
Introduction to

ROOT
Ian Lam

1

ROOT

 Mainly used in particle physics – developed by/for

CERN-LHC

 Capable of handling (storage, querying) large

amounts of data

 Excellent for statistics and fitting – robust

 I’ll be demonstrating it in C++ since that is what I am

familiar with. Can also be used in Python (ref. Mark

Anderson).

2

ROOT - Recall

 Open root using “root –l”

 See a setup reminiscent of something like MatLAB.

 Can type stuff line by line

 Obviously, when you quit ROOT, you would have to re-

type everything.

 Write scripts/macros and execute them.

3

ROOT

 Few modes:

 .x script.cc (execute)

 .L script.cc (load)

 .L script.cc+ (compile)

 .L script.cc++ (force compile)

 execute and load are for short and simple tests. But as

your code grows in complexity, with many functions

and moving parts, best to compile.

 Compiling can help in debugging before running –

catch silly things like passing wrong variable types or

typos.

4

ROOT

 Usually, the first task that is given to new students: use

ROOT to plot a histogram of the distribution of

electrons at a particular energy in the center of the

detector.

 Histograms and trees - main objects.

 Let’s start with histograms!

5

ROOT-Histograms6

• Can think of it as baskets

containing items.

• Eg: 1.35 will fall into

basket (bin) 2

• Area of bin is the amount

of stuff.

ROOT - Histograms

 TH1D h1 = TH1D ("h1", “The Title", 6, 0, 6)

 1st: histogram name – usually the same as the variable

 2nd: histogram title – appears when you draw it

 3rd: number of bins

 4th: starting edge

 5th ending edge

 underflow and overflow bins (0 and nbins+1)

 Each bin has an index/number. Starts from 1 going left

to right.

 h1.SetBinContent(binnum, content)

 binnum: bin number

 content: how much stuff in the bin

7

ROOT - Histograms

 Tip: .root_hist (root history, not root histogram)

 notice how you can press “up” to see previous inputs?

Wonder where it is stored?

 can access it if you want to make a copy of what you

typed.

 Obviously, it is going to be painful setting bin contents

by hand for histograms. Write a macro/script to do it!

8

Histogram Tutorial

 Draw random numbers from Gaussian distribution.

 Fill.

 Plot!

9

Histogram - Beautify

 h1.SetLineWidth(2)

 h1.SetLineColor(kRed) {kRed+3, kGreen-2, etc}

 h1.SetLineColor(2)

 h1.SetLineStyle(3)

 h1.GetXaxis().SetTitle(“energy”)

 h1.GetYaxis().SetTitle(“counts”)

 h1.GetXaxis().SetTitle("#gamma_{5}^{true}")

10

Google:

root cern color wheel, line style,

line width – can’t miss it

11

Histogram - Beautify

 In guided ROOT exercises:

 TLegend leg = TLegend (0.58,0.73,0.90,0.90);

 leg.AddEntry(h1, “True energy","lep");

 TLatex *tex1 = new TLatex(x-point,y-point, “this plot”);

 TLine *l1 = new TLine(x1, y1, x2, y2);

 Make a second histogram and overlay them.

12

Histogram - Fit

 Fit the histogram to a pre-defined Gaussian

 𝑓 𝑥 =
1

σ 2𝜋
𝑒
−0.5

𝑥−𝜇

σ

2

 Fit options:

 default: chi-squared

 likelihood

 elaborate more on Monday / Phillipe’s stat’s lecture (Tue)

13

Histogram Tutorial

 Goal:

 histogram creation and manipulation

 drawing random numbers from a distribution

 fitting histograms

 beautify

14

ROOT – Data storage

 Usually in lab courses, when you use instrumentation to

take measurements, the outputs are stored in .csv, .txt,

your lab notebook, etc.

 Becomes very unwieldy when dealing with millions of

measurements, and each measurement has many

attributes.

15

ROOT – Data storage

 Roughly, in particle physics, an ‘event’ is a single
measurement that triggers the detector.

 Now, SNO+ has a trigger rate of ~2000 Hz. So, one hour of
data recording would give about ~7.2 million recorded
events. 24 hours running would give….a lot.

 Each event can have various parameters associated with
it.

 For SNO+, the raw output file records the number of PMTs hit,
timing information etc.

 These are then used to ‘reconstruct’ details about an
event, like ‘energy’, ‘position in detector’, etc.

 A .csv file with ~106 rows and ~50 columns isn’t going to
work to well.

16

ROOT – Trees

 ROOT files are structured based on trees, branches,

leaves.

 Trees : the main ‘directory’ (class: TTree)

 Branch: sub-directories

 Leaves: attributes of events and where the data is

held.

 Deal with a one-dimensional tree, sometimes called

an ‘Ntuple’. (class: TNtuple)

 Trees with the same structure (has to be exactly same)

can be linked together into a TChain object.

17

Trees

Event energy posx …

1 5.3 100 …

2 4.6 150 …

3 6.5 189 …

4 2.4 105 …

5 8.3 107 …

… … … …

18

Can think of a one layer tree in table form.

Regular

database

storage reads

row-wise i.e.

need to load

whole event

into memory.

ROOT reads column-wise i.e. only

need to load the attributes of

interest.

Might not seem like a big deal but we usually deal on the

order of millions of events, with many of attributes.

Source: https://indico.desy.de/indico/event/8607/session/4/material/0/1

Trees

 Useful commands to probe quickly (in terminal) the

structure of the tree.

 Say we have a TTree object named “output”

 output->Print() : Shows structure of the tree i.e. what branches

are there and how many entries there are.

 output->Scan(): Shows the branches/variables with their
values in tabular form.

 When you have many variables, can choose to show some of

them by doing output->Scan(“Var1:Var6:Var10”)

 output->Show(index): shows all attributes related to the event

stored at index

 Or can use TBrowser: in ROOT, do “TBrowser b;”

 Since it is a GUI, there might be a lag if you are ssh-ing into a

server.

19

Source: https://root.cern.ch/root/htmldoc/guides/users-guide/Trees.html

Trees

 Quick demonstration of previous slide with a

prepared tree.

20

Tree Tutorial

 What this exercise will highlight:

 Generate random numbers

 Create a non-default function.

 Passing variables to functions.

 Combining trees with same structure in memory.

 Create and save an ntuple

21

ROOT

 Congratulations! You now know how to use ROOT to

perform a simple data analysis in ROOT:

 Get data files from your detector, probably in TTree

format.

 Open the data files, and look at distribution of events.

 Select specific events (i.e. events greater than 5MeV)

 Make pretty histograms, and fit them.

22

ROOT – Searching for info

 Google “root cern <what you want to search>”

 Example, “root cern fit”:

 https://root.cern.ch/root/htmldoc/guides/users-
guide/FittingHistograms.html

23

https://root.cern.ch/root/htmldoc/guides/users-guide/FittingHistograms.html

ROOT – How to search for

class information
 Example: type “root cern th1” in google.

 TH1 is the 1D histogram class for ROOT.

 TH1D is for 1D histograms that use the data type ‘double’, TH1F is

for data type ‘float’ etc.

24

 Public Member Functions are the functions available for use for the
particular class. If you scroll further, there are also Private and
Protected Functions. These are used internally in the background of a
class and you can’t access them, I think.

25

ROOT - Forum

 If you run into an issue or can’t figure out how to do

something, likely someone else also has a similar

question.

 Have to sign up for a free account to post

questions/replies.

 https://root-forum.cern.ch/

 FYI: The name “Rene Brun” will often show up. He is the

main person behind current ROOT (ported ROOT from

FORTRAN to C++).

26

https://root-forum.cern.ch/

