
Introduction to C++

Mark Anderson
anderson.mark@queensu.ca

May 7, 2020

mailto:anderson.mark@queensu.ca

Review of Unix commands

pwd current directory
ls list files in directory
cd 〈directory_path〉 change directory
cp 〈file_path〉〈destination_path〉 copy a file
mkdir 〈directory_path〉 make a directory
rmdir 〈directory_path〉 remove a directory
mv 〈file_path〉〈destination_path〉 move a file
mv 〈file_path〉〈file_path_new〉 rename a file
rm 〈file_path〉 remove a file

1

Review of Unix commands

• Options can be specified for most commands
• Options can be grouped together
• Use the --help option for most commands to obtain the descriptions of all available options

ls -l detailed list
ls -a all files (including hidden)
ls -la detailed list and all files
rm -i 〈file_path〉 confirmation prompt
rm -r 〈file_path〉 recursive (delete directories)

2

Review of Unix commands

• To get all of the available options, most programs implement a --help option
• ls --help
• mv --help
• rm --help

• Pretty much all system programs will also have more thorough documentation via the man
command (for manual) and an even more thorough set of documentation via the info
command
• man and info are documentation systems
• Try ssh --help vs. man ssh
• Try man ls vs. info ls

• Short options can generally grouped together, while long options can not

3

Introduction

• A program is a sequence of commands or instructions used to accomplish a task
• That task might be to make a plot, or solve a system of differential equations

• Three types of errors you are likely to encounter
• Syntax error

• While humans can handle syntax errors without spewing out error messages, computers can not
• The program must be syntactically correct, or it cannot run
• Even a small mistake (capitalization, missing a semicolon, ...) will return an error message

• Runtime error
• Named this way because they occur during the runtime of the program, not the compilation
• Examples are accessing an element of a list or accessing a file that doesn’t exist

• Semantic error
• This is the worst type of error!
• A semantic error is one in which the computer does not actually generate an error message
• Rather, it is when the computer does something different than you expect
• Remember, however, that the computer is doing exactly what you told it to do!

4

Introduction to C++

• C++ is an extension of C
• Provides numerous additions, tools, and features

• Many libraries are written in C++
• ROOT – which you will likely use a lot this summer

• C++ is an intermediate level language
• Has components of both high and low level languages

• C++ is object-oriented (although supports multiple programming paradigms)

• C++ is statically-typed

• C++ is compiled (as opposed to interpreted)

5

Introduction to C++

• More complicated than Python
• Python is a high-level language
• Python handles a lot of declarations, memory management, etc.

• This sacrifices performance
• May not be an issue depending on your application

• Python provides many useful functions and libraries to facilitate quick data analysis and
prototyping of ideas
• Very useful for testing ideas

• C++ is more strict than Python
• Unlike Python, you must declare data types when defining variables
• Unlike Python, you must end each statement with a semicolon
• As a result, it is safer and has better performance

6

Hello, world!

• Start with a hello world problem, as is usual for these tutorials

#include <iostream >

using namespace std;

int main(int argc , char ** argv)
{

// Print a message.
cout << "Hello , world!" << endl;
return 0;

}

• Compare that with Python

print("Hello , world!")

7

Hello, world!

• This example contains many of the
concepts we will discuss today
• Variables
• Data types
• Functions
• Blocks and scope
• Namespaces
• Libraries

#include <iostream >

using namespace std;

int main(int argc , char ** argv)
{

// Print a message.
cout << "Hello , world!" << endl;
return 0;

}

• First thing to note is that a comment starts with //
• Anything after the // is ignored by the compiler

• Comments are useful to explain to someone reading the code what is going on, why
something is done a certain way, etc.
• That “someone” could be you several months later!

8

How do I run that?

• C++ is a compiled language
• A compiler translates the source code into lower-level code that the machine can read
• g++ or clang

• To compile the “Hello, world!” example, put the code into a file with the extension “.cc”
(or “.cpp”) with your favourite editor

• Assuming that we have named the file hello.cc, we can compile the program
g++ -o run_hello hello.cc

• Once the program compiles, we can run it
./run_hello

9

The ROOT Interpreter

• There is also a C++ interpreter in ROOT
• CINT or Cling depending on ROOT version
• Useful for testing out individual commands
• Not recommended for anything more than a

few lines of simple tests

• The interpreter loads several useful C++
libraries
• We will see this a bit later in the tutorial
• For example, can type cos(3.14159) and it

will work out of the box

10

The ROOT Interpreter

• Keep in mind that the interpreter will not catch various errors, or may give different errors
than the compiler

• For this tutorial, I would recommend having the interpreter open on a second screen and
trying some of the examples yourself
• Log on to Neutrino with the nuguest account as you did yesterday
• In the terminal, run root -l (the -l option is to run without the initial message/banner)

• To quit, use the command .q (or .qqq, or .qqqqq...)

• For help, use the command .h or .?

11

Variables and data types

• Address in memory which stores a value
• First create a variable with a given name (identifier)
• Assign that variable a value via the assignment (=) operator
• Accessed via its name (identifier)

• Variables must start with a letter and only contain alphanumeric characters and
underscores

• In C++, you must declare the data type when initializing the variable (cannot be changed)

• Common basic types include integers, floats, and booleans

• You should (but technically don’t have to) initialize the variable when you allocate it

12

Variables and data types

• Some of the most important primitive types that you will be using
• int 5, 8, 100, 10438
• double 3.14159, 1.0, 564.6673
• char ‘c’, ‘y’, ‘q’, ‘\n’, ‘\t’
• bool true, false

• We will look into integers and doubles in more detail
• Try some of the commands below in the ROOT interpreter

int i = 5;
float pi_5_decimal = 3.14159;
float 5_decimal_pi = 3.14159; //Will fail!
char c = ’c’;
bool b = true;

13

Variables and data types (numbers)

• Humans use the decimal (base 10) system to represent numbers
• Probably because we have ten fingers and ten toes

• Computers use the binary (base 2) system to represent numbers
• Many computing applications use the hexidecimal (base 16) system
• A binary digit is called a bit, and 8 bits are called a byte

• Fun fact: 4 bits is called a nibble (rarely used term)

Decimal: 10 symbols (0-9), called digits

8142 = 8000+ 100+ 40+ 2

= 8 · 103 + 1 · 102 + 4 · 101 + 2 · 100

Binary: 2 symbols (0,1), called bits

11001b = 10000b + 1000b + 000b + 00b + 1b

= 1 · 24 + 1 · 23 + 0 · 22 + 0 · 21 + 1 · 20

= 25 (in decimal)

14

Variables and data types (integers)

(Signed) integers
• short [−215, 215 − 1] (16 bits/2 bytes)
• int [−231, 231 − 1] (32 bits/4 bytes)
• long [−263, 263 − 1] (64 bits/8 bytes)

Unsigned integers
• unsigned short [0, 216−1] (16 bits/2 bytes)
• unsigned int [0, 232−1] (32 bits/4 bytes)
• unsigned long [0, 264−1] (64 bits/8 bytes)

• Be careful with underflow and overflow
• If the result is bigger than the range, it will “loop around” and give unexpected results

short i = 32760;
i += 100; //This will equal -32676 (overflow)

short j = -32760;
j -= 100; //This will equal 32676 (underflow)

15

Variables and data types (floating points)

• Floating points are represented as s ·m · 2e
• s: the sign, ±

• Either 0 for positive or 1 for negative
• m: the mantissa

• The “decimal” portion – only one digit to the left of the dot (as with scientific notation)
• Normalized – for example, 1234.567 −→ 1.234567 · 103 in base ten

• e: the exponent

Single-precision (float)
• 1 bit for s
• 23 bits for m
• 8 bits for e

Total: 32 bits (4 bytes)
228/2 −→ ∼[−3 · 1038, 3 · 1038]

Double-precision (double)
• 1 bit for s
• 52 bits for m
• 11 bits for e

Total: 64 bits (8 bytes)
2211/2 −→ ∼[−2 · 10308, 2 · 10308]

16

Variables and data types (floating points)

• Be careful with precision of floating points
• Floating point numbers have limited precision and will be rounded
• Operations may produce results you wouldn’t expect! (well, now you will expect it)

• Machine precision / machine ε
• float ε = 1/223 ≈ 1.19 · 10−7

• double ε = 1/252 ≈ 2.22 · 10−16

• Always ensure that floating point precision and machine epsilon will work for you

Rounding/cancellation

float pi1 = 3.14159265358979;
double pi2 = 3.14159265358979;

pi1 - 3.1415926; // 1.410e-7
pi2 - 3.1415926; // 5.359e-8

Absorption

float y1;
double y2;

y1=1+1e-8; // 1.0000000000000000
y2=1+1e-8; // 1.0000000099999999

17

Variables and data types (floating points)

• For reasons of finite precision, it is dangerous to compare floating points with equality (==)

Equality comparison: bad

float a = 1.0/3.0;

if(a*3.0 == 1)
{

// Expect this to run.
}
else
{

// Uh oh! This might
// run instead.

}

Comparing absolute error: still bad

float a = 1.0/3.0;
abs(a*3.0 - 1) < 1e-7 // True.

float b = 1e8/3.0;
abs(b*3.0 - 1e8) < 1e-7 // False.

Comparing relative error: better

float a = 1.0/3.0;
abs((a*3.0 - 1.0)/1.0) < 1e-7) // True.

float b = 1e8/3.0;
abs((b*3.0 - 1e8)/1e8) < 1e-7) // True.

18

Variables and data types

• Other useful primitive types include
• Booleans (either true or false)
• Characters (’s’, ’4’, ’n’)

• C++ has various more advanced data types in the standard library
• Strings, vectors, complex numbers, ...
• More on this a bit later

• Type modifiers can change the behaviour of a variable
• const ensures that the variable value cannot change (will give compiler error)

• Very good practice to use const when you don’t want/expect the value to change
• Can prevent annoying bugs

• static ensures that the variable is declared once in the program
• Allocates memory for entirety of the program
• Useful for keeping track of the state of a function or number of functions calls
• Useful if looking for condition that only needs to be met once

19

Operators

Arithmetic Operators
+ addition
- subtraction
* multiplication
/ division
** exponential
% modulo

Comparison Operators
> greater than
< less than
>= greater than or equal
<= less than or equal
== equals
!= does not equal

Logical Operators
&& and
|| or
! not

• Arithmetic operators have the same rules for precedence as is standard in math
• Comparison and logical operators require numbers or booleans on both sides and return a

boolean

20

Operators

Compound Assignment Operators
+= addition
-= subtraction
*= multiplication
/= division
%= modulo

Increment/Decrement Operators
++ increment by 1
-- decrement by 1

int x=0;

// All of the below do the same.
x=x+1; // x is now 1.
x+=1; // x is now 2.
x++; // x is now 3.

• The increment/decrement operator can
go on either side of the variable
• This matters if returning the value

int x=0;
int y;

y = x++; // y==0, postcrement
y = ++x; // y==2, precrement

21

Blocks, scope, and conditions

• Blocks in C++ are surrounded by curly braces, { }
• Blocks can be nested within other blocks
• Any variables defined in a block are only valid until the end of the block

• The memory allocated at their declaration is released at the }

{
int i = 0;
{

short s = 35;
} // Memory released for s

i += s; // Trying to access s here will give an error

} // Memory released for i

22

Blocks, scope, and conditions

• Can declare variables with the same name in separate blocks
• This includes nested blocks

• Uses first instance found when traversing upwards through the nested blocks
• Not advised to use same names in nested blocks as that is extremely prone to error

{
int m;
int block1 = 1;
{

int block1 = 2;
m = block1 + 1; // Evaluates to 3

}
m = block1 + 1; // Evaluates to 2

}

23

Blocks, scope, and conditions

• A condition can be defined to control the flow of the program
• The block following the condition is executed if the condition is met

int i = 0;
if (i > 0)
{

i += -1;
}
else if (i < 0)
{

i += 1;
}
else
{

i += 80;
}

• Can also use the switch syntax for simple comparisons

int i = 0;
switch(i)
{

case 0:
// Do something ...
break;

case 1:
// Do something else ...
break;

default:
//If none of the cases apply ...

}
24

Iteration

• Can iterate in several ways
• for(initialization; condition; increment){ }
• while(condition){ }

• Enters the block if condition is met
• do{ } while(condition)

• Executes the block, then checks condition and will repeat until condition not met

// Factorial
// with for loop
int n = 1;
for (int i=1; i<10; i++)
{

n *= i;
}

// Factorial
// with while loop
int n = 1;
int i = 1;
while (i<10)
{

n *= i;
i++;

}

25

Iteration

• To finish current iteration, use the keyword continue
• To finish current loop, use the keyword break
• Both keywords only apply to the current loop (so if nested, will go back to parent)

// Example of break.
int n = 1;
for (int i=1; i<20; i++)
{

if (n > 21474836)
{

break;
}

n *= i;
} // Goes here when break called

// Example of continue.
int n = 0;
for (int i=1; i <200; i++)
{

// Add even numbers only.
if (i%2 != 0)
{

continue;
} // Below is ignored if continue
n += i;

}

26

Functions

• Defined operation that executes a sequence of statements
• Very useful to avoid constantly copying and pasting code
• Should execute a single specific task
• Can take arguments that are passed to the function and used internally
• Must specify the return type

• Can return void, which is essentially returning nothing

// Cube of a number.
double cube(double x)
{

return x*x*x; // In older versions of ROOT , can do x**3 (but don’t)
}

cube (9.0) // Will return 729.0 (since it is a double).

27

The main function

• Each program should have one (and only one) main function
• The main function is the first to be called

• Functions can be called from within main to define a program

• Can be defined with or without arguments
• Convention to return 0 if no failures in the program

• Anything else indicates error (and perhaps the specific type of error)

int main (){
// Code to be called goes here.
// Can call other functions ,
// define variables , ...
return 0;

}

28

The main function

• Can provide the main function with command line arguments
• argc is the number of arguments
• argv is the array of the arguments (first element is the program name)

int main(int argc , char **argv){
// Code to be called goes here.
// Can call other functions ,
// define variables , ...
return 0;

}

int main(int argc , char *argv []){
// Code to be called goes here.
// Can call other functions ,
// define variables , ...
return 0;

}

29

Header files

• Non-trivial programs will typically consist of many files
• Functions and variables must be declared before being used
• Declaring each function before use in each file quickly becomes tedious and error prone
• C++ uses header files to contain all declarations of functions defined in the source file

• Functions can be reused by including the header file (typical extensions are “.hh” or “.hpp”)

Header file: f.hh

// Declaration.
// Note the semicolon!
void func1(int x, int y, int z);

Source file: f.cc

#include "cube.hh"

// Definition.
void func1(int x, int y, int z)
{

// Program goes here.
}

30

Header files

• Note the use of #include – this is a pre-compiler directive
• This step is done before compilation (as the name suggests)
• include copies and pastes the contents of the file into the program

• Two options for including: #include "f.hh" or #include <f.hh>
• #include <f.hh> searches for "f.hh" in the entire include path of the compiler
• #include "f.hh" searches first in the current directory, then acts as #include <f.hh>

• Useful to note that the include path can be specified as an option to the compiler
g++ -o run_hello -I/path/to/header hello.cc

31

Namespaces

• Namespaces are used to group together functions, classes, variables
• This defines the scope of these things
• Similar to blocks
• Useful to prevent accidentally sharing function or variable names from external programs

• By default, functions and variables in header files are in the global namespace
• Available everywhere where the header files are included

namespace my_functions
{

void func1(int x, int y, int z)
{

// Program goes here.
}

}

my_functions :: func1 (3 ,65 ,999); // Note the namespace prefix here.

32

Namespaces

• Can use the keyword using to avoid the namespace prefix
• Compiler knows that functions used are in that namespace, so the prefix in unnecessary
• Use with care

• Definitely do not use using in header files, as any file that includes the header will also have
the using instruction – this can cause issues

• Even in source files, limit usage if you can – namespaces make code clearer

using namespace my_functions;

func1 (3 ,65 ,999); // Note the lack of the namespace prefix here.

33

Back to “Hello, world”

• Let’s revisit the “Hello, world!” example with this new information
• How does the compiler know what cout and endl are when they haven’t been defined

anywhere?
• From the include statement at the top

• Second line tells the compiler that variables and functions are in the std namespace

#include <iostream >

using namespace std;

int main (){
// Print a message.
cout << "Hello , world!" << endl;
// This would be required without the using instruction.
std::cout << "Hello , world!" << std::endl;
return 0;

}
34

The C++ standard library

• The C++ standard library is a collection of useful classes and functions
• Containers (set, vector, list, map)
• Strings and complex numbers
• Common algorithms
• Input/output
• Streams for files and strings

• Don’t reinvent the wheel!
• If you need an algorithm, a mathematical function, a container, or anything like that, check

the standard library

35

Streams

• Streams are for input (istream) and output (ostream)
• Streams can be written to (« operator) and/or read from (» operator) (depends on type)
• cout is a predefined variable which access the standard output (prints to the screen)
• Similarly, cin is a predefined variable which accesses standard input (from the keyboard)

#include <iostream >

// Output stream.
cout << "Hello , world!" << endl;
cout << 55 << "hi" << ’r’ << 3.14159 << endl;

//Input stream.
int x;
cout << "Please enter a number." << endl;
cin >> x;

36

Streams

• Streams can also be used to read and write to files

#include <fstream >

// Output file stream.
ofstream ofile("output.txt");
ofile << 5 << endl; // Write integer to file.
ofile.close ();

//Input stream.
ifstream ifile("output.txt");
int x;
ifile >> x; // Read the contents into x.
ifile.close ();

37

Containers

• Several container types are implemented in the standard library
• vector we will discuss this in more detail on the next slide
• map container that is indexed by a unique key to obtain value (associative array)
• set container for unique elements
• queue container for inserting elements in one end and extracting from another (FIFO)
• stack container for inserting and extracting elements from one end only (LIFO)

• The containers are template types
• Containers can contain any data type

• Containers will all have the following function methods
insert(x) insert element
clear() remove all elements
size() return number of elements
empty() return boolean indicating whether or not the container is empty

38

Vectors

• A vector is a dynamic array (can change size)
• If you want a fixed-length vector (e.g., for performance or safety), use valarray

• Some of its functions are shown below (in addition to those on the last slide)

#include <vector >

vector <int > vector1; // Vector containing elements of type int
vector <double > vector2; // Vector containing elements of type double

vector1.push_back (1); // Insert 1 at the end. {1}
vector1.push_back (2); // Insert 2 at the end. {1,2}

vector1.resize (5); // Set length to 5 (pad with zeros). {1,2,0,0,0}

vector1.pop_back (); // Remove the last element. {1,2,0,0}
vector1 [1]; // Return element at index 1, which is 2 in this case.

39

Strings

• C strings are char arrays terminated by null
• C strings are ugly and annoying to deal with

• Luckily, the C++ standard library provides the string class
• Much easier to deal with

• If you need C strings for whatever reason, use the c_str() method
• For example, ROOT typically requires C strings as input

#include <string >

string str1("Hello");
string str2("world");
string str3; // Empty string.

// Instantiate ROOT object which requires C string.
TH1D h1(str1.c_str(), str2.c_str ());

40

Strings

• Comparison (==, !=) and concatenation (+, +=) operator also implemented for strings

#include <string >

string str1("Hello");
string str2("world");
string str3;

if(str2 == "world")
{

str3 = str1 + ", " + str2;
}
else
{

str3 = str1 + "!";
}

41

Strings

• Some important methods include
find(substring) returns the position (zero-indexed) of first instance of substring
rfind(substring) returns the position (zero-indexed) of last instance of substring
substr(pos, n) returns the substring from index pos to pos+n

#include <string >

// Can also initialize as: string str1 = "hello_hello_hello"
string str1("hello_hello_hello");

str1.find("hello"); // Will return 0.
str1.rfind("hello"); // Will return 12 (i.e., start of 3rd "hello ").

str1.substr (12 ,5); // Will return "hello" (specifically , the 3rd one).

42

Other useful aspects

• cmath or math.h
• Includes trigonometric functions, exponential and logarithmic functions, absolute value,

constants, ...

• limits
• Information about types (e.g., minimum and maximum value of type int) for your platform

• complex
• Complex numbers and functions to operate on them

• random
• For random number generation

43

Objects and classes

• Class
• Can define a custom data type
• Blueprint/details to define properties and behaviour that an object should have
• Contains data (properties) and functions (behaviour)

• Data: data members, attributes
• Functions: methods, function methods

• Object
• Specific instance created from the class (blueprint)
• General structure of every object is the same
• Properties may be different

44

Objects and classes: cars

Common properties (data)
• Make
• Model number
• Colour
• Year
• Mass
• ...

Common functions (behaviour)
• Start engine
• Stop engine
• Increase speed
• Apply brakes
• Turn steering wheel
• ...

• The above properties might be used to construct a class called “Car”
• An object of type “Car” might be a 2007 Blue Honda Civic

45

Classes in C++

• Classes can have data members and/or methods (functions)
• If a data member or function is private, it can only be accessed/called from within the class
• If a data member or function is public, it can be accessed from outside of the class

• It is bad practice for data members to be public (use getters and setters to be explicit)
• Not the case for methods – this will depend though

• If a data member or function is protected, it can be accessed by classes that inherit from it

• In C++, structs are classes where all data members and methods are public
• More typical to use structs if only storing data members
• Note that C and C++ structs are not the same

• Classes have two methods that must exist
• The constructor: runs when the object is instantiated

• Used to initialize data members
• Has the same name as the class itself

• The destructor: runs when the object is destroyed
• Frees allocated memory (if using pointers, must use delete here – we will get to pointers)
• Has the same name as the class with a tilde (∼) prefix

46

Creating a class in C++: a rectangle

Header: Rectangle.hh

class Rectangle
{

public:
// Constructor.
Rectangle(double length =1.0,

double width =1.0);

// Destructor.
~Rectangle ();

double area ();

private:
double fLength;
double fWidth;

};

Source: Rectangle.cc

#include "Rectangle.hh"

Rectangle :: Rectangle
(double length ,
double width)

{
fLength = length;
fWidth = width;

}

double Rectangle ::area()
{

return fLength*fWidth;
}

47

Some remarks about C++ classes

• It is convention to prefix all private data members with an ‘f’
• Allows someone reading the code to immediately infer that the variable is a data member
• This is not enforced by the compiler or anything, but your experiment’s code will likely do

this and I strongly recommend adopting a similar convention for your own code

• Declarations of the class, methods, and data members are done in the header file
• Allows for the class to easily be used in other files

• Definitions/implementations of the function methods is done in the source file
• This is what gets compiled

• Default arguments of function methods, if used, should be specified in the declaration (i.e.,
the header file)

48

Object oriented programming

1. Abstraction
• Show relevant details and hide the inner workings (e.g., you can drive a car without

understanding its inner workings)

2. Encapsulation
• Protect data from being unintentionally modified (e.g., you cannot access the internal parts

of a computer easily except via the I/O ports, as intended)

3. Inheritance
• Extend blueprint to avoid rewriting code (e.g., a class which inherits from general cars might

be trucks, with additional properties like 4WD...)

4. Polymorphism
• Do same operation with a different input (e.g., a function could either add to integers of

concatenate two strings depending on the input type)

49

Pointers

• Just another data type to store a value
• int stores an integer
• double stores a floating point number of double precision (2*32=64)
• string stores a string of characters
• A pointer stores an address in memory

• Like other data types
• A pointer variable can be declared
• Pointers have operations

• Pointers tell you where something is

• Variables tell you what something is

50

Pointers

• Address of a variable can be accessed via the reference operator (&)
• Value at address can be accessed via the dereference operator (*)

• A little confusing since * is also used to declare a pointer
• Keep that in mind

• For variables, the dot is used for function methods and attributes of classes
• For pointers, the arrow is used for function methods and attributes of classes

• The arrow can be though of as a dereference operator followed by the dot

// Variables
histogram.Draw()

// Pointers
histogram ->Draw()
(* histogram).Draw() // equivalent to simply using ->

51

Pointers

• The following example illustrates the concept of addresses and the reference operator
• Full example in the tutorial folder

int i = 3;
cout << "The value of i is: " << i << endl;
//The value of i is: 3

cout << "The address of i is: " << &i << endl;
//The address of i is: 0x1001054a0
//Note that this address will change
// depending on the computer
//It will still be in this format

52

Pointers

• The following example illustrates the difference in initializing a variable and a pointer

// Initialize a variable of type TH1D (a ROOT histogram object).
//Call the constructor to create the object.
TH1D hist_var = TH1D ();

// Initialize a pointer variable of type TH1D.
// Allocate memory (new).
//Call the constructor to create the object.
//Fill the allocated memory with that object.
TH1D * hist_ptr = new TH1D ();

53

What’s the point of pointers?

• When passed to a function, variables are copied
• A new variable is instantiated internally (in scope of function)
• Any modifications to the variable in the function are local
• Copying can be expensive if the object is large

• Instead, can pass a pointer to a function
• The function is passed the address and can thus modify the value stored at the address
• Operations can change the value
• Generally, it is cheaper to copy a pointer (4 or 8 bytes) and dereference it than to copy the

entire object around (could be many times larger)
• No need for pointers of primitive data types like int, float, double
• With modern C++compilers, copying isn’t terribly expensive any more

• Moving around pointers rather than the object itself is often favourable

54

Some remarks about pointers

• “If you don’t understand pointers, don’t use them.”
• someone???

• Pointers can be misused fairly easily
• For most applications, using regular variables is totally fine
• If in doubt, either ask someone or just use regular variables

• Passing by reference is often a good alternative
• If the variable is not to be modified, use the const type modifier!

• For every instance of new, there should be an instance of delete
• If you use the new keyword, you are responsible for memory management – ultimately for

freeing the memory

55

Bonus: using precompiler directives
to obfuscate code

• Can use precompiler directive #define to
create macros
• Compiler will substitute all instances of

the identifier (first string) with the token
string (second string)

• Can use for more than just strings
• Do mathematical operations, generate

random numbers, ...
• This code is perfectly valid in C++ ...

• ... but I would not recommend it

56

For tomorrow...

• I will be giving an introduction to Git and GitHub

• Make a GitHub account (if you do not already have one)
• https://github.com/

• Choose an appropriate user name
• You will likely use this account in the future (perhaps throughout your career)
• I suggest you make it related to your name

• Take a few moments to familiarize yourself with the website

57

https://github.com/

References and further resources

• There is lots of material not covered here

• Much of the material in these slides is from
• http://www.hlnum.org/publications/cppscicomp.pdf
• https://kriemann.name/Ronald/publications/cppscicomp.pdf

• Google and Stack Overflow are your friends
• Often people have similar questions

• Documentation can be confusing at first, but is informative
• https://en.cppreference.com/w/

• Books from the creator of C++ himself, Bjorn Stroustrup
• Programming: Principles and Practice Using C++ for complete beginners
• A Tour of C++ for people with previous programming experience

58

http://www.hlnum.org/publications/cppscicomp.pdf
https://kriemann.name/Ronald/publications/cppscicomp.pdf
https://google.ca
https://stackoverflow.com/
https://en.cppreference.com/w/

