Description

The FastIC chip reads the signal delivered by the sensor and processes it in a current mode method. A block diagram is shown in Figure 1. The architecture is based on the HRflexToT chip [2].

The input stage generates three replicas of the incoming signal, the weight of each replica being different. The first replica, with the highest weight, corresponds to the timing signal that is sent to a fast current discriminator which compares the signal with a programmable threshold. This programmable threshold can be set at level below the charge delivered from the sensor when a single photoelectron is detected. The leading edge of the signal at the comparator output retains the information of the time of arrival of the detected particle. The chip can be programmed to output this signal for each channel. It also outputs a fast-OR combining the timing signals of all the channels.

The second replica is processed by some circuitry in order to measure the deposited energy in the sensor. The processing chain contains a transimpedance amplifier, a shaper (with a selectable peaking time, the nominal being \sim 25ns-50ns), a peak detector and hold (PDH) and a discriminator that compares the output of the PDH with a ramp. The time duration of the digital pulse at the output of this discriminator is proportional to the charge delivered by the sensor.

The third replica is the trigger signal. Two trigger signals can be generated. The Low Level Trigger and the Cluster Level Trigger. The Low Level Trigger is the OR of the output of the comparators of the trigger channels and the Cluster Level Trigger compares the sum of the signals deposited in all the channels in a chip with a selectable threshold. These trigger signals can be used to start the ramp generator for the energy to time conversion. The fast timing OR and a pulse externally fed into the chip can also be used for this purpose.

At the output of the time and energy processing branches, the channel can be programmed to provide 1. The Time-Of-Arrival information only, the Time over Threshold information or a combination of the two. In the latter case, the channel generates two pulses for an incoming input signal. The first pulse's rising edge contains the information of the ToA and the second pulse's width contains the information on the linear Energy measurement.

The output driver can be programmed either in CMOS single-ended or differential SLVS. There is also the possibility to monitor internal signals (e.g. the output of the transimpedance amplifier, the shaper or the PDH, as can be seen in Figure 1. The input stage can be programmed to work in both positive or negative polarity. It is also possible to combine 4 channels and sum their signals at the input stage's output. This active summation functionality is integrated to explore the impact of segmenting large SiPMs (with large capacitance) into smaller ones to achieve lower jitter while covering large detector areas. The expected performance of the chip is presented in Table 1.

Figure 1. Block diagram of the FastIC ASIC channel when programmed in a single ended architecture. The Input Stage, the Time, Energy and Trigger channels and the Output driver are shown.

Figure 2. Block diagram of the FastIC ASIC channel when programmed in a differential architecture.

Figure 3. Block diagram of the FastIC ASIC channel when programmed to actively sum the signals in 4 channels.

Table 1. Expected FastIC chip performance.

Parameter	Value
Technology	65 nm CMOS
Power consumption	~ 6 mW/ch in SE mode (V_{DD} = 1.2 V), depends on operation mode (~ 3 mW/Input Stage)
Number of channels	8 SE / 4 DIFF

Connection Type	Configurable SE (Pos/Neg polarity), DIFF, Sum of 4 (Pos/Neg polarity)
Electronics Time Jitter	~ 25 ps _{rms} SPTR (330 pF 3x3 SiPM, LCT5 S13360 SiPM, Vov = 4.5 V, L = 1.2 nH)
Energy Resolution	Linear (~ 2.5 % Linearity error)
Dynamic Range	5 uA - 20 mA
Maximum Rate	~ 2 MHz (Linear ToT readout), > 50 MHz (Non-linear ToT. Pulse-shape-dependent)
Testing and Calibration	Yes
Interface	I2C (compatible with picoTDC)
Output	Configurable Digital (single-ended CMOS or differential SLVS) or Analog output (10 pF load).

FastIC chip diagram

		_	_	_	_	_	_		_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_			
		98	97	96	95	94	93	92	91	90	89	88	87	86	85	84	83	82	81	80	79	78	77	76	75			
		0	٥		۵	٥	Δ	۵	0	0	7		ъ	5	Z.	0	00	٩	0	٥	٥	D	≙	9				
	CORNER	ND	VD	ND/	ND.	2 2	²	<u>G</u> N	IND	VD	SD/	SCI	PO	GR	ອຼ	UN D	10	ND ND	ND	ND/	ND	ND	GN	ND	ND	COF	RNER	
			1	٩		ſ			-				~	c	F	ă	þ		-	∢	4	1	4	0				
			_																									
1	AVDD																G	ND	74									
2	AGND																		_P<0>	73								
3	Input<0>			CHANNEL 0															_IN <u></u>	72								
4																								\frown				71
5	AGND																							\geq			D<2	60
7	Innut<2>									_				. –		_								Ш			N<2>	68
, 8	Innut<3>									С	H	Aľ	N٢	NE	E	1								+			P<3>	67
9	AVDD																							0		OUT	N<3>	66
10	AGND																							TR		٥٧	/DD	65
11	Input<4>																									06	IND	64
12	Input<5>									C	H	AI	ЛГ	NE	Ľ	Ζ								ပ္ပ		OUT	P<4>	63
13	AVDD																							Ū		OUT	_N<4>	62
14	AGND																							2		OUT	P<5>	61
15	Input<6>									C	Ы	Λ Γ				2								S,		OUT	_N<5>	60
16	Input<7>									C	1 14	AI	NI	NL	. L	5								Ш		OUT	_P<6>	59
17	AVDD																							ST		OUT	_N<6>	58
18	AGND																							G		OUT	_P<7>	57
19	GND																							RE		OUT_	<u>N<7></u>	56
20	CAL											•												\sim		G	ND	55
21	AVDD								GI	LC)R	A	LI	BL	.0	C	KS							١4		G	ND	54
22	AGND																							L S				53
23	CND																							Ы				52
24			-																IC_P IF NI	50								
25											<u>^</u>	<u> </u>	Λ														<u>''_''</u>	50
-								_		~	0>11	×1	II<2	Ř	5	0	0			_	-	0	0					
						SIN								BND	JN 5	VDL	COF	RNER										
		9	A	A	F	F	F	Ĕ	G	D	ای ا	ای ا	ы С	BG	L RG	DG	DV	б	G	J	J	A	AC	ŏ	Ó			
											DB	DB	DB															
		26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49			
		100 C																										

FastIC chip pin list

PIN NO.	NAME	ТҮРЕ	DESCRIPTION
3, 4, 7, 8, 11, 12, 15, 16	Input<0:7>	Analog input	Analog Input channels 0 and 1. When processing differential signals Input<0> is the positive polarity input and Input<1> is the negative polarity input
56 TO 63, 66 TO 73	OUT_P<0 to 7> OUT_N<0 to 7>	Output	Energy/Time Output Channels <0 to 7>. Configurable: CMOS single ended output, SLVS differential output, analog output for monitoring energy channel
19, 24, 26, 33, 43, 54, 55, 74, 81, 91, 98	GND	Power	Ground (chip substrate)
2, 6, 10, 14, 18, 22, 28, 47, 77, 80, 96	AGND	Power	Analog ground
29, 32, 92, 95	TGND	Power	Ground for the circuits setting the threshold
40, 84	DGNDIO	Power	Digital ground IO (clock domain)
48, 53, 64, 76	OGND	Power	Output driver ground
1, 5, 9, 13, 17, 21, 27, 46, 78, 79, 97	AVDD	Power	Analog power supply voltage (1.2V)
30, 31, 93, 94	TVDD	Power	Analog power supply for the circuits setting the threshold (1.2V)
34, 42, 82, 90	DVDD	Power	Power supply digital (1.2V)
41, 83	DVDDIO	Power	Power supply digital (1.2V)
49, 52, 65, 75	OVDD	Power	Power supply output driver (1.2V)
20	CAL	Analog	Calibration signal. Voltage signal that gets converter into a current through an internal ~70 Ω resistance
23	VBG	Analog	Voltage reference of the chip. Value fixed to ~214mV
25	VMON	Analog	Output signal to monitor DC internal voltages
35, 36, 37	DBG_FSMI<0:2>	Digital Input	Debug signal to control the FSM (Input). Can be used to program the address of the chip for the I2C bus.
38	DBG_FSMO	Digital Output	Debug signal to control the FSM (Output)
39	TRG_OUT	Digital Output	Trigger Output signal
44, 45	CLK_P, CLK_N	Digital In	Differential input clock
50, 51	TIME_P, TIME_N	Digital Out	Differential Timing Fast-OR signal
85	TRG_IN	Digital In	External trigger for energy measurement
86	nGRST	Digital In	Reset signal
87	nPOR	Digital Out	Power on Reset output signal, connected externally to nGRST
88	SCL	Digital I/O	I2C Clock Line (Open drain $R_{INTERNAL}$ =40k Ω) An external resistor can be put externally to increase the data rate of the I2C bus.
89	SDA	Digital I/O	I2C Data Line (Open drain $R_{INTERNAL}$ =40k Ω) An external resistor can be put externally to increase the data rate of the I2C bus

SLVS Transmitter

Parameter	Description	Min	Nom	Max	Units
V _{DD}	Supply voltage range	1.08	1.2	1.32	V
V _{CMTX}	Common-mode voltage ^{A,B}	430	600	770	mV
Δ _{VCMTX(1,0)}	VCMTX mismatch when output is Differential-1 or Differential-0			5	mV
V _{OD}	Differential voltage ^{B,C}	140	200	270	mV
$ \Delta V_{OD} $	VOD mismatch when output is Differential-1 or Differential-0			10	mV
V _{OH}	Single-ended output high voltage ^B		700	900	mV
Vol	Single-ended output low voltage ^B	300	500		mV
I _{MOD}	Modulation output current ^D	0.7	0.8 to 4	5.4	mA
ZL	Load impedance		100		Ω

^A Common mode: $(V_{DP} + V_{DN}) / 2$.

^B Value when driving into differential load impedance 100 Ω . Termination load is external. ^C Differential voltage: V_{DP} - V_{DN}, values for 2mA setting, scales accordingly for other currents.

^D Modulation current is programmable in 0.8 mA steps from 0.8 mA to 4 mA. Default setting could be 2mA.

Figure 4. Voltage definition for SLVS transmitter.

Reset Connection Scheme

Figure 5. Scheme to connect the Reset in the chip.