formal developments and jet substructure.
- This is often an issue of observables: observables of practical use are often not theoretically nice (e.g. complicated algorithms), and observables that are theoretically nice are often practically useless.
- As jet substructure transitions to a precision era, it is important to ask the following two questions:
- Practical Question: Can we formulate jet substructure in a manner that facilitates more precise/more differential calculations?
- Formal Question: Can we formulate jet substructure in a manner that facilitates connections with more formal developements?

Outline

- Energy Correlators and Weighted Cross Sections
- Projected Energy Correlators and Scaling
- Beyond Scaling: Shape Dependence of the Three Point Correlator
- Making Tracks Tractable

- Bonus: The Analytic Continuation of Jet Substructure

References

- Based on:
- Dixon, Moult, Zhu, arXiv:1905.01310
- Chen, Luo, Moult, Yang, Zhang, Zhu, arXiv:1912.11050
- Chen, Moult, Zhang, Zhu, arXiv:2004.11381
- Dixon, Komiske, Moult, Thaler, Zhu, Forthcoming

Energy Correlators and Weighted Cross Sections

Energy-Energy Correlators

- To understand the structure of energy flow observables, one should start with those that are most closely tied to simple field theoretic objects.
- Arguably the simplest is the two-point correlator, which is called the Energy-Energy Correlator. [Basham, Brown, Ellis, Love]

$$
\frac{d \sigma}{d z}=\sum_{i, j} \int d \sigma \frac{E_{i} E_{j}}{Q^{2}} \delta\left(z-\frac{1-\cos \chi_{i j}}{2}\right)
$$

Energy-Energy Correlators

- The EEC admits an alternative formulation as a four point function of light ray (ANEC) operators

$$
\begin{gathered}
\mathcal{E}(\vec{n})=\int_{0}^{\infty} d t \lim _{r \rightarrow \infty} r^{2} n^{i} T_{0 i}(t, r \vec{n}) \\
\frac{1}{\sigma_{\text {tot }}} \frac{d \sigma}{d z}=\frac{\int d^{4} x e^{i q \cdot x}\left\langle\mathcal{O}(x) \mathcal{E}\left(\vec{n}_{1}\right) \mathcal{E}\left(\vec{n}_{2}\right) \mathcal{O}^{\dagger}(0)\right\rangle}{\int d^{4} x e^{i q \cdot x}\left\langle\mathcal{O}(x) \mathcal{O}^{\dagger}(0)\right\rangle}
\end{gathered}
$$

[Korchemsky; Maldacena, Hofman]

- Simplest extension of a standard four point correlator of local operators \Longrightarrow has led to significant recent progress.
[Chicherin, Henn, Sokatchev, Yan,Simmons Duffin, Kologlu, Kravchuk, Zhiboedov, Korchemsky, Moult, Dixon, Zhu,...]
- This has a natural generalization to higher point correlation functions:
$\left\langle\mathcal{O}(x) \mathcal{E}\left(\vec{n}_{1}\right) \mathcal{E}\left(\vec{n}_{2}\right) \mathcal{E}\left(\vec{n}_{3}\right) \mathcal{O}^{\dagger}(0)\right\rangle$,

$$
\left\langle\mathcal{O}(x) \mathcal{E}\left(\vec{n}_{1}\right) \mathcal{E}\left(\vec{n}_{2}\right) \mathcal{E}\left(\vec{n}_{3}\right) \mathcal{E}\left(\vec{n}_{4}\right) \mathcal{O}^{\dagger}(0)\right\rangle,
$$

Energy Flow Operators

- From this perspective, Jet Substructure is the study of correlation functions of ANEC operators in the collinear limit.

$$
\left\langle\hat{O} \mathcal{E}\left(\vec{n}_{1}\right) \mathcal{E}\left(\vec{n}_{2}\right) \hat{O}^{\dagger}\right\rangle
$$

$$
\left\langle\hat{O} \mathcal{E}\left(\vec{n}_{1}\right) \mathcal{E}\left(\vec{n}_{2}\right) \mathcal{E}\left(\vec{n}_{3}\right) \hat{O}^{\dagger}\right\rangle\left\langle\hat{O} \mathcal{E}\left(\vec{n}_{1}\right) \mathcal{E}\left(\vec{n}_{2}\right) \mathcal{E}\left(\vec{n}_{3}\right) \mathcal{E}\left(\vec{n}_{4}\right) \hat{O}^{\dagger}\right\rangle
$$

- Much recent progress in understanding the small angle limit of ANECs in (Non-)Conformal Field Theories.
- Are these different/related to "Standard Jet Substructure Observables"?

Two Ways to Make a Distribution

- If I want to make a differential distribution, there are two approaches:
- Approach 1: "Standard Observable"

For each jet (or event), observable returns a number, make a distribution of the values.

- e.g. Mass, energy correlation functions, all substructure observables...

Two Ways to Make a Distribution

- Approach 2: "Weighted Cross Section" For each jet (or event), observable returns a distribution, then average the distributions
- e.g. Transverse energy energy correlator

$$
\frac{d \Sigma}{d \cos \chi}=\sum_{i, j} \int \frac{E_{i} E_{j}}{Q^{2}} \delta\left(\vec{n}_{i} \cdot \vec{n}_{j}-\cos \chi\right) d \sigma
$$

Energy Flow Operators and Weighted Cross Sections

- How does this connect to weighted cross sections?
\Longrightarrow Energy correlation functions are exactly weighted cross sections!

$$
\frac{d \Sigma}{d \cos \chi}=\sum_{i, j} \int \frac{E_{i} E_{j}}{Q^{2}} \delta\left(\vec{n}_{i} \cdot \vec{n}_{j}-\cos \chi\right) d \sigma
$$

- Weighted cross sections can be expressed as a correlation function of energy flow operators! Manifest symmetries, can use fancy techniques, etc.

Complexities of Standard Observables

- Why are "standard observables" more complicated?

$\overrightarrow{e_{2}^{(\beta)}=\frac{1}{p_{T J}^{2}} \sum_{i<j \in J} p_{T i} p_{T j}\left(R_{i j}\right)^{\beta}}$

Distribution

Field Theory Definition
$\langle 0| \mathcal{O} \delta\left(e_{2}-f\left(\mathcal{E}\left(\vec{n}_{1}\right), \mathcal{E}\left(\vec{n}_{2}\right)\right) \mathcal{O}^{\dagger}|0\rangle\right.$

- "Standard observables" require an infinite number of correlators.
- Their moments are weighted cross sections and hence simple.
- This complexity will come back to bite you even more when you try and incorporate non-perturbative information such as tracks.

Energy Correlators in the Collinear Limit

- Given this theoretical simplicity of the energy correlators, lets explore what they can give phenomenologically.
- The fact that they probe correlations of energy flow in the collinear limit is a good start!

Penrose
 Diagram

The Basic Structure

- In a CFT, energy correlators take a simple form in the small angle limit:
$\frac{d \sigma}{d x_{L} d \text { Shape }}=C_{\text {Shape }}\left(x_{L}=1, \alpha_{s}\right) x_{L}^{\gamma_{N+1}\left(\alpha_{s}\right)-1}$
e.g.

$$
=\underbrace{f_{4}\left(\frac{\left|z_{3}-z_{1}\right|^{2}}{\left|z_{2}-z_{1}\right|^{2}}, \frac{\left|z_{3}-z_{2}\right|^{2}}{\left|z_{2}-z_{1}\right|^{2}}\right)}_{\text {Shape }} \cdot \underbrace{\frac{1}{\left|z_{2}-z_{1}\right|^{2}}}_{\text {Scaling }})^{1-\gamma_{4}\left(\alpha_{s}\right)}
$$

- Will explore both shape and scaling of multi-point correlators.

Projected Energy Correlators and Scaling

Scaling

- Most basic property of their correlators is scaling with size.
- Begin with the two-point correlator to gain intuition.
- In a conformal theory, Maldacena and Hofman showed:

$$
\frac{d \sigma}{d z}=C\left(\alpha_{s}\right) z^{\gamma_{3}\left(\alpha_{s}\right)-1}
$$

- γ_{N} is the twist-2 spin- N spacelike anomalous dimension.
- Power law scaling corresponds to a "single logarithmic" (collinear) observable. (As compared with Sudakov observables).
- Would like to generalize this to a non-conformal theory such as QCD.

Energy Correlators in QCD

- We can derive a timelike factorization formula for the 2-point correlator in a non-CFT (e.g. QCD):
$\Sigma\left(z, \ln \frac{Q^{2}}{\mu^{2}}, \mu\right)=\int_{0}^{1} d x x^{2} \vec{J}\left(\ln \frac{z x^{2} Q^{2}}{\mu^{2}}, \mu\right) \cdot \vec{H}\left(x, \frac{Q^{2}}{\mu^{2}}, \mu\right)$
- The jet function satisfies the renormalization group equation:

$$
\frac{d \vec{J}\left(\ln \frac{z Q^{2}}{\mu^{2}}, \mu\right)}{d \ln \mu^{2}}=\int_{0}^{1} d y y^{2} \vec{J}\left(\ln \frac{z y^{2} Q^{2}}{\mu^{2}}, \mu\right) \cdot \widehat{P}_{T}(y, \mu)
$$

- At LL, have correspondence with CFT result (up to running coupling):

$$
\vec{J}_{L L}^{T}=\left(J_{q}, J_{g}\right) \exp \left(\frac{\widehat{\gamma}(3)}{2 \beta_{0}} \ln \frac{\alpha_{s}\left(z^{1 / 2} Q\right)}{\alpha_{s}(Q)}\right)
$$

- In a non-CFT, beyond LL, derivatives $\gamma^{\prime}(N+1), \gamma^{\prime \prime}(N+1), \ldots$ also enter.

Basso-Korchesmky Reciprocity

- Equivalence of spacelike and timelike formulations can be proven in a CFT using Basso-Korchemsky Reciprocity.
- Consider for concreteness $\mathcal{N}=4$ where SUSY reduces the evolution equations to scalar equations.
- In a CFT we can make a power law ansatz for the jet function:

$$
J\left(z Q^{2}, \mu\right)=C_{J}\left(\alpha_{s}\right)\left(\frac{z Q^{2}}{\mu^{2}}\right)^{\gamma_{J}^{\mathcal{N}}=4\left(\alpha_{s}\right)}
$$

- Substituting this into the evolution equation, we find

$$
\begin{aligned}
& 2 \gamma_{J}^{\mathcal{N}=4}\left(\alpha_{s}\right)=-2 \int_{0}^{1} d y y^{2+2 \gamma_{J}^{\mathcal{N}}=4}\left(\alpha_{s}\right) \\
& P_{T, \text { uni. }}\left(y, \alpha_{s}\right) \\
&=2 \gamma_{T}^{\mathcal{N}=4}\left(1+2 \gamma_{J}^{\mathcal{N}=4}, \alpha_{s}\right)
\end{aligned}
$$

- Basso-Korchemsky reciprocity provides the following relation between spacelike and timelike twist 2 anomalous dimensions

$$
2 \gamma_{S}^{\mathcal{N}}=4\left(N, \alpha_{s}\right)=2 \gamma_{T}^{\mathcal{N}=4}\left(N+2 \gamma_{S}^{\mathcal{N}=4}, \alpha_{s}\right)
$$

- We then find $\gamma_{J}^{\mathcal{N}=4}\left(\alpha_{s}\right)=\gamma_{S}^{\mathcal{N}=4}\left(1, \alpha_{s}\right)$ as required. Interesting relation between spacelike and timelike dynamics.

Partonic Interpretation

- Scaling has a simple interpretation from parton splitting:

- Small angle enhancement of the correlation function \Longrightarrow reason for jets at weak coupling.

NNLL+NLO Results

- Resummed results at NNLL+NLO:

Quark Jets (From $e^{+} e^{-}$)

Gluon Jets (From Higgs)

- Distribution depends very sensitively on quark vs gluon!
- In a unitary CFT, $\gamma_{N}>0$. In QCD there is an interplay between the β-function, and the $\gamma_{N}>0$: for gluons $\gamma_{N}>0$ wins and they behave quite like in a CFT, for quarks the β function wins.

Test of 2-point Correlator with Open Data

- Scaling of two-point correlator:

Non-Perturbative
(a)

- Perturbative, single log scaling over wide range (like SD mass).
- Note: no grooming was required to make it single log!

Projected Energy Correlators

- How can we generalize this to obtain a family of "scaling observables"?
- We can reduce higher point correlators by integrating out shape information, keeping only the longest side x_{L}. This is a proxy for its size.

$$
\begin{aligned}
\frac{d \sigma^{[N]}}{d x_{L}} & =\sum_{n} \sum_{1 \leq i_{1}, \ldots, i_{N} \leq n} \int d \sigma_{e^{+} e^{-} \rightarrow X_{n}} \frac{\prod_{a=1}^{N} E_{i_{a}}}{Q^{N}} \\
& \cdot \delta\left(x_{L}-\max \left\{R_{i_{1} i_{2}}, R_{i_{1} i_{3}}, \ldots, R_{i_{N-1} i_{N}}\right\}\right)
\end{aligned}
$$

- This directly generalizes the two point correlator, and we will see it inherits its nice properties, in particular, the scaling with twist-2 spin- j operators.

Projected Energy Correlators

- In analogy with the two point correlator one can derive a timelike factorization formula for the ν-point projected correlator

$$
\Sigma^{[\nu]}\left(x_{L}, \ln \frac{Q^{2}}{\mu^{2}}\right)=\int_{0}^{1} d x x^{\nu} \vec{J}^{[\nu]}\left(\ln \frac{x_{L} x^{2} Q^{2}}{\mu^{2}}\right) \cdot \vec{H}\left(x, \frac{Q^{2}}{\mu^{2}}\right)
$$

- The hard and jet functions satisfy the RGs:

$$
\begin{aligned}
\frac{d \vec{H}\left(x, \ln \frac{Q^{2}}{\mu^{2}}\right)}{d \ln \mu^{2}} & =-\int_{x}^{1} \frac{d y}{y} \widehat{P}(y) \cdot \vec{H}\left(\frac{x}{y}, \ln \frac{Q^{2}}{\mu^{2}}\right) \\
\frac{d \vec{J}^{[\nu]}\left(\ln \frac{x_{L} Q^{2}}{\mu^{2}}\right)}{d \ln \mu^{2}} & =\int_{0}^{1} d y y^{\nu} \vec{J}^{[\nu]}\left(\ln \frac{x_{L} y^{2} Q^{2}}{\mu^{2}}\right) \cdot \widehat{P}(y)
\end{aligned}
$$

- In a CFT, the projected ν point correlator exhibits a powerlaw scaling with exponent the twist-2 spin- ν anomalous dimension:

$$
\frac{d \sigma^{[\nu]}}{d x_{L}}=C^{[\nu]}\left(\alpha_{s}\right) \gamma_{J[\nu]}^{\mathcal{N}=4}\left(\alpha_{s}\right) \frac{x_{L}^{\gamma_{J}^{\mathcal{N}=4}\left(\alpha_{s}\right)}}{x_{L}}
$$

Projected Energy Correlators

- We can probe these scalings in open data:

- First theoretically understood probes of higher point correlations!

Behavior of Projected Correlators

- Generalizes the two point correlator to an infinite family of single logarithmic (groomed mass like) observables.

Ratios

- Multiple observables of same family \Longrightarrow can take ratios!
- Ratios of correlators offer a particularly robust observable. Scaling Behavior \checkmark

- Slope is directly proportional to α_{s}.

NLL Calculation

- NLL calculation requires the 2 loop anomalous dimensions, and the one loop jet function constants.
- It is well known that the twist-2 spin-j anomalous dimensions are analytic functions of j (harmonic sums).
- Remarkably, we find that the jet function constants are an analytic function of $\nu=N$.
- $\ln \mathcal{N}=4$, we find an extremely simple result:

$$
2^{\nu} J_{1}^{\mathcal{N}=4,[\nu]}=-8 N_{c}\left(\Psi(\nu)+\gamma_{E}\right)\left(\frac{1}{\epsilon}-\ln \frac{x_{L} Q^{2}}{\mu^{2}}\right)-4 N_{c}\left[\pi^{2}+2\left(\Psi(\nu)+\gamma_{E}\right)^{2}-6 \Psi^{\prime}(\nu)\right]
$$

- Close connection to field theoretic quantities leads to remarkable simplicity.
- Enables calculation to NLL for all N!

NLL Calculation

- Result in QCD has more complicated rational dependence on ν

$$
\begin{aligned}
J_{1}^{q,[\nu]}= & C_{F}\left[\frac{3(\nu-1)-4(\nu+1)\left(\Psi(\nu)+\gamma_{E}\right)}{\nu+1}\left(\frac{1}{\epsilon}-\ln \frac{x_{L} Q^{2}}{\mu^{2}}\right)\right. \\
& \left.+\frac{13 \nu^{3}+24 \nu^{2}-25 \nu-12}{\nu(\nu+1)^{2}}-4\left(\Psi(\nu)+\gamma_{E}\right)^{2}-\frac{12\left(\Psi(\nu)+\gamma_{E}\right)}{\nu+1}+12 \Psi^{\prime}(\nu)-2 \pi^{2}\right],
\end{aligned}
$$

$$
J_{1}^{g,[\nu]}=\left[C_{A}\left(\frac{(\nu-1)\left(11 \nu^{2}+53 \nu+66\right)}{3(\nu+1)(\nu+2)(\nu+3)}-4\left(\Psi(\nu)+\gamma_{E}\right)\right)-\frac{2(\nu-1)\left(\nu^{2}+4 \nu+6\right) n_{f}}{3(\nu+1)(\nu+2)(\nu+3)}\right]\left(\frac{1}{\epsilon}-\ln \frac{x_{L} Q^{2}}{\mu^{2}}\right)
$$

$$
+C_{A}\left[\frac{2\left(67 \nu^{7}+804 \nu^{6}+3634 \nu^{5}+7380 \nu^{4}+4723 \nu^{3}-5520 \nu^{2}-8712 \nu-2376\right)}{9 \nu(\nu+1)^{2}(\nu+2)^{2}(\nu+3)^{2}}-4\left(\Psi(\nu)+\gamma_{E}\right)^{2}\right.
$$

$$
\left.-\frac{8\left(2 \nu^{2}+9 \nu+11\right)\left(\Psi(\nu)+\gamma_{E}\right)}{(\nu+1)(\nu+2)(\nu+3)}+12 \Psi^{\prime}(\nu)-2 \pi^{2}\right]
$$

$$
+n_{f}\left[\frac{-23 \nu^{7}-276 \nu^{6}-1190 \nu^{5}-2376 \nu^{4}-1703 \nu^{3}+1644 \nu^{2}+3060 \nu+864}{9 \nu(\nu+1)^{2}(\nu+2)^{2}(\nu+3)^{2}}+\frac{4\left(\nu^{2}+3 \nu+4\right)\left(\Psi(\nu)+\gamma_{E}\right)}{(\nu+1)(\nu+2)(\nu+3)}\right]
$$

- Principle of maximal transcendentality is obeyed.
- Very interesting to calculate these constants to two loops.

$3 / 2$ Ratio at NLL

- Example: $3 / 2$ point ratio for quark jets.

(scale variation is by a factor of 5 instead of the standard 2)
- Hope to extend to NNLL (single log) very shortly. We are missing one number, preliminary tests show significant further reduction in scale variation.
- Promising for precision extraction of α_{s}.

Beyond Scaling: Shape Dependence of the Three Point Correlator

The Celestial Sphere and Multi-Point Correlators

- Full shape dependence of higher point correlators probes detailed aspects of theory. (analogy 2 point vs 3 point correlators for CMB.)
- Interesting for:
- Probing $1 \rightarrow 3$ splitting. e.g. Monte Carlo tuning?
- Probing detailed structure of quark and gluon jets.
- Multi-point correlations are central in jet substructure.
- Unfortunately no previous analytic calculations.

The Underlying Field Theoretic Problem

- Shape dependence of multi-point correlators described by universal jet functions.

- Start by computing analytic structure of the three point correlator.

The Celestial Sphere and $\mathcal{N}=4$ SYM

- $\mathcal{N}=4$ Super Yang-Mills is a field theory similar to QCD, but it exhibits scale (conformal) symmetry.
- We can use this theory as a guide for understanding QCD, where scale symmetry is weakly broken by the β function.
- To manifest these symmetries, it is convenient to exchange vectors with complex coordinates z_{i} on the celestial sphere:

Parametrizing a Unit Triangle

- Since we understand scaling, can focus on a unit triangle.
- Parametrize unit triangle using a complex variable z :

- Correlator is a single valued function of z, \bar{z}.

Result in $\mathcal{N}=4$

- Result in $\mathcal{N}=4$ takes quite a simple form

$$
\begin{aligned}
G(z) & =\frac{\left(1+|z|^{2}+|1-z|^{2}\right)}{2|z|^{2}|1-z|^{2}}\left(1+\zeta_{2}\right)+\frac{\left(-1+|z|^{2}+|z|^{4}-|z|^{6}-|1-z|^{4}-|z|^{2}|1-z|^{4}+2|1-z|^{6}\right)}{2|z|^{2}|1-z|^{2}(z-\bar{z})^{2}} \log |1-z|^{2} \\
& +\frac{\left(-1-|z|^{4}+2|z|^{6}+|1-z|^{2}-|z|^{4}|1-z|^{2}+|1-z|^{4}-|1-z|^{6}\right)}{2|z|^{2}|1-z|^{2}(z-\bar{z})^{2}} \log |z|^{2} \\
& +\frac{|z|^{4}-1}{2|z|^{2}|1-z|^{4}} D_{2}^{+}(z)+\frac{|1-z|^{4}-1}{2|z|^{4}|1-z|^{2}} D_{2}^{+}(1-z)+\frac{\left(|z|^{2}-|1-z|^{2}\right)\left(|z|^{2}+|1-z|^{2}\right)}{2|z|^{2}|1-z|^{2}} D_{2}^{+}\left(\frac{z}{z-1}\right) \\
& +\frac{2 i D_{2}^{-}(z)}{2|1-z|^{4}|z|^{4}(z-\bar{z})^{3}} p_{3}\left(|z|^{2},|1-z|^{2}\right)
\end{aligned}
$$

- Expressed in terms of rational prefactors and the following weight 2 functions

$$
\begin{aligned}
2 i D_{2}^{-}(z) & =\mathrm{Li}_{2}(z)-\mathrm{Li}_{2}(\bar{z})+\frac{1}{2}(\log (1-z)-\log (1-\bar{z})) \log (z \bar{z}) \\
D_{2}^{+}(z) & =\left(\mathrm{Li}_{2}\left(1-|z|^{2}\right)+\frac{1}{2} \log \left(|1-z|^{2}\right) \log \left(|z|^{2}\right)\right)
\end{aligned}
$$

A Surprising Duality

- Interestingly, all rational prefactors can be removed by writing the result in terms of dual Feynman integrals.
- The integrals appearing are over the energy fractions of splitting functions, with angles fixed:

$$
\frac{1}{\sigma_{\text {tot }}} \frac{d^{3} \Sigma}{d x_{1} d x_{2} d x_{3}}=\mathcal{N} \int d \omega_{1} d \omega_{2} d \omega_{3} \delta\left(1-\omega_{1}-\omega_{2}-\omega_{3}\right) \frac{\left(\omega_{1} \omega_{2} \omega_{3}\right)^{2}}{16} \times P_{1 \rightarrow 3}
$$

- Write all Mandelstam's in terms of celestial coordinates:
$s_{i j}=Q^{2} \omega_{i} \omega_{j}\left|z_{i}-z_{j}\right|^{2}$.
- Consider for simplicity a particular term in the splitting function:

$$
\begin{gathered}
P_{1 \rightarrow 3} \supset \frac{1}{\omega_{1} \omega_{3} s_{12} s_{123}} \sim \frac{1}{\omega_{1}^{2} \omega_{2} \omega_{3}\left|z_{12}\right|^{2} s_{123}} \\
\text { writing } s_{123}=Q^{2}\left(\omega_{1} \omega_{2} z_{12}^{2}+\omega_{1} \omega_{3} z_{13}^{2}+\omega_{2} \omega_{3} z_{23}^{2}\right) \\
\rightarrow \mathcal{N} \frac{1}{2\left|z_{12}\right|^{2}} \times \int d \omega_{1} d \omega_{2} d \omega_{3} \delta\left(1-\omega_{1}-\omega_{2}-\omega_{3}\right) \frac{\omega_{2} \omega_{3}}{\omega_{1} \omega_{2} z_{12}^{2}+\omega_{1} \omega_{3} z_{13}^{2}+\omega_{2} \omega_{3} z_{23}^{2}}
\end{gathered}
$$

A Surprising Duality

- This is recognized as a dual Feynman parameter integral, where the $\left|z_{i j}\right|^{2}$ are the dual coordinates.

$$
x_{i}^{\mu}-x_{i+1}^{\mu}=p_{i}^{\mu}, x_{i j}^{2}=\left(x_{i}-x_{j}\right)^{2}=\left(p_{i}+\cdots p_{j-1}\right)^{2}
$$

$$
x_{i j}^{2} \leftrightarrow\left|z_{i j}\right|^{2}
$$

Dual Feynman
Graph Geometry

- Related to three mass box integral.

Result in $\mathcal{N}=4$ Super Yang Mills

- Obtain one line result for three point correlator in $\mathcal{N}=4$:
- Schematically:

$$
f_{4}=\operatorname{Dual}(\forall)+\operatorname{Dual}(\square,
$$

- Explicitly:

$$
\frac{d^{2} \sigma}{d z d \bar{z}} \propto\left(\mathcal{J}^{(d=8)}(2,2,1)+\mathcal{J}^{(d=10)}(2,2,2, \widetilde{1})+\frac{\zeta_{2}-1}{2 x_{L}(1-z)(1-\bar{z})}\right)
$$

- All rational prefactors of transcendental functions eliminated.
- Why?
- Does this persist to higher loop orders, higher points?

Shape Dependence in QCD

- Shape dependence in QCD involves same transcendental functions

- ...but many more rational prefactors...

Shape Dependence

- A remarkably detailed probe of QCD in jets!

- Directly probe celestial correlators.
- Useful for probing $1 \rightarrow 3$ splitting, Parton Shower tuning, ...

Making Tracks Tractable

Track Functions

- Tracks offer many experimental advantages.
- There is an elegant formalism for incorporating tracks (Chang, Procura, Waalewijn, Thaler 2013) using Track Functions, $T_{i}(x)$.
- Track functions are a non-perturbative function describing energy fraction of a parton going into tracks, $\bar{p}_{i}^{\mu}=x p_{i}^{\mu}+\mathcal{O}\left(\Lambda_{\mathrm{QCD}}\right)$.
(Analogous to a fragmentation function).

$$
\int_{0}^{1} d x T_{i}(x, \mu)=1
$$

- It obeys a non-linear RG:

$$
\begin{aligned}
\mu \frac{d}{d \mu} T_{i}(x, \mu) & =\frac{1}{2} \sum_{j, k} \int d z d x_{j} d x_{k} \frac{\alpha_{s}(\mu)}{\pi} P_{i \rightarrow j k}(z) \\
& \cdot T_{j}\left(x_{j}, \mu\right) T_{k}\left(x_{k}, \mu\right) \delta\left[x-z x_{j}-(1-z) x_{k}\right]
\end{aligned}
$$

Track Functions

- Why hasn't it been put to use for "standard Jet Substructure Observables"?
- Calculations are very complicated.
- Calculations involve full shape of non-perturbative $T(x)$.
- Consider e.g. Track Thrust at LO

$$
\begin{gathered}
\frac{d \sigma}{d \bar{\tau}}=\int_{0}^{1} d y_{1} d y_{2} \frac{d \bar{\sigma}(\mu)}{d y_{1} d y_{2}} \int_{0}^{1} d x_{1} d x_{2} d x_{3} T_{q}\left(x_{1}\right) T_{q}\left(x_{2}\right) T_{g}\left(x_{3}\right) \delta\left[\bar{\tau}-\bar{\tau}\left(y_{1}, y_{2}, x_{1}, x_{2}, x_{3}\right)\right] \\
\frac{d \bar{\sigma}(\mu)}{d y_{1} d y_{2}}=\sigma_{0} \frac{\alpha_{s}(\mu) C_{F}}{2 \pi} \frac{\theta\left(y_{1}+y_{2}-1\right)\left(y_{1}^{2}+y_{2}^{2}\right)}{\left(1-y_{1}\right)\left(1-y_{2}\right)}
\end{gathered}
$$

where $y_{1}=2 E_{q} / Q, y_{2}=2 E_{\bar{q}} / Q$ are the normalized parton energy, and the measurement function for track thrust is

$$
\begin{aligned}
\bar{\tau}= & \theta\left[x_{1} x_{3}\left(1-y_{2}\right)-x_{1} x_{2}\left(1-y_{3}\right)\right] \cdot \theta\left[x_{2} x_{3}\left(1-y_{1}\right)-x_{1} x_{2}\left(1-y_{3}\right)\right] x_{1} x_{2}\left(1-y_{3}\right) \\
& +\theta\left[x_{2} x_{3}\left(1-y_{1}\right)-x_{1} x_{3}\left(1-y_{2}\right)\right] \theta\left[x_{1} x_{2}\left(1-y_{3}\right)-x_{1} x_{3}\left(1-y_{2}\right)\right] x_{1} x_{3}\left(1-y_{2}\right) \\
& +\theta\left[x_{1} x_{3}\left(1-y_{2}\right)-x_{2} x_{3}\left(1-y_{1}\right)\right] \cdot \theta\left[x_{1} x_{2}\left(1-y_{3}\right)-x_{2} x_{3}\left(1-y_{1}\right)\right] x_{2} x_{3}\left(1-y_{1}\right)
\end{aligned}
$$

Tracks and Energy Correlators

- Energy correlators are weighted by energy flow through detector cells as a function of angle.
- How to go from full calorimeter to tracks? simply multiply by "average energy deposited into tracks".

- Upshot: Any perturbative calculation of energy correlators that can be done, can also be done on tracks just by weighting pieces of calculation by $T_{i}^{(1)}$! (higher moments only appear as contact terms)

Two Point Correlator on Tracks

- As an example, consider LO calculation of EEC on tracks. Just weight $q g$ correlation by $T_{q}^{(1)} T_{g}^{(1)}$ and $q \bar{q}$ correlation by $\left.T_{q}^{(1)}\right)^{2}$:

$$
\begin{aligned}
\operatorname{EEC}^{\operatorname{tr}}(z) & =\sigma_{0} \frac{\alpha_{s}}{2 \pi} C_{F}\left(\left(T_{q}^{(1)}\right)^{2} I_{1}(z)+2 T_{q}^{(1)} T_{g}^{(1)} I_{2}(z)\right) \\
I_{1} & =\left(\frac{1}{6 z^{2}}+\frac{1}{z^{3}}-\frac{4}{z^{4}}\right) \frac{1}{1-z}+\left(\frac{3}{z^{4}}-\frac{4}{z^{5}}\right) \frac{\ln (1-z)}{1-z}, \\
I_{2} & =\left(\frac{53}{12 z^{2}}-\frac{41}{4 z^{3}}+\frac{13}{2 z^{4}}\right) \frac{1}{1-z}+\left(\frac{13}{2 z^{5}}-\frac{7}{z^{4}}+\frac{2}{z^{3}}\right) \ln (1-z)
\end{aligned}
$$

- Or the calculation of jet functions in the collinear limit with/without tracks

$$
\begin{aligned}
& j_{g}(z)=\delta(z)+\frac{\alpha_{s}}{4 \pi}\left(\frac{14}{5} C_{A}+\frac{1}{5} n_{f}\right)\left[\frac{1}{z}\right]_{+}+\delta(z) \frac{\alpha_{s}}{4 \pi}\left(-\frac{898}{75} C_{A}-\frac{14}{25} n_{f}\right) \\
& j_{g}^{\mathrm{tr}}(z)=\delta(z) T_{g}^{(2)}+\frac{\alpha_{s}}{4 \pi}\left(\frac{14}{5} C_{A}\left(T_{g}^{(1)}\right)^{2}+\frac{1}{5} n_{f}\left(T_{q}^{(1)}\right)^{2}\right)\left[\frac{1}{z}\right]_{+} \\
&+\delta(z) \frac{\alpha_{s}}{4 \pi}\left(-\frac{898}{75} C_{A}\left(T_{g}^{(1)}\right)^{2}-\frac{14}{25} n_{f}\left(T_{q}^{(1)}\right)^{2}\right)
\end{aligned}
$$

The Underlying Reason

- This is directly due to the fact that weighted observables are defined in terms of a finite number of energy correlators, while "standard observables" involve an infinite number (hence all moments)

$$
\langle 0| \mathcal{O E}\left(\vec{n}_{1}\right) \mathcal{E}\left(\vec{n}_{2}\right) \mathcal{O}^{\dagger}|0\rangle \Longrightarrow \text { Easy for Tracks! }
$$

$\langle 0| \mathcal{O} \delta\left(e_{2}-f\left(\mathcal{E}\left(\vec{n}_{1}\right), \mathcal{E}\left(\vec{n}_{2}\right)\right) \mathcal{O}^{\dagger}|0\rangle \Longrightarrow\right.$ Hard for Tracks!

- Clear manifestation of difference in complexity. Can't just work harder to overcome.

Tracks and Resummation

- Interfaces nicely with resummation. e.g. Two point correlator at LL for pure gluons:

$$
\begin{aligned}
& \text { ons: } \\
& \Sigma^{[2]}\left(x_{L}\right)=\frac{1}{2}\left(\frac{\alpha_{s}\left(\sqrt{x_{L}} Q\right)}{\alpha_{s}(Q)}\right)^{-\frac{\gamma^{(0)}(3)}{\beta_{0}}} \\
& \Sigma_{\operatorname{tr}}^{[2]}\left(x_{L}\right)=\frac{1}{2}\left[T_{g}^{(1)}(Q)\right]^{2}\left(\frac{\alpha_{s}\left(\sqrt{x_{L}} Q\right)}{\alpha_{s}(Q)}\right)^{-\frac{\gamma^{(0)}(3)}{\beta_{0}}}
\end{aligned}
$$

- With both quarks and gluons there is a matrix, but still straightforward...

Bonus: The Analytic Continuation of Jet Substructure

The Analytic Continuation of Jet Substructure

- Many jet substructure observables have been proposed.
- Probe diverse physics. e.g. Jet mass to multiplicitiy.
- How can we organize them?
- How can we understand what physics we can probe with jets? and extend what we can probe.
- Ultimately want to make this precise and link it to the underlying field theory.

Analytic Continuation

- Results for the ν point correlators are analytic (more precisely meromorphic) functions of ν :

$$
\begin{aligned}
J_{1}^{q,[\nu]}= & C_{F}\left[\frac{3(\nu-1)-4(\nu+1)\left(\Psi(\nu)+\gamma_{E}\right)}{\nu+1}\left(\frac{1}{\epsilon}-\ln \frac{x_{L} Q^{2}}{\mu^{2}}\right)\right. \\
& \left.+\frac{13 \nu^{3}+24 \nu^{2}-25 \nu-12}{\nu(\nu+1)^{2}}-4\left(\Psi(\nu)+\gamma_{E}\right)^{2}-\frac{12\left(\Psi(\nu)+\gamma_{E}\right)}{\nu+1}+12 \Psi^{\prime}(\nu)-2 \pi^{2}\right],
\end{aligned}
$$

π-Point Correlator

- What is the meaning of this? Is it a mathematical curiosity, or can it be measured?

ν-Point Correlators

- It turns out that we can define a ν-point correlator that can be measured on actual jets. It correlates infinite combinations of particles (up to the fact that there are a finite number in a jet). The precise definition is given in the paper.
- Test by applying this algorithm in Monte Carlo and comparing with our analytic calculation

Wandering in the Complex Plane

- Interesting structure in the complex plane.
- Pole at $\nu \rightarrow 0$ corresponds to multiplicity with infrared resolution x_{L}, but approach governed by BFKL. Can we probe BFKL physics in timelike jets?

$$
J_{1}^{q,[\nu]}=C_{F}\left[\frac{3(\nu-1)-4(\nu+1)\left(\Psi(\nu)+\gamma_{E}\right)}{\nu+1}\left(\frac{1}{\epsilon}-\ln \frac{x_{L} Q^{2}}{\mu^{2}}\right)\right.
$$

$$
\left.+\frac{13 \nu^{3}+24 \nu^{2}-25 \nu-12}{\nu(\nu+1)^{2}}-4\left(\Psi(\nu)+\gamma_{E}\right)^{2}-\frac{12\left(\Psi(\nu)+\gamma_{E}\right)}{\operatorname{Im} \nu}+12 \Psi^{\prime}(\nu)-2 \pi^{2}\right\rceil
$$

- Places jet substructure observables into an analytic family.
- What other physics can we probe?

Chew-Frautschi and Jet Substructure

- Measuring Energy-Energy Correlators allows direct reconstruction of the spectrum of operators in the theory.

Chew-Frautschi Plot

Twist Two Spectral Surface

[Gromov, Levkovich-Maslyuk, Sizov]

- Measurement would be a remarkable probe of field theory!
- Underlying reason for simplicity of the EECs: this surface exists, and is smooth (describable by an analytic function)!

Summary

- Weighted cross sections and energy correlators offer many advantages.
- Projected correlators probe scaling behavior.
- Full shape dependence of higher point correlators analytically computed.
- Track information can be incorporated in high order perturbative calculations.
- Non-integer point correlators can be experimentally measured, and probe interesting physics.

