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Motivation

• In the last few years there has been significant progress in
understanding correlation functions and scattering amplitudes, often
driven by insights from N = 4 SYM.
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We present the full form of a four-point correlation function of large BPS operators in planar
N = 4 Super Yang-Mills to any loop order. We do this by following a bootstrap philosophy based
on three simple axioms pertaining to (i) the space of functions arising at each loop order, (ii) the
behaviour in the OPE in a double-trace dominated channel and (iii) the behaviour under a double
null limit. We discuss how these bootstrap axioms are in turn strongly motivated by empirical
observations up to nine loops unveiled through integrability methods in our previous work [9] on
this simplest correlation function.

I. INTRODUCTION

Integrability methods have shaped a new path for the
explicit evaluation of correlators of local operators in pla-
nar N = 4 SYM [1–5] and also non-planar [6–8], specially
for four-point functions of large protected single-trace op-
erators. In [9] we used integrability-based methods to
find the loop corrections to the polarized four-point func-
tion we named as the simplest. This correlator consists
of four external protected operators with R-charge po-
larizations chosen as shown in figure 1. In the limit of
long operators1 (K � 1), we argued this four-point func-
tion admits a factorization into the tree level part which
carries all the dependence on the external scaling dimen-
sion K and the loop corrections which are given by the
squared of the function O (the octagon)
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In this paper we present some of the analytic properties
of the octagon O which follow from the explicit nine-loop
results in [9]. These properties include a restriction on
the space of functions that appear at any loop order and
the remarkable simplicity of the octagon in two di↵erent
kinematical limits: the OPE limit (z ! 1, z̄ ! 1) and
the double light-cone limit (z ! 0, z̄ ! 1).

We also state that these three analytic properties can
be used to uniquely define the octagon and with that

1 The rank of the gauge group Nc ! 1 is the largest parameter
followed by K. Then the planar correlator is expanded in powers
of the ’t Hooft coupling g2.
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FIG. 1. The simplest four-point function with external opera-

tors O1(0, 0) = Tr(Z
K
2 X̄

K
2 )+cyclic permutations, O2(z, z̄) =

Tr(XK ), O3(1, 1) = Tr(Z̄K) and O4(1,1) = Tr(Z
K
2 X̄

K
2 )+

cyclic permutations. The Wick contractions form a perime-
ter with four bridges of width K

2
. According to Hexagonal-

izaiton [3] in the limit K � 1 the loop corrections are ob-
tained by summing over 2D intermediate multiparticle states
 in and  out on mirror cuts 1-4 and 2-3 respectively, with
both sums evaluating to O. Alternatively the octagon O rep-
resents the resummation of planar Feynman diagrams draw
inside(outside) the perimeter.

also the simplest correlator (1). We show how to solve
this bootstrap problem by first introducing a Steinmann
basis of Ladders which resolve two of the aforementioned
analytic properties. Then using the third property to
completely fix the coe�cients in an Ansatz constructed
with the Steinmann basis.

This bootstrap approach reproduces the explicit re-
sults obtained from perturbation theory and integrabil-
ity and allows us to easily extend them to arbitrary loop
order. We accompany this letter with an ancillary file
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Space-time S-matrix and Flux-tube S-matrix at Finite Coupling
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We propose a non-perturbative formulation of planar scattering amplitudes in N = 4 SYM or,
equivalently, polygonal Wilson loops. The construction is based on the OPE approach and introduces
a new decomposition of the Wilson loop in terms of fundamental building blocks named Pentagon
transitions. These transitions satisfy a simple relation to the worldsheet S-matrix on top of the so
called Gubser-Klebanov-Polyakov vacuum which allows us to bootstrap them at any value of the
coupling. In this letter we present a subsector of the full solution to scattering amplitudes which
we call the gluonic part. We match our results with both weak and strong coupling data available
in the literature. For example, the strong coupling Y-system can be understood in this approach.

I. INTRODUCTION

Computing the full S-matrix of a four dimensional
gauge theory at finite coupling might seem impossible.
Conventional techniques, based on perturbation theory,
soon become too cumbersome as the number of loops
increases. Besides, the final results are typically much
simpler than the intermediate steps would suggest. Both
observations beg for an alternative non-perturbative ap-
proach. In the large Nc expansion, a dual two dimen-
sional string theory of ’t Hooft surfaces emerges as such
an alternative description. In some cases, these ’t Hooft
surfaces are integrable and their dynamics can be stud-
ied exactly. This is what happens in N = 4 SYM theory
and has led to the full solution of the problem of com-
puting all two point correlation functions of local opera-
tors [1]. Higher point correlation functions, Wilson loops
(WL) and scattering amplitudes are considerably richer
objects that depend on several external kinematics and
probe string interactions. Since the string material is the
same we expect integrability to help us compute these
observables at any value of the coupling as well.

In this paper we consider planar Scattering Amplitudes
or Null Polygon WLs in N = 4 SYM (in this theory they
are the same [2–4]). We identify a new object, called
Pentagon transition, as the building block of these WLs.
The Pentagon transitions arise naturally in the OPE con-
struction [5] and completely determine the WL at any
coupling. Remarkably, these transitions are directly re-
lated to the dynamics of the Gubser-Klebanov-Polyakov
(GKP) flux tube [6, 7] and can be computed exactly using
Integrability! In this paper we present the most funda-
mental ones, describing the transition of gluonic degrees
of freedom.

II. FRAMING THE WILSON LOOP

Our construction is based on a decomposition of a
general polygon WL into simpler fundamental building
blocks which we will denote as square and pentagon tran-
sitions.

We decompose a polygon into a sequence of null

squares as in figure 1. Any two adjacent squares form
a pentagon.

(a) (b) (c)

 1

 2

 3

va
c

vac

FIG. 1. Decomposition of n-sided Null Polygons into se-
quences of n�3 null squares. Any two adjacent squares form a
pentagon and any middle square is shared by two pentagons.
There are n � 4 pentagons and n � 5 middle squares. Every
middle square in the decomposition shares two of its opposite
cusps with the big polygon; the positions of the other two
cusps (which are not cusps of the big polygon) are fixed by
the condition that they are null separated from their neigh-
bours. For example, in (a) we have an hexagon. It has a single
middle square whose symmetries ⌧, � and � parametrize its
three conformal cross-ratios [5].

Of particular importance are the middle squares that
arise as overlap of two consecutive pentagons. For an n-
edged polygon there are n � 5 middle squares. Each of
them has three symmetries parametrized by a GKP time
⌧i, space �i, and angle �i for rotations in the two dimen-
sional space transverse to this middle square. We coor-
dinatize all conformally inequivalent polygons by acting
with the symmetries of the i-th middle square on all cusps
to the bottom of that square [9]. The set {⌧i, �i, �i}n�5

i=1
parametrizes the 3n � 15 independent conformal cross
ratios of a n-edge null polygon. An explicit definition is
given in figure 2.

We regulate the well understood UV divergences of
the WL using pentagons and squares as defined in fig-
ure 3. These squares and pentagons have no conformal
cross ratios; their expectation values are fixed by con-
formal symmetry [10] and given by the BDS ansatz [11].
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We propose an all-loop expression for scattering amplitudes in planar N = 4 super Yang-Mills
theory in multi-Regge kinematics valid for all multiplicities, all helicity configurations and arbitrary
logarithmic accuracy. Our expression is arrived at from comparing explicit perturbative results
with general expectations from the integrable structure of a closely related collinear limit. A crucial
ingredient of the analysis is an all-order extension for the central emission vertex that we recently
computed at next-to-leading logarithmic accuracy. As an application, we use our all-order formula
to prove that all amplitudes in this theory in multi-Regge kinematics are single-valued multiple
polylogarithms of uniform transcendental weight.

Recent years have seen tremendous progress in our un-
derstanding of multi-loop multi-leg scattering amplitudes
in planar N = 4 Super Yang-Mills (SYM) theory. Its
S-matrix exhibits a hidden dual conformal (DC) symme-
try [1], which closes with the ordinary conformal symme-
try into a Yangian algebra [2].

The DC symmetry is broken by infrared (IR) diver-
gences. Such divergences are universal and independent
of the hard scattering process and it is possible to con-
struct DC-invariant functions by considering ratios where
all IR-divergences cancel. We denote by RN the IR-
finite ratio of the N -point color-ordered amplitude and
the Bern-Dixon-Smirnov (BDS) amplitude [3], defined
(loosely) as the exponential of the one-loop amplitude
multiplied by the cusp anomalous dimension Γcusp [4].
DC-invariance dictates that RN only depends on 3N−15
independent cross-ratios. In particular, RN is trivial for
N ≤ 5 [5], and is known analytically in general kinemat-
ics for N = 6 through seven loops [6–17] and for N = 7
through four loops [18–22].

Explicit data for small N reveals that the perturba-
tive expansion of RN can often be expressed in terms
of a class of iterated integrals known as multiple poly-
logarithms (MPLs) [23]. Moreover only MPLs of (tran-
scendental) weight 2L contribute to an L-loop amplitude,
where weight is the number of iterated integrations.

The mathematical beauty and simplicity of the avail-
able perturbative results hint at some deeper structure
governing amplitudes in planar N = 4 SYM. This is cor-
roborated by the fact that infinite-dimensional symme-
tries, like the Yangian symmetry of N = 4 SYM, are
a hallmark of integrability. One should then be able to

pN ,−

pN−1,+

p1,−

p2,+ p3, h1 p4, h2 pN−3, hN−5 pN−2, hN−4

. . . . . .z1

ω1

τ1

zN−5

ωN−5

τN−5

I1 ĪN−5C̃12 C̃N−6,N−5

Figure 1. Fourier-Mellin factorisation of 2 → N − 2 gluon
amplitude in multi-Regge kinematics.

compute RN at any value of the coupling. A major step
in this direction was taken in [24–28], where it was ar-
gued that amplitudes (or their dual Wilson loops [29–33])
can be computed through an integrable flux-tube picture.
The dream of computing amplitudes analytically at any
value of the coupling constant g2, or at least at any order
in perturbation theory, has not yet been achieved.

Here we present for the first time a way to compute
scattering amplitudes in planar N = 4 SYM to any or-
der in the coupling, for any helicity configuration and
any number of external legs, albeit in the simplified kine-
matic setup of multi-Regge kinematics (MRK) where
the produced particles are strongly ordered in rapidity
and have comparable transverse momenta. While in Eu-
clidean kinematics the ratios RN become trivial in the
limit [34–39], they develop a non-trivial kinematic de-

• Exploits enhanced symmetries, behavior in kinematic limits and
functional/analytic properties of these objects.

[Coronado, Korchemsky, Belitsky, ...] [Dixon et al.]

[Del Duca, Duhr et al.] [Basso, Sever, Vieira]

Regge: Collinear:

See e.g. “What can we learn about QCD and Collider Physics from N = 4” by Henn
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Motivation

• Another class of field theoretic quantities that has received much less
attention from the formal community are cross section level
observables that measure the flow of energy (i.e. event shapes).

• Such observables have a long history for studying QCD in e+e−

colliders, but have had a massive renewal of interest due to the
invention of jet substructure at the LHC.
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Figure 5: Comparison of a Pythia simulation for Higgs EEC to the analytic LO and NLO

results from eq. (3.1). Both Pythia curves contain contributions from self-correlations,

which are not included in the analytic result. The area under both Pythia curves is

unity. Omitting the self-correlations decreases the area under the Pythia curve with

haronization to 0.96, while the area under the curve without hadronization becomes 0.88.

Adding self-correlations only increases the number of entries in the very last bin in the

collinear (cos� ⇡ 1) region, while the rest of the curve remains unchanged.

we generate 50 additional samples with the same settings and the same number of events

but di↵erent random seeds. Then, for each bin i we can calculate the standard deviation

�i via

�i =

vuut 1

n

nX

j=1

(xj(i) � µi)2, (5.2)

where xj(i) is the content of the ith bin in the jth sample, n = 50 and the mean for the ith

bin, µi is given by

µi =
1

n

nX

j=1

xj(i). (5.3)

Comparing the size of the errors in our simulations we observe the unphysical e↵ect that

the curve with hadronization seems to have smaller errors than the one without. This

suggests that the systematic errors (especially for hadronization) might be much larger

than the statistical uncertainties. Looking only at the central values, it is interesting to

observe that in the cos� region between �0.5 and 0.5, both curves seem to lie very close

– 21 –

e+

e−

χO

From [Luo, Shtabovenko, Yang, Zhu]
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Jet Substructure: Searches

Z0

• Observables that probe complicated energy flows play a central role in
jet substructure searches. References 7
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Figure 2: The observed and fitted background mSD distributions in each pT category in the
passing regions. The fit is performed under the signal-plus-background hypothesis with one
inclusive H(bb) signal strength parameter floating in all the pT categories. The shaded blue
band shows the systematic uncertainty in the total background prediction. The bottom panel
shows the difference between the data and the total background prediction, divided by the
statistical uncertainty in the data.
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Jet Substructure: Precision
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Figure 3: The unfolded log10(⇢2) distribution for anti-kt R = 0.8 jets with plead
T > 600 GeV, after the soft drop

algorithm is applied for � 2 {0, 1, 2}, in data compared to P�����, S�����, and H�����++ particle-level,
and NLO+NLL+NP [40] and LO+NNLL [41, 42] theory predictions. The LO+NNLL calculation does not
have non-perturbative (NP) corrections; the region where these are expected to be large is shown in a open
marker, while regions where they are expected to be small are shown with a filled marker. All uncertainties
described in the text are shown on the data; the uncertainties from the calculations are shown on each one.
The distributions are normalized to the integrated cross section, �resum, measured in the resummation region,
�3.7 < log10(⇢2) < �1.7. The NLO+NLL+NP cross-section in this resummation regime is 0.14, 0.19, and 0.21
nb for � = 0, 1, 2, respectively [40].

8

Soft Drop Mass

Using [Frye, Larkoski, Schwartz, Yan ]

R

• Precision calculations of energy flow within jets offer new
opportunities to measure fundamental constants with jet substructure.
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Rethinking Jet Substructure

• Unfortunately, there has been limited interaction between formal
developments and jet substructure.

• This is often an issue of observables: observables of practical use are
often not theoretically nice (e.g. complicated algorithms), and
observables that are theoretically nice are often practically useless.

• As jet substructure transitions to a precision era, it is important to
ask the following two questions:

• Practical Question: Can we formulate jet substructure in a manner that
facilitates more precise/ more differential calculations?

• Formal Question: Can we formulate jet substructure in a manner that
facilitates connections with more formal developements?
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One of the simplest observables from the theoretical perspective is the Energy-Energy

Correlator (EEC), defined as [2, 3]

d�

dz
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Here Ei and Ej are the energies of final-state partons i and j in the center-of-mass frame,

and their angular separation is �ij . d� is the product of the squared matrix element and the

phase-space measure. The EEC can also be defined in terms of correlation function of ANEC

operators [4–7]

E(~n) =

1Z

0

dt lim
r!1

r2niT0i(t, r~n) , (1.2)

where it is given by

d�

dz
=

hOE(~n1)E(~n2)O†i
hOO†i , (1.3)

for some source operator O. This provides a connection between event shape observables and

correlation functions of ANEC operators allowing the study of event shapes to profit from

recent developments in the study of ANEC operators, and conversely, the EEC provide a

concrete situation for studying the behavior of ANEC operators.

There has recently been significant progress in the understanding of the EEC from a

number of di↵erent directions. For generic angles, the EEC has been computed at next-to-

leading order (NLO) in QCD [8, 9] for both an e+e� source, and Higgs decaying to gluons,

and up to NNLO in N = 4 SYM [7, 10]. It has also been computed numerically in QCD at

NNLO [11, 12].

There has also been progress in understanding the singularities of the EEC, which occur as

z ! 0 (the collinear limit) and z ! 1 (the back-to-back limit). In the back-to-back limit, the

EEC exhibits Sudakov double logarithms, whose all orders logarithmic structure is described

by a factorization formula [13, 14]. In the z ! 0 limit, which will be studied in this paper,

the EEC exhibits single collinear logarithms, originally studied at leading logarithmic order

in [15–19]. Formulas describing the behavior of the EEC in the collinear limit were recently

derived in [20] for a generic field theory, and in [21–24] for the particular case of a CFT. This

limit is of theoretical interest for studying the OPE structure of non-local operators, and of

phenomenological interest as a jet substructure observable.

The two-point correlator is particularly simple since it depends on a single variable, z.

Indeed, in a conformal field theory (CFT), its behavior in the collinear limit is fixed to be a

power law

⌃(z) =
1

2
C(↵s) z�

N=4
J (↵s) , (1.4)
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Energy Correlators and Weighted Cross Sections

I +

One of the simplest observables from the theoretical perspective is the Energy-Energy

Correlator (EEC), defined as [2, 3]
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Here Ei and Ej are the energies of final-state partons i and j in the center-of-mass frame,

and their angular separation is �ij . d� is the product of the squared matrix element and the

phase-space measure. The EEC can also be defined in terms of correlation function of ANEC

operators [4–7]

E(~n) =

1Z

0

dt lim
r!1

r2niT0i(t, r~n) , (1.2)

where it is given by

d�

dz
=

hOE(~n1)E(~n2)O†i
hOO†i , (1.3)

for some source operator O. This provides a connection between event shape observables and

correlation functions of ANEC operators allowing the study of event shapes to profit from

recent developments in the study of ANEC operators, and conversely, the EEC provide a

concrete situation for studying the behavior of ANEC operators.

There has recently been significant progress in the understanding of the EEC from a

number of di↵erent directions. For generic angles, the EEC has been computed at next-to-

leading order (NLO) in QCD [8, 9] for both an e+e� source, and Higgs decaying to gluons,

and up to NNLO in N = 4 SYM [7, 10]. It has also been computed numerically in QCD at

NNLO [11, 12].

There has also been progress in understanding the singularities of the EEC, which occur as

z ! 0 (the collinear limit) and z ! 1 (the back-to-back limit). In the back-to-back limit, the

EEC exhibits Sudakov double logarithms, whose all orders logarithmic structure is described

by a factorization formula [13, 14]. In the z ! 0 limit, which will be studied in this paper,

the EEC exhibits single collinear logarithms, originally studied at leading logarithmic order

in [15–19]. Formulas describing the behavior of the EEC in the collinear limit were recently

derived in [20] for a generic field theory, and in [21–24] for the particular case of a CFT. This

limit is of theoretical interest for studying the OPE structure of non-local operators, and of

phenomenological interest as a jet substructure observable.

The two-point correlator is particularly simple since it depends on a single variable, z.

Indeed, in a conformal field theory (CFT), its behavior in the collinear limit is fixed to be a

power law

⌃(z) =
1

2
C(↵s) z�

N=4
J (↵s) , (1.4)
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Energy-Energy Correlators

• To understand the structure of energy flow observables, one should
start with those that are most closely tied to simple field theoretic
objects.

• Arguably the simplest is the two-point correlator, which is called the
Energy-Energy Correlator.

dσ

dz
=
∑

i,j

∫
dσ

EiEj
Q2

δ

(
z − 1− cosχij

2

)

e+

e−

χO

[Basham, Brown, Ellis, Love]

1− 0.5− 0 0.5 1
χcos 

1−10

1

10

χ
d

 c
o

s 

)
χ

 (
H

Σ
d

 
 

to
t

Γ
1

Pythia 8.2 with hadronization (5000 events)

Pythia 8.2 w/o hadronization (5000 events)

Analytic LO

Analytic NLO

Figure 5: Comparison of a Pythia simulation for Higgs EEC to the analytic LO and NLO

results from eq. (3.1). Both Pythia curves contain contributions from self-correlations,

which are not included in the analytic result. The area under both Pythia curves is

unity. Omitting the self-correlations decreases the area under the Pythia curve with

haronization to 0.96, while the area under the curve without hadronization becomes 0.88.

Adding self-correlations only increases the number of entries in the very last bin in the

collinear (cos� ⇡ 1) region, while the rest of the curve remains unchanged.

we generate 50 additional samples with the same settings and the same number of events

but di↵erent random seeds. Then, for each bin i we can calculate the standard deviation

�i via

�i =

vuut 1

n

nX

j=1

(xj(i) � µi)2, (5.2)

where xj(i) is the content of the ith bin in the jth sample, n = 50 and the mean for the ith

bin, µi is given by

µi =
1

n

nX

j=1

xj(i). (5.3)

Comparing the size of the errors in our simulations we observe the unphysical e↵ect that

the curve with hadronization seems to have smaller errors than the one without. This

suggests that the systematic errors (especially for hadronization) might be much larger

than the statistical uncertainties. Looking only at the central values, it is interesting to

observe that in the cos� region between �0.5 and 0.5, both curves seem to lie very close

– 21 –

From [Luo, Shtabovenko, Yang, Zhu]
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Energy-Energy Correlators
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• The EEC admits an alternative formulation as a four point function of
light ray (ANEC) operators

E(~n) =

∞∫
0

dt lim
r→∞

r2niT0i(t, r~n)

1

σtot

dσ

dz
=

∫
d4x eiq·x〈O(x)E(~n1)E(~n2)O†(0)〉∫

d4x eiq·x〈O(x)O†(0)〉

• Simplest extension of a standard four point correlator of local
operators =⇒ has led to significant recent progress.

• This has a natural generalization to higher point correlation functions:

[Korchemsky; Maldacena, Hofman]

[Chicherin, Henn, Sokatchev, Yan,Simmons Duffin, Kologlu, Kravchuk, Zhiboedov,Korchemsky, Moult, Dixon, Zhu,...]

〈O(x)E(~n1)E(~n2)E(~n3)O†(0)〉 , 〈O(x)E(~n1)E(~n2)E(~n3)E(~n4)O†(0)〉 , · · ·
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Energy Flow Operators

I +

One of the simplest observables from the theoretical perspective is the Energy-Energy

Correlator (EEC), defined as [2, 3]
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Here Ei and Ej are the energies of final-state partons i and j in the center-of-mass frame,

and their angular separation is �ij . d� is the product of the squared matrix element and the

phase-space measure. The EEC can also be defined in terms of correlation function of ANEC

operators [4–7]
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where it is given by
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for some source operator O. This provides a connection between event shape observables and

correlation functions of ANEC operators allowing the study of event shapes to profit from

recent developments in the study of ANEC operators, and conversely, the EEC provide a

concrete situation for studying the behavior of ANEC operators.

There has recently been significant progress in the understanding of the EEC from a

number of di↵erent directions. For generic angles, the EEC has been computed at next-to-

leading order (NLO) in QCD [8, 9] for both an e+e� source, and Higgs decaying to gluons,

and up to NNLO in N = 4 SYM [7, 10]. It has also been computed numerically in QCD at

NNLO [11, 12].

There has also been progress in understanding the singularities of the EEC, which occur as

z ! 0 (the collinear limit) and z ! 1 (the back-to-back limit). In the back-to-back limit, the

EEC exhibits Sudakov double logarithms, whose all orders logarithmic structure is described

by a factorization formula [13, 14]. In the z ! 0 limit, which will be studied in this paper,

the EEC exhibits single collinear logarithms, originally studied at leading logarithmic order

in [15–19]. Formulas describing the behavior of the EEC in the collinear limit were recently

derived in [20] for a generic field theory, and in [21–24] for the particular case of a CFT. This

limit is of theoretical interest for studying the OPE structure of non-local operators, and of

phenomenological interest as a jet substructure observable.

The two-point correlator is particularly simple since it depends on a single variable, z.

Indeed, in a conformal field theory (CFT), its behavior in the collinear limit is fixed to be a

power law
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• From this perspective, Jet Substructure is the study of correlation
functions of ANEC operators in the collinear limit.

• Much recent progress in understanding the small angle limit of ANECs
in (Non-)Conformal Field Theories.

• Are these different/related to “Standard Jet Substructure Observables”?

CERN QCD “Lunch” June 5, 2020 12 / 59



Two Ways to Make a Distribution

• If I want to make a differential distribution, there are two approaches:

• Approach 1: “Standard Observable”
For each jet (or event), observable returns a number, make a
distribution of the values.

• e.g. Mass, energy correlation functions, all substructure observables...

R

]2)ungroomed
T

 / psoft drop[(m
10

log
4.5− 4− 3.5− 3− 2.5− 2− 1.5− 1− 0.5−

]2 )
un

gr
oo

m
ed

T
 / 

p
so

ft 
dr

op
[(m

10
 / 

d 
lo

g
σ

) d
 

re
su

m
σ

(1
 / 0.1

0.2

0.3

0.4

0.5

0.6

0.7
ATLAS

-1= 13 TeV, 32.9 fbs

 > 600 GeVlead
T

 R=0.8, ptanti-k

 = 0.1
cut

 = 2, zβSoft drop, 

Data
Pythia 8.1
Sherpa 2.1
Herwig++ 2.7
LO+NNLL, large NP effects
LO+NNLL
NLO+NLL+NP

]2 )
un

gr
oo

m
ed

T
 / 

p
so

ft 
dr

op
[(m

10
 / 

d 
lo

g
σ

) d
 

re
su

m
σ

(1
 / 

0.2

0.4

0.6

0.8 ATLAS
-1= 13 TeV, 32.9 fbs

 > 600 GeVlead
T

 R=0.8, ptanti-k
 = 0.1

cut
 = 0, zβSoft drop, 

4− 3− 2− 1−

0.5
1

1.5

4− 3− 2− 1−
0.5

1
1.5

Data
Pythia 8.1
Sherpa 2.1
Herwig++ 2.7
LO+NNLL, large NP effects
LO+NNLL
NLO+NLL+NP

Ra
tio

 to
 D

at
a

]2)ungroomed
T

 / psoft drop[(m
10

log
4.5− 4− 3.5− 3− 2.5− 2− 1.5− 1− 0.5−

]2 )
un

gr
oo

m
ed

T
 / 

p
so

ft 
dr

op
[(m

10
 / 

d 
lo

g
σ

) d
 

re
su

m
σ

(1
 / 0.1

0.2

0.3

0.4

0.5

0.6

0.7
ATLAS

-1= 13 TeV, 32.9 fbs

 > 600 GeVlead
T

 R=0.8, ptanti-k

 = 0.1
cut

 = 2, zβSoft drop, 

Data
Pythia 8.1
Sherpa 2.1
Herwig++ 2.7
LO+NNLL, large NP effects
LO+NNLL
NLO+NLL+NP

]2 )
un

gr
oo

m
ed

T
 / 

p
so

ft 
dr

op
[(m

10
 / 

d 
lo

g
σ

) d
 

re
su

m
σ

(1
 / 

0.2

0.4

0.6

0.8 ATLAS
-1= 13 TeV, 32.9 fbs

 > 600 GeVlead
T

 R=0.8, ptanti-k
 = 0.1

cut
 = 0, zβSoft drop, 

4− 3− 2− 1−

0.5
1

1.5

4− 3− 2− 1−
0.5

1
1.5

Data
Pythia 8.1
Sherpa 2.1
Herwig++ 2.7
LO+NNLL, large NP effects
LO+NNLL
NLO+NLL+NP

Ra
tio

 to
 D

at
a

]2)ungroomed
T

 / psoft drop[(m
10

log
4.5− 4− 3.5− 3− 2.5− 2− 1.5− 1− 0.5−

]2 )
un

gr
oo

m
ed

T
 / 

p
so

ft 
dr

op
[(m

10
 / 

d 
lo

g
σ

) d
 

re
su

m
σ

(1
 / 0.1

0.2

0.3

0.4

0.5

0.6

0.7
ATLAS

-1= 13 TeV, 32.9 fbs

 > 600 GeVlead
T

 R=0.8, ptanti-k

 = 0.1
cut

 = 2, zβSoft drop, 

Data
Pythia 8.1
Sherpa 2.1
Herwig++ 2.7
LO+NNLL, large NP effects
LO+NNLL
NLO+NLL+NP

]2 )
un

gr
oo

m
ed

T
 / 

p
so

ft 
dr

op
[(m

10
 / 

d 
lo

g
σ

) d
 

re
su

m
σ

(1
 / 

0.2

0.4

0.6

0.8 ATLAS
-1= 13 TeV, 32.9 fbs

 > 600 GeVlead
T

 R=0.8, ptanti-k
 = 0.1

cut
 = 0, zβSoft drop, 

4− 3− 2− 1−

0.5
1

1.5

4− 3− 2− 1−
0.5

1
1.5

Data
Pythia 8.1
Sherpa 2.1
Herwig++ 2.7
LO+NNLL, large NP effects
LO+NNLL
NLO+NLL+NP

Ra
tio

 to
 D

at
a

Figure 3: The unfolded log10(⇢2) distribution for anti-kt R = 0.8 jets with plead
T > 600 GeV, after the soft drop

algorithm is applied for � 2 {0, 1, 2}, in data compared to P�����, S�����, and H�����++ particle-level,
and NLO+NLL+NP [40] and LO+NNLL [41, 42] theory predictions. The LO+NNLL calculation does not
have non-perturbative (NP) corrections; the region where these are expected to be large is shown in a open
marker, while regions where they are expected to be small are shown with a filled marker. All uncertainties
described in the text are shown on the data; the uncertainties from the calculations are shown on each one.
The distributions are normalized to the integrated cross section, �resum, measured in the resummation region,
�3.7 < log10(⇢2) < �1.7. The NLO+NLL+NP cross-section in this resummation regime is 0.14, 0.19, and 0.21
nb for � = 0, 1, 2, respectively [40].
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Example: Energy Correlation Functions

• Energy Correlation Functions: fN(p̂i1 , · · · , p̂iN ) =
Q
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Two Ways to Make a Distribution

• Approach 2: “Weighted Cross Section”
For each jet (or event), observable returns a distribution, then
average the distributions

• e.g. Transverse energy energy correlator

•Transverse	Energy	flow	correlation	(TEEC)	in	the	back-to-back	limit	

• TMD-like	factorization.	Direct	probe	of	TMD	PDFs	and	FFs	(including	
gluon	TMD);	Glauber	gluon	and	factorization	breaking

Correlations	between	jets

A.J.	Gao,	H.T.	Li,	Moult,	HXZ,	PRL	2019

NLO:	Wei	Wang	et	al.,	2012

29

The Energy-Energy Correlator
• Energy correlation of two calorimeter detector with angle χ, and 

sum over orientation Basham, Brown, Ellis, Love, 1978
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Each event gives a distribution!

• Large QCD corrections, 
numerically hard

• N.P. unsurpassed even in the 
3 jet region

• Admit a simple 4-pt wightman 
correlator representation

• Good analytically properties 
(fixed order and resummation)
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The Energy-Energy Correlator
• Energy correlation of two calorimeter detector with angle χ, and 

sum over orientation Basham, Brown, Ellis, Love, 1978
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Each event gives a distribution!

• Large QCD corrections, 
numerically hard

• N.P. unsurpassed even in the 
3 jet region

• Admit a simple 4-pt wightman 
correlator representation

• Good analytically properties 
(fixed order and resummation)
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Each event gives a distribution!

• Large QCD corrections, 
numerically hard

• N.P. unsurpassed even in the 
3 jet region

• Admit a simple 4-pt wightman 
correlator representation

• Good analytically properties 
(fixed order and resummation)
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Energy Flow Operators and Weighted Cross Sections

• How does this connect to weighted cross sections?
=⇒ Energy correlation functions are exactly weighted cross sections!

•Transverse	Energy	flow	correlation	(TEEC)	in	the	back-to-back	limit	

• TMD-like	factorization.	Direct	probe	of	TMD	PDFs	and	FFs	(including	
gluon	TMD);	Glauber	gluon	and	factorization	breaking

Correlations	between	jets

A.J.	Gao,	H.T.	Li,	Moult,	HXZ,	PRL	2019

NLO:	Wei	Wang	et	al.,	2012
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The Energy-Energy Correlator
• Energy correlation of two calorimeter detector with angle χ, and 

sum over orientation Basham, Brown, Ellis, Love, 1978

d⌃

d cos�
=
X

i,j

Z
EiEj

Q2
�(~ni · ~nj � cos�)d�

<latexit sha1_base64="lacf0ycedoNKM6kn7EwLSjc0N9w=">AAACjXicbVFba9swFJa9W5tdmraPezksDDrYgl02VtiFslG2x5YtbSHKjCzLiRJdjHVcyIx+6J73K/Y2JU1gaXdA8On7zkXnU14p6TBJfkXxnbv37j/Y2u48fPT4yU53d+/c2abmYsCtsvVlzpxQ0ogBSlTisqoF07kSF/ns80K/uBK1k9Z8x3klRpqNjSwlZxiorOsBaFkz3hb0mxxr5gPg1lE+kR4+AH0H1DU6a+XLqQcqDa7zTzIJJ9nUt2c/Dn0nsIVQyA7oleCt8UGkvLAI6/sUXsG68QsoqFsMg6zbS/rJMuA2SFegR1ZxmnX/0MLyRguDXDHnhmlS4ahlNUquhO/QxomK8Rkbi2GAhmnhRu3SJg/PA1NAaetwwiJL9t+Klmnn5joPmZrhxN3UFuT/tGGD5dGolaZqUBh+PahsFKCFhedQyFpwVPMAGK9leCvwCQsuYviZjSkoZz83tmircVkpi84Hr9KbztwG54f9NOmnZ697x59Wrm2Rp+QZOSApeUuOyVdySgaEk9/RdrQX7cc78Zv4ffzxOjWOVjX7ZCPiL38BsxHGzw==</latexit><latexit sha1_base64="lacf0ycedoNKM6kn7EwLSjc0N9w="></latexit><latexit sha1_base64="lacf0ycedoNKM6kn7EwLSjc0N9w=">AAACjXicbVFba9swFJa9W5tdmraPezksDDrYgl02VtiFslG2x5YtbSHKjCzLiRJdjHVcyIx+6J73K/Y2JU1gaXdA8On7zkXnU14p6TBJfkXxnbv37j/Y2u48fPT4yU53d+/c2abmYsCtsvVlzpxQ0ogBSlTisqoF07kSF/ns80K/uBK1k9Z8x3klRpqNjSwlZxiorOsBaFkz3hb0mxxr5gPg1lE+kR4+AH0H1DU6a+XLqQcqDa7zTzIJJ9nUt2c/Dn0nsIVQyA7oleCt8UGkvLAI6/sUXsG68QsoqFsMg6zbS/rJMuA2SFegR1ZxmnX/0MLyRguDXDHnhmlS4ahlNUquhO/QxomK8Rkbi2GAhmnhRu3SJg/PA1NAaetwwiJL9t+Klmnn5joPmZrhxN3UFuT/tGGD5dGolaZqUBh+PahsFKCFhedQyFpwVPMAGK9leCvwCQsuYviZjSkoZz83tmircVkpi84Hr9KbztwG54f9NOmnZ697x59Wrm2Rp+QZOSApeUuOyVdySgaEk9/RdrQX7cc78Zv4ffzxOjWOVjX7ZCPiL38BsxHGzw==</latexit><latexit sha1_base64="lacf0ycedoNKM6kn7EwLSjc0N9w="></latexit>

z =
1 � cos�

2
<latexit sha1_base64="ARHArekSBg0gcnYOTXIYyxU5U1A=">AAACKnicbZDLSsNAFIYn9VbrrepON4NFcGNJiqAboejGZQV7gSaUyXTSDp1kwsyJ0IaCT+NK0GdxV9z6Eu6ctlnY1h8Gfv5zDmfO58eCa7DtiZVbW9/Y3MpvF3Z29/YPiodHDS0TRVmdSiFVyyeaCR6xOnAQrBUrRkJfsKY/uJ/Wm89MaS6jJxjGzAtJL+IBpwRM1CmejPAtdgNFaOrgS+xSqV3a5+O0Mu4US3bZngmvGiczJZSp1in+uF1Jk5BFQAXRuu3YMXgpUcCpYOOCm2gWEzogPdY2NiIh0146u2GMz03SxYFU5kWAZ+nfiZSEWg9D33SGBPp6uTYN/6u1EwhuvJRHcQIsovNFQSIwSDwFgrtcMQpiaAyhipu/YtonBggYbAtbgA9GC1ekcS+IhQQ9ZeUsk1k1jUrZscvO41WpepdRy6NTdIYukIOuURU9oBqqI4pe0Ct6Rx/Wm/VpTayveWvOymaO0YKs71/Qa6eO</latexit><latexit sha1_base64="ARHArekSBg0gcnYOTXIYyxU5U1A=">AAACKnicbZDLSsNAFIYn9VbrrepON4NFcGNJiqAboejGZQV7gSaUyXTSDp1kwsyJ0IaCT+NK0GdxV9z6Eu6ctlnY1h8Gfv5zDmfO58eCa7DtiZVbW9/Y3MpvF3Z29/YPiodHDS0TRVmdSiFVyyeaCR6xOnAQrBUrRkJfsKY/uJ/Wm89MaS6jJxjGzAtJL+IBpwRM1CmejPAtdgNFaOrgS+xSqV3a5+O0Mu4US3bZngmvGiczJZSp1in+uF1Jk5BFQAXRuu3YMXgpUcCpYOOCm2gWEzogPdY2NiIh0146u2GMz03SxYFU5kWAZ+nfiZSEWg9D33SGBPp6uTYN/6u1EwhuvJRHcQIsovNFQSIwSDwFgrtcMQpiaAyhipu/YtonBggYbAtbgA9GC1ekcS+IhQQ9ZeUsk1k1jUrZscvO41WpepdRy6NTdIYukIOuURU9oBqqI4pe0Ct6Rx/Wm/VpTayveWvOymaO0YKs71/Qa6eO</latexit><latexit sha1_base64="ARHArekSBg0gcnYOTXIYyxU5U1A=">AAACKnicbZDLSsNAFIYn9VbrrepON4NFcGNJiqAboejGZQV7gSaUyXTSDp1kwsyJ0IaCT+NK0GdxV9z6Eu6ctlnY1h8Gfv5zDmfO58eCa7DtiZVbW9/Y3MpvF3Z29/YPiodHDS0TRVmdSiFVyyeaCR6xOnAQrBUrRkJfsKY/uJ/Wm89MaS6jJxjGzAtJL+IBpwRM1CmejPAtdgNFaOrgS+xSqV3a5+O0Mu4US3bZngmvGiczJZSp1in+uF1Jk5BFQAXRuu3YMXgpUcCpYOOCm2gWEzogPdY2NiIh0146u2GMz03SxYFU5kWAZ+nfiZSEWg9D33SGBPp6uTYN/6u1EwhuvJRHcQIsovNFQSIwSDwFgrtcMQpiaAyhipu/YtonBggYbAtbgA9GC1ekcS+IhQQ9ZeUsk1k1jUrZscvO41WpepdRy6NTdIYukIOuURU9oBqqI4pe0Ct6Rx/Wm/VpTayveWvOymaO0YKs71/Qa6eO</latexit><latexit sha1_base64="ARHArekSBg0gcnYOTXIYyxU5U1A=">AAACKnicbZDLSsNAFIYn9VbrrepON4NFcGNJiqAboejGZQV7gSaUyXTSDp1kwsyJ0IaCT+NK0GdxV9z6Eu6ctlnY1h8Gfv5zDmfO58eCa7DtiZVbW9/Y3MpvF3Z29/YPiodHDS0TRVmdSiFVyyeaCR6xOnAQrBUrRkJfsKY/uJ/Wm89MaS6jJxjGzAtJL+IBpwRM1CmejPAtdgNFaOrgS+xSqV3a5+O0Mu4US3bZngmvGiczJZSp1in+uF1Jk5BFQAXRuu3YMXgpUcCpYOOCm2gWEzogPdY2NiIh0146u2GMz03SxYFU5kWAZ+nfiZSEWg9D33SGBPp6uTYN/6u1EwhuvJRHcQIsovNFQSIwSDwFgrtcMQpiaAyhipu/YtonBggYbAtbgA9GC1ekcS+IhQQ9ZeUsk1k1jUrZscvO41WpepdRy6NTdIYukIOuURU9oBqqI4pe0Ct6Rx/Wm/VpTayveWvOymaO0YKs71/Qa6eO</latexit>

0.5 1.0 1.5 2.0 2.5 3.0
0

50

100

150

200

250

Each event gives a distribution!

• Large QCD corrections, 
numerically hard

• N.P. unsurpassed even in the 
3 jet region

• Admit a simple 4-pt wightman 
correlator representation

• Good analytically properties 
(fixed order and resummation)
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The Energy-Energy Correlator
• Energy correlation of two calorimeter detector with angle χ, and 

sum over orientation Basham, Brown, Ellis, Love, 1978
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Each event gives a distribution!

• Large QCD corrections, 
numerically hard

• N.P. unsurpassed even in the 
3 jet region

• Admit a simple 4-pt wightman 
correlator representation

• Good analytically properties 
(fixed order and resummation)
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The Energy-Energy Correlator
• Energy correlation of two calorimeter detector with angle χ, and 

sum over orientation Basham, Brown, Ellis, Love, 1978
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Each event gives a distribution!

• Large QCD corrections, 
numerically hard

• N.P. unsurpassed even in the 
3 jet region

• Admit a simple 4-pt wightman 
correlator representation

• Good analytically properties 
(fixed order and resummation)
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dΣ

d cosχ
∼ 〈0|OE(~n1)E(~n2)O†|0〉

• Weighted cross sections can be expressed as a correlation function of
energy flow operators! Manifest symmetries, can use fancy
techniques, etc.
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Complexities of Standard Observables
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Figure 3: The unfolded log10(⇢2) distribution for anti-kt R = 0.8 jets with plead
T > 600 GeV, after the soft drop

algorithm is applied for � 2 {0, 1, 2}, in data compared to P�����, S�����, and H�����++ particle-level,
and NLO+NLL+NP [40] and LO+NNLL [41, 42] theory predictions. The LO+NNLL calculation does not
have non-perturbative (NP) corrections; the region where these are expected to be large is shown in a open
marker, while regions where they are expected to be small are shown with a filled marker. All uncertainties
described in the text are shown on the data; the uncertainties from the calculations are shown on each one.
The distributions are normalized to the integrated cross section, �resum, measured in the resummation region,
�3.7 < log10(⇢2) < �1.7. The NLO+NLL+NP cross-section in this resummation regime is 0.14, 0.19, and 0.21
nb for � = 0, 1, 2, respectively [40].
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Example: Energy Correlation Functions

• Energy Correlation Functions: fN(p̂i1 , · · · , p̂iN ) =
Q

R�
ij
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[Larkoski, Salam, Thaler]

• Powerful discriminant D
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[Larkoski, Moult, Neill]
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• Why are “standard observables” more complicated?

〈0|Oδ(e2 − f(E(~n1), E(~n2))O†|0〉

• “Standard observables” require an infinite number of correlators.

• Their moments are weighted cross sections and hence simple.

• This complexity will come back to bite you even more when you try
and incorporate non-perturbative information such as tracks.

δ(e2 − f(E(~n1), E(~n2)) = δ(e2) + f(E(~n1), E(~n2))δ
(1)

(e) + · · · +
[f(E(~n1), E(~n2))]n

n!
δ
(n)

(e) + · · ·

Field Theory Definition
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Energy Correlators in the Collinear Limit

• Given this theoretical simplicity of the energy correlators, lets explore
what they can give phenomenologically.

• The fact that they probe correlations of energy flow in the collinear
limit is a good start!

p

p

I +

One of the simplest observables from the theoretical perspective is the Energy-Energy

Correlator (EEC), defined as [2, 3]

d�

dz
=
X

i,j

Z
d�

EiEj

Q2
�

✓
z � 1 � cos�ij

2

◆
. (1.1)

Here Ei and Ej are the energies of final-state partons i and j in the center-of-mass frame,

and their angular separation is �ij . d� is the product of the squared matrix element and the

phase-space measure. The EEC can also be defined in terms of correlation function of ANEC

operators [4–7]
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for some source operator O. This provides a connection between event shape observables and

correlation functions of ANEC operators allowing the study of event shapes to profit from

recent developments in the study of ANEC operators, and conversely, the EEC provide a

concrete situation for studying the behavior of ANEC operators.

There has recently been significant progress in the understanding of the EEC from a

number of di↵erent directions. For generic angles, the EEC has been computed at next-to-

leading order (NLO) in QCD [8, 9] for both an e+e� source, and Higgs decaying to gluons,

and up to NNLO in N = 4 SYM [7, 10]. It has also been computed numerically in QCD at

NNLO [11, 12].

There has also been progress in understanding the singularities of the EEC, which occur as

z ! 0 (the collinear limit) and z ! 1 (the back-to-back limit). In the back-to-back limit, the

EEC exhibits Sudakov double logarithms, whose all orders logarithmic structure is described

by a factorization formula [13, 14]. In the z ! 0 limit, which will be studied in this paper,

the EEC exhibits single collinear logarithms, originally studied at leading logarithmic order

in [15–19]. Formulas describing the behavior of the EEC in the collinear limit were recently

derived in [20] for a generic field theory, and in [21–24] for the particular case of a CFT. This

limit is of theoretical interest for studying the OPE structure of non-local operators, and of

phenomenological interest as a jet substructure observable.

The two-point correlator is particularly simple since it depends on a single variable, z.

Indeed, in a conformal field theory (CFT), its behavior in the collinear limit is fixed to be a
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⌃(z) =
1

2
C(↵s) z�

N=4
J (↵s) , (1.4)

– 2 –

I �

One of the simplest observables from the theoretical perspective is the Energy-Energy

Correlator (EEC), defined as [2, 3]

d�

dz
=
X

i,j

Z
d�

EiEj

Q2
�

✓
z � 1 � cos�ij

2

◆
. (1.1)

Here Ei and Ej are the energies of final-state partons i and j in the center-of-mass frame,

and their angular separation is �ij . d� is the product of the squared matrix element and the

phase-space measure. The EEC can also be defined in terms of correlation function of ANEC

operators [4–7]

E(~n) =

1Z

0

dt lim
r!1

r2niT0i(t, r~n) , (1.2)

where it is given by

d�

dz
=

hOE(~n1)E(~n2)O†i
hOO†i , (1.3)

for some source operator O. This provides a connection between event shape observables and

correlation functions of ANEC operators allowing the study of event shapes to profit from

recent developments in the study of ANEC operators, and conversely, the EEC provide a

concrete situation for studying the behavior of ANEC operators.

There has recently been significant progress in the understanding of the EEC from a

number of di↵erent directions. For generic angles, the EEC has been computed at next-to-

leading order (NLO) in QCD [8, 9] for both an e+e� source, and Higgs decaying to gluons,

and up to NNLO in N = 4 SYM [7, 10]. It has also been computed numerically in QCD at

NNLO [11, 12].

There has also been progress in understanding the singularities of the EEC, which occur as

z ! 0 (the collinear limit) and z ! 1 (the back-to-back limit). In the back-to-back limit, the

EEC exhibits Sudakov double logarithms, whose all orders logarithmic structure is described

by a factorization formula [13, 14]. In the z ! 0 limit, which will be studied in this paper,

the EEC exhibits single collinear logarithms, originally studied at leading logarithmic order

in [15–19]. Formulas describing the behavior of the EEC in the collinear limit were recently

derived in [20] for a generic field theory, and in [21–24] for the particular case of a CFT. This

limit is of theoretical interest for studying the OPE structure of non-local operators, and of

phenomenological interest as a jet substructure observable.

The two-point correlator is particularly simple since it depends on a single variable, z.

Indeed, in a conformal field theory (CFT), its behavior in the collinear limit is fixed to be a

power law

⌃(z) =
1

2
C(↵s) z�

N=4
J (↵s) , (1.4)

– 2 –

Penrose
Diagram

CERN QCD “Lunch” June 5, 2020 17 / 59



The Basic Structure

dσ

dxL dShape
= CShape(xL = 1, αs)x

γN+1(αs)−1
L

• In a CFT, energy correlators take a simple form in the small angle
limit:

e.g.

• Will explore both shape and scaling of multi-point correlators.
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Projected Energy Correlators and Scaling
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Scaling

• Most basic property of their correlators is scaling with size.

• Begin with the two-point correlator to gain intuition.

• In a conformal theory, Maldacena and Hofman showed:

dσ

dz
= C(αs) z

γ3(αs)−1

• γN is the twist-2 spin-N spacelike anomalous dimension.

• Power law scaling corresponds to a “single logarithmic” (collinear)
observable. (As compared with Sudakov observables).

• Would like to generalize this to a non-conformal theory such as QCD.
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Energy Correlators in QCD

Fixed by kinematics and 
dimension analysis

All-order factorization for z→0

• Cumulant ⌦(z, ln
Q2

µ2
, µ) =

Z z

0

dz0 ⌃(z0, ln
Q2

µ2
, µ)

⌦(z, ln
Q2

µ2
, µ) =

Z 1

0

dx x2 ~JT (ln
zx2Q2

µ2
, µ) · ~H(x, ln

Q2

µ2
, µ)

• Both jet and hard function are vector in flavor space


• Hq (Hg) : probability of finding a quark (gluon) with 
momentum fraction x


• Jq (Jg) : probability of finding two parton with 
momentum fraction y1, y2 and relative transverse 
momentum qT in quark (gluon) initiated jet, 
weighted by y1*y2

Full interference 
effects retained in H 

and J, separately

z =
q2
T

x2Q2

7

• We can derive a timelike factorization formula for the 2-point
correlator in a non-CFT (e.g. QCD):

Σ(z, ln
Q2

µ2
, µ) =

∫ 1

0
dxx2 ~J(ln

zx2Q2

µ2
, µ) · ~H(x,

Q2

µ2
, µ)

d ~J(ln zQ2

µ2 , µ)

d lnµ2
=

∫ 1

0
dy y2 ~J(ln

zy2Q2

µ2
, µ) · P̂T (y, µ)

• The jet function satisfies the
renormalization group equation:

• At LL, have correspondence with CFT result (up to running coupling):

~JTLL = (Jq, Jg) exp

(
γ̂(3)

2β0
ln
αs(z

1/2Q)

αs(Q)

)

• In a non-CFT, beyond LL, derivatives γ′(N + 1), γ′′(N + 1), .... also
enter.

[Dixon, Moult, Zhu]
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Basso-Korchesmky Reciprocity

• Equivalence of spacelike and timelike formulations can be proven in a
CFT using Basso-Korchemsky Reciprocity.

• Consider for concreteness N = 4 where SUSY reduces the evolution
equations to scalar equations.

• In a CFT we can make a power law ansatz for the jet function:

J(zQ2, µ) = CJ (αs)

(
zQ2

µ2

)γN=4
J (αs)

• Substituting this into the evolution equation, we find

2γN=4
J (αs) = − 2

∫ 1

0
dy y2+2γN=4

J (αs)PT,uni.(y, αs)

= 2γN=4
T (1 + 2γN=4

J , αs)

• Basso-Korchemsky reciprocity provides the following relation between
spacelike and timelike twist 2 anomalous dimensions

2γN=4
S (N,αs) = 2γN=4

T (N + 2γN=4
S , αs)

• We then find γN=4
J (αs) = γN=4

S (1, αs) as required. Interesting
relation between spacelike and timelike dynamics.
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Partonic Interpretation

• Scaling has a simple interpretation from parton splitting:

• Small angle enhancement of the correlation function
=⇒ reason for jets at weak coupling.
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NNLL+NLO Results

• Resummed results at NNLL+NLO:

• Distribution depends very sensitively on quark vs gluon!

• In a unitary CFT, γN > 0. In QCD there is an interplay between the
β-function, and the γN > 0: for gluons γN > 0 wins and they behave
quite like in a CFT, for quarks the β function wins.

Gluon Jets (From Higgs)Quark Jets (From e+e−)
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Test of 2-point Correlator with Open Data
• Scaling of two-point correlator:
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• Perturbative, single log scaling over wide range (like SD mass).

• Note: no grooming was required to make it single log!
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Projected Energy Correlators

• How can we generalize this to obtain a family of “scaling
observables”?

• We can reduce higher point correlators by integrating out shape
information, keeping only the longest side xL. This is a proxy for its
size.

dσ[N ]

dxL
=
∑

n

∑

1≤i1,...,iN≤n

∫
dσe+e−→Xn

∏N
a=1Eia
QN

· δ(xL −max{Ri1i2 , Ri1i3 , . . . , RiN−1iN })

• This directly generalizes the two point correlator, and we will see it
inherits its nice properties, in particular, the scaling with twist-2
spin-j operators.
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Projected Energy Correlators

• In analogy with the two point correlator one can derive a timelike
factorization formula for the ν-point projected correlator

Σ[ν](xL, ln
Q2

µ2
) =

∫ 1

0

dxxν ~J [ν](ln
xLx

2Q2

µ2
) · ~H(x,

Q2

µ2
)

• The hard and jet functions satisfy the RGs:

d ~H(x, ln Q2

µ2 )

d lnµ2
= −

∫ 1

x

dy

y
P̂ (y) · ~H

(
x

y
, ln

Q2

µ2

)
d ~J [ν](ln xLQ

2

µ2 )

d lnµ2
=

∫ 1

0

dy yν ~J [ν](ln
xLy

2Q2

µ2
) · P̂ (y)

• In a CFT, the projected ν point correlator exhibits a powerlaw scaling
with exponent the twist-2 spin-ν anomalous dimension:

dσ[ν]

dxL
= C [ν](αs)γ

N=4
J[ν] (αs)

x
γN=4

J[ν] (αs)

L

xL
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Projected Energy Correlators
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• We can probe these scalings in open data:

• First theoretically understood probes of higher point correlations!
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Behavior of Projected Correlators

• Generalizes the two point correlator to an infinite family of single
logarithmic (groomed mass like) observables.

−5 −4 −3 −2 −1 0

log10 xL

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

1 σ

d
σ

d
lo

g
1
0
x
L

Pythia 8.226

Anti-kT jets, R = 0.4

pjet
T ∈ [500, 550] GeV

|yjet| < 1.7

Quarks

N = 2

N = 3

N = 4

N = 5

Gluons

N = 2

N = 3

N = 4

N = 5

CERN QCD “Lunch” June 5, 2020 29 / 59



Ratios
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• Multiple observables of same family =⇒ can take ratios!

• Ratios of correlators offer a particularly robust observable.

Scaling Behavior X

• Slope is directly proportional to αs.
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NLL Calculation

• NLL calculation requires the 2 loop anomalous dimensions, and the
one loop jet function constants.

• It is well known that the twist-2 spin-j anomalous dimensions are
analytic functions of j (harmonic sums).

• Remarkably, we find that the jet function constants are an analytic
function of ν = N .

• In N = 4, we find an extremely simple result:

2
ν
J
N=4,[ν]
1 = −8Nc(Ψ(ν) + γE)

(
1

ε
− ln

xLQ
2

µ2

)
− 4Nc[π

2
+ 2(Ψ(ν) + γE)

2 − 6Ψ
′
(ν)]

• Close connection to field theoretic quantities leads to remarkable
simplicity.

• Enables calculation to NLL for all N!
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NLL Calculation

• Result in QCD has more complicated rational dependence on ν

• Principle of maximal transcendentality is obeyed.

• Very interesting to calculate these constants to two loops.

J
q,[ν]
1 = CF

[
3(ν − 1)− 4(ν + 1)(Ψ(ν) + γE)

ν + 1

(
1

ε
− ln

xLQ
2

µ2

)

+
13ν3 + 24ν2 − 25ν − 12

ν(ν + 1)2
− 4(Ψ(ν) + γE)

2 −
12(Ψ(ν) + γE)

ν + 1
+ 12Ψ

′
(ν)− 2π

2

]
,

J
g,[ν]
1 =

CA
 (ν − 1)

(
11ν2 + 53ν + 66

)
3(ν + 1)(ν + 2)(ν + 3)

− 4(Ψ(ν) + γE)

− 2(ν − 1)
(
ν2 + 4ν + 6

)
nf

3(ν + 1)(ν + 2)(ν + 3)

( 1

ε
− ln

xLQ
2

µ2

)

+ CA

[
2
(
67ν7 + 804ν6 + 3634ν5 + 7380ν4 + 4723ν3 − 5520ν2 − 8712ν − 2376

)
9ν(ν + 1)2(ν + 2)2(ν + 3)2

− 4(Ψ(ν) + γE)
2

−
8
(
2ν2 + 9ν + 11

)
(Ψ(ν) + γE)

(ν + 1)(ν + 2)(ν + 3)
+ 12Ψ

′
(ν)− 2π

2

]

+ nf

[
−23ν7 − 276ν6 − 1190ν5 − 2376ν4 − 1703ν3 + 1644ν2 + 3060ν + 864

9ν(ν + 1)2(ν + 2)2(ν + 3)2
+

4
(
ν2 + 3ν + 4

)
(Ψ(ν) + γE)

(ν + 1)(ν + 2)(ν + 3)

]
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3/2 Ratio at NLL

• Example: 3/2 point ratio for quark jets.
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(scale variation is by a factor of 5 instead of the standard 2)

• Hope to extend to NNLL (single log) very shortly. We are missing
one number, preliminary tests show significant further reduction in
scale variation.

• Promising for precision extraction of αs.
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Beyond Scaling: Shape Dependence of the

Three Point Correlator
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The Celestial Sphere and Multi-Point Correlators

• Full shape dependence of higher point correlators probes detailed
aspects of theory. (analogy 2 point vs 3 point correlators for CMB.)

• Interesting for:
• Probing 1→ 3 splitting. e.g. Monte Carlo tuning?
• Probing detailed structure of quark and gluon jets.

• Multi-point correlations are central in jet substructure.

• Unfortunately no previous analytic calculations.
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The Underlying Field Theoretic Problem

• Shape dependence of multi-point correlators described by universal jet
functions.

• Start by computing analytic structure of the three point correlator.
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The Celestial Sphere and N = 4 SYM

• N = 4 Super Yang-Mills is a field theory similar to QCD, but it
exhibits scale (conformal) symmetry.

• We can use this theory as a guide for understanding QCD, where
scale symmetry is weakly broken by the β function.

• To manifest these symmetries, it is convenient to exchange vectors
with complex coordinates zi on the celestial sphere:

CERN QCD “Lunch” June 5, 2020 37 / 59



Parametrizing a Unit Triangle

• Since we understand scaling, can focus on a unit triangle.

• Parametrize unit triangle using a complex variable z:

• Correlator is a single valued function of z, z̄.

CERN QCD “Lunch” June 5, 2020 38 / 59



Result in N = 4

• Result in N = 4 takes quite a simple form

G(z) =
(1 + |z|2 + |1− z|2)

2|z|2|1− z|2
(1 + ζ2) +

(−1 + |z|2 + |z|4 − |z|6 − |1− z|4 − |z|2|1− z|4 + 2|1− z|6)

2|z|2|1− z|2(z − z̄)2
log |1− z|2

+
(−1− |z|4 + 2|z|6 + |1− z|2 − |z|4|1− z|2 + |1− z|4 − |1− z|6)

2|z|2|1− z|2(z − z̄)2
log |z|2

+
|z|4 − 1

2|z|2|1− z|4
D

+
2 (z) +

|1− z|4 − 1

2|z|4|1− z|2
D

+
2 (1− z) +

(|z|2 − |1− z|2)(|z|2 + |1− z|2)

2|z|2|1− z|2
D

+
2

(
z

z − 1

)

+
2iD−2 (z)

2|1− z|4|z|4(z − z̄)3
p3(|z|2, |1− z|2)

• Expressed in terms of rational prefactors and the following weight 2
functions

2iD
−
2 (z) = Li2(z)− Li2 (z̄) +

1

2
(log(1− z)− log (1− z̄)) log (zz̄)

D
+
2 (z) =

(
Li2

(
1− |z|2

)
+

1

2
log
(
|1− z|2

)
log
(
|z|2

))
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A Surprising Duality

• Interestingly, all rational prefactors can be removed by writing the
result in terms of dual Feynman integrals.

• The integrals appearing are over the energy fractions of splitting
functions, with angles fixed:

1

σtot

d3Σ

dx1dx2dx3
= N

∫
dω1dω2dω3δ(1− ω1 − ω2 − ω3)

(ω1ω2ω3)2

16
× P1→3

• Write all Mandelstam’s in terms of celestial coordinates:
sij = Q2ωiωj |zi − zj |2 .

• Consider for simplicity a particular term in the splitting function:

P1→3 ⊃
1

ω1ω3s12s123
∼

1

ω2
1ω2ω3|z12|2s123

writing s123 = Q
2
(ω1ω2z

2
12 + ω1ω3z

2
13 + ω2ω3z

2
23) ,

→ N
1

2|z12|2
×
∫
dω1dω2dω3δ(1− ω1 − ω2 − ω3)

ω2ω3

ω1ω2z
2
12 + ω1ω3z

2
13 + ω2ω3z

2
23

x
µ
i − x

µ
i+1 = p

µ
i , x

2
ij = (xi − xj)2 = (pi + · · · pj−1)

2 (1)

x
2
ij ↔ |zij |

2
, (2)
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A Surprising Duality

• This is recognized as a dual Feynman parameter integral, where the
|zij |2 are the dual coordinates.

x
µ
i − x

µ
i+1 = p

µ
i , x

2
ij = (xi − xj)2 = (pi + · · · pj−1)

2

x
2
ij ↔ |zij |

2

• Related to three mass box integral.

CERN QCD “Lunch” June 5, 2020 41 / 59



Result in N = 4 Super Yang Mills

d2σ

dz dz̄
∝
(
J (d=8)(2, 2, 1) + J (d=10)(2, 2, 2, 1̃) +

ζ2 − 1

2xL(1− z)(1− z̄)

)

• Obtain one line result for three point correlator in N = 4:

• Schematically:

• Explicitly:

• All rational prefactors of transcendental functions eliminated.

• Why?

• Does this persist to higher loop orders, higher points?

CERN QCD “Lunch” June 5, 2020 42 / 59



Shape Dependence in QCD

Here we present the results for each term separately. For Gq̄0q0q(z), we have

Gq̄0q0q(z) = CF TF nF ⇥
⇢

1
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�
� 8r3

�
11631s4

�14936s3 + 19657s2 � 13290s + 4412
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�
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�
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� r � s + 1
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�
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�
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�
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�
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�

+ s5
�
120s6 � 60s5 + 100s4 + 50s3 + 34s2 � 39s + 72

� �
g
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r

960t10


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�
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�
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
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�
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�
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�
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8
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.

For G
(id)
q̄qq (z), we have

G
(id)
q̄qq (z) = (CA � 2CF )CF ⇥

⇢
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+3355s4 � 1849s3 + 1932s2 � 882s + 180
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For Gggq(z) we have

Gggq(z) = C2
F ⇥

⇢
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Here the superscript (ab) denotes the abelian contribution, while (nab) denotes the non-

abelian contribution. We again present results for each of the terms separately. For the

abelian qq̄g term, G
(ab)
gqq̄ (z), we have

G
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gqq̄ (z) =

CF TF nF
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For the non-abelian qq̄g term, G
(nab)
gqq̄ (z), we have
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For the pure gluon term, Gggg(z), we have

Gggg(z) = C2
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⇢
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5.2.2 Gluon Jets

For gluon jet we similarly write

1

�tot

d⌃g

dxLdRe(z)dIm(z)
=

g4

16⇡5

1

xL


Gg(z) + Gg(1 � z)

+
1

|1 � z|4
✓

Gg

✓
z

z � 1

◆
+ Gg

✓
1

1 � z

◆◆
+

1

|z|4
✓

Gg

✓
1

z

◆
+ Gg

✓
z � 1

z

◆◆�
. (5.16)

The color decomposition is

Gg(z) = G
(ab)
gqq̄ (z) + G

(nab)
gqq̄ (z) + Gggg(z) .
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• Shape dependence in QCD involves same transcendental functions

• ...but many more rational prefactors...
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Shape Dependence

• A remarkably detailed probe of QCD in jets!

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

• Directly probe celestial correlators.

• Useful for probing 1→ 3 splitting, Parton Shower tuning, ...

Shape X
〈q(E)E(~n1)E(~n2)E(~n3)〉

〈g(E)E(~n1)E(~n2)E(~n3)〉
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Making Tracks Tractable

CERN QCD “Lunch” June 5, 2020 45 / 59



Track Functions

2

���������

⇥

���������

2���������

⇥

���������

2 ���������

⇥

���������

2

= +

�3 �3 �2 � T (1)
q= +

FIG. 1: Schematic relationship between the partonic matrix
element �3 and the matching coe�cient �3 for e+e� ! qq̄g.
Here, black (blue) dots represents the tree-level (O(↵s)) track
functions. Diagrams with emissions from the other quark leg
are elided for simplicity. Note the trivial matching condition
�2 = �2.

where Ti(xi) is the track function for parton i. This
equation defines a matching onto track functions where
d�̄N/d⇧N represents the short distance matching coef-
ficient, which is calculable in perturbation theory. In
the absence of track functions, d�/de would exhibit a
mismatch between real and virtual diagrams in the form
of uncompensated IR divergences in the partonic com-
putation. The track functions absorb these IR diver-
gences, and the partonic cross section �̄N is correspond-
ingly modified with respect to �N . We will show below
for the example of e+e� ! qq̄g how the mismatch in the
absence of Ti(xi) occurs. Fig. 1 shows schematically how
we determine the IR-finite matching coe�cient �̄3 for this
case, by using that Eq. (3) is valid both at the hadronic
and partonic level. The fact that we consider factoriz-
able (otherwise) IRC-safe observables modified to include
only charged particles and that collinear divergences are
known to be universal in QCD [18–20] guarantees a valid
matching to all orders in the strong coupling constant ↵s.

At leading order (LO) in ↵s, the cross section depends
on a single partonic multiplicity N and there are no IR

divergences implying �̄
(0)
N = �

(0)
N . The LO T

(0)
i (xi) is

simply a finite distribution which can be obtained di-
rectly from the energy fraction of charged particles in
a jet initiated by a parton i. Ideally, we would extract
this information from data, but just for illustrative pur-
poses, we can determine it from (tuned) Monte Carlo
event generators. We stress that our formalism does not
rely on the use of these programs nor on their built-in
hadronization models. In Fig. 2, we show the track func-
tions obtained from pure quark and gluon jet samples
produced by Pythia 8.150 [21, 22] and clustered using
the anti-kT algorithm [23] in FastJet 2.4.4 [24]. (To ex-
tract the track function at next-to-leading order (NLO)
we use Eq. (11); the jet radius R is correlated with the
RG scale µ.) As expected, the up- and down-quark track
functions are very similar, with a peak at x = 0.6. This
means that on average 60% of the energy of the initial
quark is contained in charged hadrons, in agreement with
a recent CMS study [25]. The small di↵erence between

0.0 0.2 0.4 0.6 0.8 1.0
0.0
0.5
1.0
1.5
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2.5
3.0
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LO
LO
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NLO
u
d

g

m=100 GeV

FIG. 2: LO (dotted) and NLO (solid) track functions ex-
tracted in Pythia from the fraction of the jet energy carried
by charged particles.

up and down is due to strangeness, since us̄ mesons are
charged whereas ds̄ mesons are neutral. Because gluons
have a larger color factor than quarks, they yield a higher
track multiplicity, and the corresponding track functions
are narrower, as expected from the central limit theorem.

Formally, the (bare) track function is defined in QCD
in a fashion analogous to the unpolarized FF (cf. [26, 27]).
Expressed in terms of light-cone components,

Tq(x) =

Z
dy+ d2y? e ik� y+/2 1

2Nc

X

C,N

�
⇣
x � p�C

k�

⌘

⇥ tr
h��

2
h0| (y+, 0, y?)|CNihCN | (0)|0i

i
, (4)

where  is the quark field, C (N) denote charged (neu-
tral) hadrons, and p�C is the large momentum compo-
nent of all charged particles. Whereas the FF describes
the energy fraction carried by an individual hadron, the
track function describes the energy fraction carried by
all charged particles. As for the FF, gauge invariance
requires the addition of eikonal Wilson lines. The gluon
track function is defined analogously [28].

Treating the intermediate states in Eq. (4) partoni-

cally, we obtain the bare track functions T
(1)
i,bare at NLO

in pure dimensional regularization with d = 4 � 2✏,

T
(1)
i,bare(x) =

1

2

X

j,k

Z
dz
h↵s(µ)

2⇡

⇣ 1

✏UV
� 1

✏IR

⌘
Pi!jk(z)

i

⇥
Z

dx1 dx2 T
(0)
j (x1, µ)T

(0)
k (x2, µ)

⇥ �
⇥
x � zx1 � (1 � z)x2

⇤
, (5)

which arise from collinear splittings, controlled by the
timelike Altarelli-Parisi splitting functions Pi!jk(x) [12].
In contrast with the analogous partonic FF calculation,
track functions involve contributions from both branches
of the splitting. Renormalizing the ultraviolet diver-
gences in Eq. (5) in MS leads to the evolution equation

• Tracks offer many experimental advantages.

• There is an elegant formalism for incorporating tracks (Chang,
Procura, Waalewijn, Thaler 2013) using Track Functions, Ti(x).

• Track functions are a non-perturbative function describing energy
fraction of a parton going into tracks, p̄µi = xpµi +O(ΛQCD).
(Analogous to a fragmentation function).

• It obeys a non-linear RG:

1∫
0

dx Ti(x, µ) = 1

µ
d

dµ
Ti(x, µ) =

1

2

∑
j,k

∫
dzdxjdxk

αs(µ)

π
Pi→jk(z)

· Tj(xj , µ)Tk(xk, µ)δ[x− zxj − (1− z)xk]
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Track Functions

• Why hasn’t it been put to use for “standard Jet Substructure
Observables”?
• Calculations are very complicated.
• Calculations involve full shape of non-perturbative T (x).

• Consider e.g. Track Thrust at LO

dσ

dτ̄
=

1∫
0

dy1dy2
dσ̄(µ)

dy1dy2

1∫
0

dx1dx2dx3Tq(x1)Tq(x2)Tg(x3)δ [τ̄ − τ̄(y1, y2, x1, x2, x3)]

dσ̄(µ)

dy1dy2
= σ0

αs(µ)CF
2π

θ(y1 + y2 − 1)(y2
1 + y2

2)

(1− y1)(1− y2)

where y1 = 2Eq/Q, y2 = 2Eq̄/Q are the normalized parton energy, and the measurement
function for track thrust is

τ̄ = θ[x1x3(1− y2)− x1x2(1− y3)] · θ[x2x3(1− y1)− x1x2(1− y3)]x1x2(1− y3)

+ θ[x2x3(1− y1)− x1x3(1− y2)]θ[x1x2(1− y3)− x1x3(1− y2)]x1x3(1− y2)

+ θ[x1x3(1− y2)− x2x3(1− y1)] · θ[x1x2(1− y3)− x2x3(1− y1)]x2x3(1− y1)

[Chang, Procura, Thaler, Waalewijn]
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Tracks and Energy Correlators

• Energy correlators are weighted by energy flow through detector cells
as a function of angle.

• How to go from full calorimeter to tracks? simply multiply by
“average energy deposited into tracks”.

Ei →
∫
dxi xiTi(xi)Ei = T

(1)
i Ei

• Upshot: Any perturbative calculation of energy correlators that can
be done, can also be done on tracks just by weighting pieces of

calculation by T
(1)
i ! (higher moments only appear as contact terms)
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Two Point Correlator on Tracks

• As an example, consider LO calculation of EEC on tracks. Just

weight qg correlation by T
(1)
q T

(1)
g and qq̄ correlation by T

(1)
q )2:

EECtr(z) = σ0
αs
2π
CF
(

(T (1)
q )2I1(z) + 2T (1)

q T (1)
g I2(z)

)
I1 =

(
1

6z2
+

1

z3
− 4

z4

)
1

1− z +

(
3

z4
− 4

z5

)
ln(1− z)

1− z ,

I2 =

(
53

12z2
− 41

4z3
+

13

2z4

)
1

1− z +

(
13

2z5
− 7

z4
+

2

z3

)
ln(1− z)

• Or the calculation of jet functions in the collinear limit with/without
tracks

jg(z) = δ(z) +
αs
4π

(
14

5
CA +

1

5
nf

)[
1

z

]
+

+ δ(z)
αs
4π

(
−898

75
CA − 14

25
nf

)
jtr
g (z) = δ(z)T (2)

g +
αs
4π

(
14

5
CA(T (1)

g )2 +
1

5
nf (T (1)

q )2

)[
1

z

]
+

+ δ(z)
αs
4π

(
−898

75
CA(T (1)

g )2 − 14

25
nf (T (1)

q )2

)
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The Underlying Reason

• This is directly due to the fact that weighted observables are defined
in terms of a finite number of energy correlators, while “standard
observables” involve an infinite number (hence all moments)

〈0|OE(~n1)E(~n2)O†|0〉 =⇒ Easy for Tracks!

〈0|Oδ(e2 − f(E(~n1), E(~n2))O†|0〉 =⇒ Hard for Tracks!

• Clear manifestation of difference in complexity. Can’t just work harder
to overcome.
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Tracks and Resummation

• Interfaces nicely with resummation. e.g.Two point correlator at LL for
pure gluons:
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Σ[2](xL) = 1
2

(
αs(
√
xLQ)

αs(Q)

)− γ(0)(3)
β0

Σ
[2]
tr (xL) = 1

2 [T (1)
g (Q)]2

(
αs(
√
xLQ)

αs(Q)

)− γ(0)(3)
β0

• With both quarks and gluons there is a matrix, but still
straightforward...
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Bonus: The Analytic Continuation of Jet

Substructure

IRC safe

BFKL

1
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The Analytic Continuation of Jet Substructure

• Many jet substructure observables have been proposed.

• Probe diverse physics. e.g. Jet mass to multiplicitiy.

• How can we organize them?

• How can we understand what physics we can probe with jets? and
extend what we can probe.

• Ultimately want to make this precise and link it to the underlying field
theory.

CERN QCD “Lunch” June 5, 2020 53 / 59



Analytic Continuation

• Results for the ν point correlators are analytic (more precisely
meromorphic) functions of ν:

• What is the meaning of
this? Is it a
mathematical curiosity,
or can it be measured?
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ν-Point Correlators

• It turns out that we can define a ν-point correlator that can be
measured on actual jets. It correlates infinite combinations of
particles (up to the fact that there are a finite number in a jet). The
precise definition is given in the paper.

• Test by applying this algorithm in Monte Carlo and comparing with
our analytic calculation
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Wandering in the Complex Plane

• Interesting structure in the complex plane.

• Pole at ν → 0 corresponds to multiplicity with infrared resolution xL,
but approach governed by BFKL. Can we probe BFKL physics in
timelike jets?
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• Places jet substructure
observables into an
analytic family.

• What other physics can
we probe?
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Chew-Frautschi and Jet Substructure
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Figure 1: Riemann surface of the function S(�) for twist-2 operators. Plot of the real

part of S(�) for complex values of �, generated from about 2200 numerical data points for � ⇡ 6.3.

We have mapped two Riemann sheets of this function. The thick red lines show the position of

cuts. The upper sheet corresponds to physical values of the spin. Going through a cut we arrive at

another sheet containing yet more cuts.

values of the spin S is known to have a very rich structure, in particular the region S ' �1

is described by BFKL physics. As we show, within the framework of QSC it is not hard

to specify any value of the Lorentz spin S as the conserved charges enter the equations

through the asymptotics which can in principle take any complex values. Then we can

compute the analytically continued scaling dimension � directly for complex S (or even

interchange their roles and study S as a function of �). The result of this calculation can

be seen on Fig. 1.

Let us stress that the algorithm is very simple and mainly consists of elementary matrix

operations. As such it can be easily implemented on various platforms. In particular, we

believe the performance could be increased by a few orders with a lower level, e.g. C++,

implementation. In this paper we mostly aim to demonstrate our algorithm, prototyped

in Mathematica. To illustrate how the algorithm works, as an attachement to this paper

we provide a Mathematica notebook with a simple implementation of our method.

Finally, to improve the performance of our method we used the further simplification

of the QSC obtained in [26], which allows us to eliminate auxiliary functions !ij from our

algorithm and close the equations using Q-functions only (we demonstrate this for the sl(2)

sector states).

– 3 –

• Measuring Energy-Energy Correlators allows direct reconstruction of
the spectrum of operators in the theory.

Twist Two Spectral SurfaceChew-Frautschi Plot

• Measurement would be a remarkable probe of field theory!

• Underlying reason for simplicity of the EECs: this surface exists, and
is smooth (describable by an analytic function)!

[Gromov, Levkovich-Maslyuk, Sizov]
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Summary

I +

One of the simplest observables from the theoretical perspective is the Energy-Energy

Correlator (EEC), defined as [2, 3]

d�

dz
=
X

i,j

Z
d�

EiEj

Q2
�

✓
z � 1 � cos�ij

2

◆
. (1.1)

Here Ei and Ej are the energies of final-state partons i and j in the center-of-mass frame,

and their angular separation is �ij . d� is the product of the squared matrix element and the

phase-space measure. The EEC can also be defined in terms of correlation function of ANEC

operators [4–7]

E(~n) =

1Z

0

dt lim
r!1

r2niT0i(t, r~n) , (1.2)

where it is given by

d�

dz
=

hOE(~n1)E(~n2)O†i
hOO†i , (1.3)

for some source operator O. This provides a connection between event shape observables and

correlation functions of ANEC operators allowing the study of event shapes to profit from

recent developments in the study of ANEC operators, and conversely, the EEC provide a

concrete situation for studying the behavior of ANEC operators.

There has recently been significant progress in the understanding of the EEC from a

number of di↵erent directions. For generic angles, the EEC has been computed at next-to-

leading order (NLO) in QCD [8, 9] for both an e+e� source, and Higgs decaying to gluons,

and up to NNLO in N = 4 SYM [7, 10]. It has also been computed numerically in QCD at

NNLO [11, 12].

There has also been progress in understanding the singularities of the EEC, which occur as

z ! 0 (the collinear limit) and z ! 1 (the back-to-back limit). In the back-to-back limit, the

EEC exhibits Sudakov double logarithms, whose all orders logarithmic structure is described

by a factorization formula [13, 14]. In the z ! 0 limit, which will be studied in this paper,

the EEC exhibits single collinear logarithms, originally studied at leading logarithmic order

in [15–19]. Formulas describing the behavior of the EEC in the collinear limit were recently

derived in [20] for a generic field theory, and in [21–24] for the particular case of a CFT. This

limit is of theoretical interest for studying the OPE structure of non-local operators, and of

phenomenological interest as a jet substructure observable.

The two-point correlator is particularly simple since it depends on a single variable, z.

Indeed, in a conformal field theory (CFT), its behavior in the collinear limit is fixed to be a

power law

⌃(z) =
1

2
C(↵s) z�

N=4
J (↵s) , (1.4)
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Energy-Momentum 
Tensor

EEC

Konishi

• Weighted cross sections and energy
correlators offer many advantages.

• Projected correlators probe scaling
behavior.

• Full shape dependence of higher point
correlators analytically computed.

• Track information can be incorporated
in high order perturbative calculations.

• Non-integer point correlators can be
experimentally measured, and probe
interesting physics.
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Thanks!
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