sPHENIX Navigation Bug (?)

Joe Osborn
Oak Ridge National Laboratory
14/7/2020

MVTX Bu

 \We found a bug where, on an
event-by-event basis, only half
of the tracks are fit with MV TX
hits (even though the hits are
supplied to the fitter)

e |tis always one 180° half of
the detector, and it appears
random which half it is

* We didn’t notice it until running
more than 1 track per event,
and looking event-by-event

g_x_prt

-200

-400

-600

-800

g_x_prt

g_x_prt:g_y_prt {event_nr==1}

800

600

400

200

0

e
L

......
........

e

800

600

400

200

-200

-400

-600

-800

| | | | | | | | | | | | | | | | |
-600 -400 -200 0 200 400

g_x_prt:g_y_prt {event_nr==4}

| |
800

g_y_prt

;- el e e

TErraa. Tt

‘s,

x

Navigator

auto checkIntersection =

[&] (SurfaceIntersection

* Navigator searches for surface
iIntersection in appropriate layer
here

e approachSurface returns one of
the two possible MVTX surfaces

 |fit returns the “wrong” one, an
invalid surfacelntersection is
returned and the path length to
navigate is inf, so the navigator
skips the MVTX

if (m_approachDescriptor && (resolvePS || resolve
Surfacelntersection aSurface = m_approachDescriptor—>a

gctx, position, , options.
return checkIntersection(aSurface);

3 }

Bug (?)

Traced code and identified source of bug

here
Acts::0bjectIntersection<Acts::Surface>
The InterseCtIOnEStlmate returns tWO MVTX Acts: :GenericApproachDescriptor: :approachSurface(N
. .] const GeometryContext& gctx, const Vector3D& position,
ESLJFfEi()EBES, EBEi(:f] \A/ftf] |Cj€3r]t|(:Ei| QJEBC)I[) €3)((:E§F)t const Vector3D& direction, const BoundaryCheck& bcheck) const {

approach surface identifier

std::vector<ObjectIntersection<Surface>>
.reserve(m_surfaceCache.size());
for (auto& sf : m_surfaceCache) {

std::sort sometimes selects the first
Surface, Some'nmeS the SeCOnd auto 1ntersection =

sf->intersectionEstimate(gctx, position, direction, bcheck);

.push_back(ObjectIntersection<Surface>(intersection, sf));

If the first is selected (approach surface == }

1), navigation visits MVTX surfaces - if the et _ézzgii?;;;
second is selected (approach surface == 2),

an invalid Surfacelntersection is returned

and an infinite path length step is returned

to the navigator, and it skips the MVTX

Bug (?)

The sorting of the intersections is where the
error comes in

When sorting the two possible intersections,
when the pathlLengths are negative it goes to
the incorrect surface and then skips the MVTX

eturn (status != Status::missed); }

When the pathLengths are positive it bool operator<(const Intersectiond si) const {

F (status == Status::unreachable) {

proceeds as intended return false;

So the bug must be associated to, for some f (si. Y
reason, sometimes the intersection path return (pathLength < si.);
lengths are negative, and this must be
somehow associated to a 180 deg azimuthal
region (7). Is there some geometry convention
that is mismatched?

