
 1 / 19

Fighting Acts build bloat
Hadrien Grasland 2020-07-20

 2 / 19

We have a build problem

● Like all « modern C++ » projects, Acts builds slowly

– On 2020-05-20, a full build* took 1h30 of seq. CPU time
– Some tests take minutes to build bad for dev. iterations→

● More importantly, however, the build uses a lot of RAM

– On 2020-05-20, the record was CKF tests @ 7,4 GB RSS
– Ergo, can’t use all cores on a typical dev machine

● Some work was done in the past, but more is needed

* RelWithDebInfo build, using GCC 9.3.1 on Linux, i7-4720HQ CPU, everything but CUDA enabled

 3 / 19

Setting a goal

● « Acts should build with all cores on Moritz’ laptop »

– 4 threads, 8 GB of RAM, assume 1-2GB used by system
– Actually a fairly typical mid-end development machine
– By that metric, Acts should stay below 1.5 GB/process

 4 / 19

Identifying the culprits

● Offenders are easy to spot with a system monitor*

– ...but good to cross-check with GNU time for extra precision
– Error on the peak with ~2s polling can be 200-300 MB

● On 2020-05-20, those processes were >4GB :

– CKF tests (7.4 G)
– TrkFdAlgTrkFdFunc (6.9 G)
– KF tests (6.8 G)

– FitAlgFitFunc (6.4 G)
– AMVFinder tests (4.1 G)
– GainMatrixUpd tests (4.1 G)

* More recently, Paul made https://github.com/paulgessinger/cmakeperf and added it to CI

https://github.com/paulgessinger/cmakeperf

 5 / 19

Telling what’s going on

● Compiler profiling is sadly a bit of a pain

– Most give you a per-pass breakdown, which is useless
– External profilers like perf won’t help you either

● Require debug symbols, compiler impl knowledge
● No tracing information about method parameters

– Templight requires a custom clang build + is hard to use
– Thankfully, clang 9+ has -ftime-trace…

 6 / 19

-ftime-trace

● Clang 9+ feature contributed by a Unity3D developer*
● Gives fine-grained, hierarchical compiler time profiles

– Source pass (#include other preprocessor) :
● Which top level headers take a lot of time to process
● Why they do so (transistive inclusion, eager templates…)

– PerformPendingTemplateInstantiations pass :
● Which templates take a lot of time to instantiate
● Which other templates they transitively instantiate

* https://aras-p.info/blog/2019/01/16/time-trace-timeline-flame-chart-profiler-for-Clang/

https://aras-p.info/blog/2019/01/16/time-trace-timeline-flame-chart-profiler-for-Clang/

 7 / 19

Wait… time profiles ?

● Unfortunately, nothing like -ftime-trace for memory usage
– So, must make do with what we have…

● Assumption : Using a lot of RAM <=> Taking a lot of time
– => : Reasonable expectation, data takes time to process
– <= : Less obvious (think alloc/free cycle), turned out to hold

● Assumption : GCC and clang have similar perf characteristics
– Again, not obvious but turned out to hold well enough

 8 / 19

Using -ftime-trace

● Get the command line used to build the .cpp file
– Simple way* : touch cpp file and re-run « make »

● Adjust it
– « g++ » « clang++ »→

– « -std=gnu++17 » « -std=c++17 »→

– Add -ftime-trace flag

● Run it A JSON file is produced next to the .o file→

● Open Chrom(e|ium)**, go to « chrome://tracing », feed it the file

* Clever way : Have CMake generate a « compilation database » and parse it

** Could use SpeedScope before, but unfortunately they improved input sanitization…

Demo : CKF test build analysis

 10 / 19

(End of may) Conclusions

● Two major contributors to CKF tests build time :

– Huge std::variant from Acts’ Measurement mechanism
– Lots and lots and lots of Eigen templates

● Decided to focus on reducing Eigen bloat because…

– It was the biggest contributor
– I have an old axe to grind with that lib anyway

 11 / 19

Eigen characteristics

● The good : First-class support for small matrices

– No heap allocation when size is statically known
– Methods can be inlined (though codegen isn’t great*)

● The bad : Some features have a large complexity cost

– Expression templates
– CRTP-style inheritance
– Block<MatrixType>

– Dynamic-sized matrices
– Row-major support

* An intern of ours once wrote a small prototype library which is multiple times faster than Eigen at
 low-dimensional matrix multiplication and inversion to back up this claim

 12 / 19

A bothersome feature

● Expression templates are a special kind of evil

– « a*b + c » isn’t just « a*b » and « a+b »
● Type is like Sum<Product<M1, M2>, M3>
● Construct Matrix from this Expression is evaluated→

– Consequences :
● Combinatorial explosion of types/constructors
● Lifetime issues (who got bitten by « auto » in Eigen?)
● Bad compiler optimization (CSE takes a hit)
● Incomprehensible execution profiles
● All to avoid temporaries… that compiler optimize out !

 13 / 19

Blocking the bother

● I tried to inhibit expression templates by…

– Building wrappers for Eigen types
– Replicating most of the Eigen API on the wrappers…
– …but returning matrices from operators, not expressions

● Took me about a month of work

– Net result : -0.3 GB to -1.0 GB per compilation unit :-(
– Not awful, but not worth adding 6 kLoC to Acts yet…

 14 / 19

Meanwhile, on master…

● At end of June, I rebased the finished wrapper on master…

● …whose build profile had changed a lot wrt late May !

– CKF tests : 5.9 G (-1.5)
– EvDatView test : 5.7 G (NEW)
– KF test : 5.7 G (-1.1)
– TrkFdAlgTrkFdFunc : 5.6 G (-1.3)

● Exact origin unknown, bisecting would be too expensive…

– But good surprise was welcome, and motivating !

– FitAlgFitFunc : 4.8 G (-1.6)
– GainMatUp test : 3.4 G (-0.7)
– AMVFinder test : 3.3 G (-0.8)

 15 / 19

Finding more fat

● Without expression templates, the build profile is clearer

– Complex ops (e.g. matrix inversion, geometry, Cholesky…)
obviously not helped by wrapping

– But still surprisingly high contribution of add, mul, etc.
– Cause turned out to be large-scale use of Block and Map

● …which are actually Block<Matrix> and Map<Matrix>
● …which, combined with CRTP, re-instantiates all the code
● So I tried to switch to an extractBlock/setBlock design

 16 / 19

…and even more

● Per se, changing block API was not enough
– Still needed many Matrix constructor instances (1/block)
– So I accepted the necessity of rewriting the impl too…
– …and similarly rewrote the impl of every other simple matrix

operation with a big impact on KF test build profile

● Having to go there was unfortunate, but effective :

– CKF tests : 4.3 G (-1.6)
– FitAlgFitFunc : 3.9 G (-0.9)
– TFAlgTFFunc : 3.7 G (-1.9)

– EvDatView test : 3.7 G (-2.0)
– KF test : 3.4 G (-2.3)
– Everyone else <3 GB

 17 / 19

Current status

● Can likely gain even more by replacing more Eigen impls
– Geometry, matrix inversion, and Cholesky are quite bad
– …but more work to rewrite than addition/multiplication

● Can that alone take us down to <1.5 G ? Not sure…
– I suspect Measurement variant will need some love too

● Also, will need better impls to beat Eigen at runtime
– Tried auto-vectorizable loops… but that didn’t work out
– I don’t expect SIMD impls to cost more… but must prove it

 18 / 19

Summary

● We still have a build problem (but it got better in June)
● Eigen is a very significant part of it

– Though Measurement variant should be investigated too

● We can go far with a piecewise rewrite of Eigen…

– …but I still need to prove that at equivalent runtime perf
– Also, the new impls are really specialized for Acts’ needs

● Can’t contribute them to Eigen, room for a simpler BLAS

Thanks for your attention !

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19

