

Luminosity Run of a typical storage ring:

LHC Storage Ring: Protons accelerated and stored for 12 hours distance of particles travelling at about $v \approx c$ $L = 10^{10} \cdot 10^{11} \text{ km}$

... several times Sun - Pluto and back

intensity (10¹¹)

- \rightarrow guide the particles on a well defined orbit ("design orbit")
- → focus the particles to keep each single particle trajectory within the vacuum chamber of the storage ring, i.e. close to the design orbit.

1.) Introduction and Basic Ideas

", ... in the end and after all it should be a kind of circular machine" → need transverse deflecting force

Lorentz force
$$\vec{F} = q * (\vec{E} + \vec{v} \times \vec{B})$$

typical velocity in high energy machines: $v \approx c \approx 3 \times 10^8 \frac{m}{s}$

Example:

$$B = 1 T \rightarrow F = q * 3 * 10^8 \frac{m}{s} * 1 \frac{Vs}{m^2}$$

$$F = q * 300 \frac{MV}{m}$$
equivalent el. field ... E

technical limit for el. field:

$$E \le 1 \frac{MV}{m}$$

old greek dictum of wisdom:

if you are clever, you use magnetic fields in an accelerator wherever it is possible.

The ideal circular orbit

circular coordinate system

condition for circular orbit:

Lorentz force

centrifugal force

$$F_{L} = e v B$$

$$F_{centr} = \frac{\gamma m_{0} v^{2}}{\rho}$$

$$\frac{\gamma m_{0} v}{\rho} = e v B$$

$$\frac{p}{e} = B \rho$$

 $B \rho = "beam rigidity"$

2.) The Magnetic Guide Field

Dipole Magnets:

define the ideal orbit homogeneous field created by two flat pole shoes

$$B = \frac{\mu_0 n I}{h}$$

 $\frac{1}{\rho} = \frac{e B}{p}$

Normalise magnetic field to momentum:

 $\frac{p}{m} = B \rho \longrightarrow$

convenient units:

$$B = \prod_{n=1}^{\infty} \frac{-}{2} \left[\frac{Vs}{m^2} \right] \qquad p = \left[\frac{GeV}{c} \right]$$

Example LHC:

e

$$B = 8.3 T$$

$$p = 7000 \frac{GeV}{c}$$

$$\frac{1}{\rho} = e \frac{\frac{8.3 Vs}{m^2}}{7000 * 10^9 eV}_{c} = \frac{8.3 s * 3 * 10^8 m}{7000 * 10^9 m^2}$$

$$\frac{1}{\rho} = 0.333 \frac{8.3}{7000} \frac{1}{m}$$

The Magnetic Guide Field

field map of a storage ring dipole magnet

$$\rho = 2.53 \text{ km} \longrightarrow 2\pi\rho = 17.6 \text{ km}$$
$$\approx 66\%$$

$$B \approx 1 ... 8 T$$

rule of thumb:

$$\frac{1}{\rho} \approx 0.3 \frac{B}{p} \frac{F}{eV} / c$$

"normalised bending strength"

2.) Focusing Properties - Transverse Beam Optics

classical mechanics: pendulum

there is a restoring force, proportional to the elongation x:

$$m * \frac{d^2 x}{dt^2} = -c * x$$

general solution: free harmonic oszillation

 $x(t) = A * \cos(\omega_t + \varphi)$

Storage Ring: we need a Lorentz force that rises as a function of the distance to?

..... the design orbit

$$F(x) = q * v * B(x)$$

Quadrupole Magnets:

required: *focusing forces to keep trajectories in vicinity of the ideal orbit* linear increasing Lorentz force linear increasing magnetic field Ŀ

normalised quadrupole field:

$$k = \frac{g}{p / e}$$

simple rule:

$$k = 0.3 \frac{g(T / m)}{p(GeV / c)}$$

$$\boldsymbol{B}_{\mathbf{y}} = \boldsymbol{g} \boldsymbol{x} \qquad \boldsymbol{B}_{\mathbf{x}} = \boldsymbol{g} \boldsymbol{y}$$

LHC main quadrupole magnet

 $g \approx 25 \dots 220 \quad T / m$

what about the vertical plane: ... Maxwell

$$\vec{\nabla} \times \vec{\mathbf{B}} = \vec{\nabla} + \frac{\vec{\partial \mathbf{E}}}{\vec{\partial \mathbf{t}}} = 0$$

$$\frac{\partial B_{y}}{\partial x} = \frac{\partial B_{x}}{\partial y} = g$$

 \Rightarrow

Focusing forces and particle trajectories:

normalise magnet fields to momentum (remember: $B^*\rho = p / q$)

Dipole Magnet

$$\frac{B}{p/q} = \frac{B}{B\rho} = \frac{1}{\rho}$$

Quadrupole Magnet

$$k := \frac{g}{p / q}$$

3.) The Equation of Motion:

$$\frac{B(x)}{p/e} = \frac{1}{\rho} + k x + \frac{1}{2!}m x^{2} + \frac{1}{3!}n x^{3} + \dots$$

only terms linear in x, y taken into account dipole fields quadrupole fields

Separate Function Machines:

Split the magnets and optimise them according to their job:

bending, focusing etc

Example: heavy ion storage ring TSR

The Equation of Motion:

***** Equation for the horizontal motion:

$$\boldsymbol{x}'' + \boldsymbol{x} \ (\frac{1}{\boldsymbol{\rho}^2} - \boldsymbol{k}) = 0$$

* Equation for the vertical motion:

$$\frac{1}{\rho^2} = 0$$
 no dipoles ... in general ...

$$k \leftrightarrow -k$$
 quadrupole field changes sign

$$\mathbf{y}'' + \mathbf{k} \ \mathbf{y} = 0$$

4.) Solution of Trajectory Equations

Define ... hor. plane:
$$K = 1/\rho^2 - k$$

... vert. Plane: $K = k$

$$\begin{cases} x'' + K \ x = 0 \end{cases}$$

Differential Equation of harmonic oscillator ... with spring constant K

Ansatz: Hor. Focusing Quadrupole K > 0:

$$x(s) = x_0 \cdot \cos(\sqrt{|K|}s) + x_0' \cdot \frac{1}{\sqrt{|K|}} \sin(\sqrt{|K|}s)$$
$$x'(s) = -x_0 \cdot \sqrt{|K|} \cdot \sin(\sqrt{|K|}s) + x_0' \cdot \cos(\sqrt{|K|}s)$$

For convenience expressed in matrix formalism:

$$\begin{pmatrix} x \\ x' \end{pmatrix}_{s1} = M_{foc} * \begin{pmatrix} x \\ x' \end{pmatrix}_{s0}$$

hor. defocusing quadrupole:

$$\boldsymbol{x}'' - \boldsymbol{K} \ \boldsymbol{x} = \boldsymbol{0}$$

Ansatz: Remember from school

$$x(s) = a_1 \cdot \cosh(\omega s) + a_2 \cdot \sinh(\omega s)$$

$$M_{defoc} = \begin{pmatrix} \cosh \sqrt{|K|}l & \frac{1}{\sqrt{|K|}} \sinh \sqrt{|K|}l \\ \sqrt{|K|} \sinh \sqrt{|K|}l & \cosh \sqrt{|K|}l \end{pmatrix}$$

! with the assumptions made, the motion in the horizontal and vertical planes are independent " ... the particle motion in x & y is uncoupled"

Transformation through a system of lattice elements

combine the single element solutions by multiplication of the matrices

in each accelerator element the particle trajectory corresponds to the movement of a harmonic oscillator "

5.) Orbit & Tune:

Tune: number of oscillations per turn

64.31 59.32

Relevant for beam stability: non integer part

LHC revolution frequency: 11.3 kHz

0.31 *11.3 = 3.5*kHz*

LHC Operation: Beam Commissioning

First turn steering "by sector:"

One beam at the time

Beam through 1 sector (1/8 ring),

correct trajectory, open collimator and move on.

Question: what will happen, if the particle performs a second turn ?

\dots or a third one or $\dots 10^{10}$ turns

II.) The Ideal World: Particle Trajectories, Beams & Bunches

Astronomer Hill:

differential equation for motions with periodic focusing properties "Hill's equation"

Example: particle motion with periodic coefficient

equation of motion: x''(s) - k(s)x(s) = 0

restoring force \neq const, k(s) = depending on the position sk(s+L) = k(s), periodic function

we expect a kind of quasi harmonic oscillation: amplitude & phase will depend on the position s in the ring.

"it is convenient to see"

... after some beer ... general solution of Mr Hill can be written in the form:

Ansatz:

$$x(s) = \sqrt{\varepsilon} * \sqrt{\beta(s)} * \cos(\psi(s) + \phi)$$

 ε , Φ = integration constants determined by initial conditions

 $\beta(s)$ periodic function given by focusing properties of the lattice \leftrightarrow quadrupoles

 $\beta_{(s+L)} = \beta_{(s)}$

ε beam emittance = woozilycity of the particle ensemble, intrinsic beam parameter, cannot be changed by the foc. properties. scientifiquely spoken: area covered in transverse x, x ´phase space ... and it

is

constant !!!

 $\Psi(s) = ,, phase advance"$ of the oscillation between point ,, 0" and ,, s" in the lattice. For one complete revolution: number of oscillations per turn ,, Tune"

 $Q_{y} = \frac{1}{2\pi} \cdot \int \frac{ds}{\beta(s)}$

7.) Beam Emittance and Phase Space Ellipse

$$\varepsilon = \gamma(s) * x^{2}(s) + 2\alpha(s)x(s)x'(s) + \beta(s)x'(s)^{2}$$

 ε beam emittance = woozilycity of the particle ensemble, intrinsic beam parameter, cannot be changed by the foc. properties.
 Scientifiquely spoken: area covered in transverse x, x ´phase space ... and it is constant !!!

Particle Tracking in a Storage Ring

Calculate x, x' for each linear accelerator element according to matrix formalism

plot x, x'as a function of "s"

... and now the ellipse:

note for each turn x, x' at a given position $_{,s_1}$ " and plot in the phase space diagram

Уt

Emittance of the Particle Ensemble:

Emittance of the Particle Ensemble:

$$x(s) = \sqrt{\varepsilon} \sqrt{\beta(s)} \cdot \cos(\Psi(s) + \phi) \qquad \hat{x}(s) = \sqrt{\varepsilon} \sqrt{\beta(s)}$$

single particle trajectories, $N \approx 10^{11}$ per bunch

$$\sqrt{2}\sqrt{p}(3)$$

Gauß **Particle Distribution:**

$$\boldsymbol{\rho}(\boldsymbol{x}) = \frac{N \cdot \boldsymbol{e}}{\sqrt{2\pi}\boldsymbol{\sigma}_{x}} \cdot \boldsymbol{e}^{-\frac{1}{2}\frac{\boldsymbol{x}^{2}}{\boldsymbol{\sigma}_{x}^{2}}}$$

particle at distance 1 σ from centre \leftrightarrow 68.3 % of all beam particles

LHC:
$$\beta = 180 m$$

 $\varepsilon = 5 * 10^{-10} m rad$

$$\sigma = \sqrt{\varepsilon * \beta} = \sqrt{5 * 10^{-10} m * 180 m} = 0.3 mm$$

aperture requirements: $r_0 = 12 * \sigma$

III.) The "not so ideal" World Lattice Design in Particle Accelerators

1952: Courant, Livingston, Snyder: Theory of strong focusing in particle beams

Recapitulation: ...the story with the matrices !!!

Equation of Motion:

Solution of Trajectory Equations

$$x'' + K \ x = 0$$
 $K = 1/\rho^2 - k$... hor. plane:
 $K = k$... vert. Plane:

$$\begin{pmatrix} \mathbf{x} \\ \mathbf{x'} \end{pmatrix}_{s1} = \mathbf{M} * \begin{pmatrix} \mathbf{x} \\ \mathbf{x'} \end{pmatrix}_{s0}$$

 $M_{total} = M_{QF} * M_{D} * M_{B} * M_{D} * M_{QD} * M_{D} * \dots$

8.) Lattice Design: "... how to build a storage ring"

Geometry of the ring: $B * \rho = p / e$

p = momentum of the particle, $\rho = curvature radius$

 $B\rho = beam rigidity$

Circular Orbit: bending angle of one dipole

$$\alpha = \frac{ds}{\rho} \approx \frac{dl}{\rho} = \frac{Bdl}{B\rho}$$

The angle run out in one revolution must be 2π , so for a full circle

$$\alpha = \frac{\int Bdl}{B\rho} = 2\pi$$

$$\int Bdl = 2\pi \frac{p}{q}$$

... defines the integrated dipole field around the machine.

7000 GeV Proton storage ring dipole magnets N = 1232l = 15 mq = +1 e

 $\int B \, dl \approx N \, l \, B = 2\pi \, p / e$

$$B \approx \frac{2\pi \ 7000 \ 10^9 eV}{1232 \ 15 \ m} = \frac{8.3 \ Tesla}{s}$$

Starting point for the calculation: in the middle of a focusing quadrupole Phase advance per cell $\mu = 45^{\circ}$, \rightarrow calculate the twiss parameters for a periodic solution

9.) Insertions

β -Function in a Drift:

$$\beta(\ell) = \beta_0 + \frac{\ell^2}{\beta_0}$$

Magnet-qr

7 sima beam size iside a mini beta quadrupole

At the end of a long symmetric drift space the beta function reaches its maximum value in the complete lattice. -> here we get the largest beam dimension.

-> keep l as small as possible

... clearly there is an

... unfortunately ... in general high energy detectors that are installed in that drift spaces are a little bit bigger than a few centimeters ...

The Mini-β Insertion:

$$R = L * \Sigma_{react}$$

production rate of events is determined by the cross section Σ_{react} and a parameter L that is given by the design of the accelerator: ... the luminosity

Jet Event at 2.36 TeV Collision Energy

 $L = \frac{1}{4\pi e^2 f_0 b} * \frac{I_1 * I_2}{\sigma_x^* * \sigma_y^*}$

Example: Luminosity run at LHC

 $\beta_{x,y} = 0.55 \ m$ $\varepsilon_{x,y} = 5 * 10^{-10} \ rad \ m$ $\sigma_{x,y} = 17 \ \mu m$ $f_0 = 11.245 \ kHz$ $n_b = 2808$

$$\boldsymbol{L} = \frac{1}{4\pi e^2 f_0 \boldsymbol{n}_b} * \frac{\boldsymbol{I}_{p1} \boldsymbol{I}_{p2}}{\boldsymbol{\sigma}_x \boldsymbol{\sigma}_y}$$

 $I_{p} = 584 mA$

$$L = 1.0 * 10^{34} / cm^{2} s$$

Mini-β Insertions: Betafunctions

A mini- β insertion is always a kind of special symmetric drift space. \rightarrow greetings from Liouville

Mini-β Insertions: some guide lines

* calculate the periodic solution in the arc

* *introduce the drift space needed for the insertion device (detector ...)*

* put a quadrupole doublet (triplet ?) as close as possible

* introduce additional quadrupole lenses to match the beam parameters to the values at the beginning of the arc structure

 $\alpha_{x}, \beta_{x} \qquad D_{x}, D_{x}$

parameters to be optimised & matched to the periodic solution: $\alpha_y, \beta_y = Q_x, Q_y$

8 individually powered quad magnets are needed to match the insertion (... at least)

Problems: * Particle energy limited by high voltage discharges * high voltage can only be applied once per particle or twice ? * The "Tandem principle": Apply the accelerating voltage twice … … by working with negative ions (e.g. H⁻) and stripping the electrons in the centre of the structure

Example for such a "steam engine": 12 MV-Tandem van de Graaff Accelerator at MPI Heidelberg

12.) Linear Accelerator 1928, Wideroe

Energy Gain per "Gap":

$$\boldsymbol{W} = \boldsymbol{q} \boldsymbol{U}_{0} \sin \boldsymbol{\omega}_{RF} \boldsymbol{t}$$

drift tube structure at a proton linac (GSI Unilac)

* **RF Acceleration:** multiple application of the same acceleration voltage; brillant idea to gain higher energies

500 MHz cavities in an electron storage ring

13.) The Acceleration

Where is the acceleration? Install an RF accelerating structure in the ring:

B. Salvant N. Biancacci

14.) The Acceleration for Δp/p≠0 "Phase Focusing" below transition

... so sorry, here we need help from Albert:

kinetic energy of a proton

15.) The Acceleration for Δp/p≠0 "Phase Focusing" above transition

Focussing effect in the longitudinal direction keeping the particles close together ... forming a "bunch"

... and how do we accelerate now ??? with the dipole magnets !

The RF system: IR4

Nb on Cu cavities @4.5 K (=LEP2) Beam pipe diam.=300mm

Bunch length (4σ)	ns	<i>1.06</i>
Energy spread (2σ)	<i>10</i> -3	0.22
Synchr. rad. loss/turn	keV	7
Synchr. rad. power	kW	3.6
RF frequency	M Hz	400
Harmonic number		35640
RF voltage/beam	MV	<i>16</i>
Energy gain/turn	keV	4 85
Synchrotron freauency	Hz	23.0

Problem: panta rhei !!! (Heraklit: 540-480 v. Chr.)

just a stupid (and nearly wrong) example)

Bunch length of Electrons ≈ 1 cm

typical momentum spread of an electron bunch:

17.) Dispersion and Chromaticity: Magnet Errors for $\Delta p/p \neq 0$

Influence of external fields on the beam: prop. to magn. field & prop. zu 1/p

Dispersion

Example: homogeneous dipole field

Matrix formalism:

$$x(s) = x_{\beta}(s) + D(s) \cdot \frac{\Delta p}{p}$$
$$x(s) = C(s) \cdot x_{0} + S(s) \cdot x_{0}' + D(s) \cdot \frac{\Delta p}{p}$$

$$\begin{pmatrix} \mathbf{x} \\ \mathbf{x'} \end{pmatrix}_{s} = \begin{pmatrix} \mathbf{C} & \mathbf{S} \\ \mathbf{C'} & \mathbf{S'} \end{pmatrix} \begin{pmatrix} \mathbf{x} \\ \mathbf{x'} \end{pmatrix}_{0} + \frac{\Delta \mathbf{p}}{\mathbf{p}} \begin{pmatrix} \mathbf{D} \\ \mathbf{D'} \end{pmatrix}_{0}$$

$$x_{\beta} = 1 \dots 2 mm$$
$$D(s) \approx 1 \dots 2 m$$
$$\frac{\Delta p}{p} \approx 1 \cdot 10^{-3}$$

Amplitude of Orbit oscillationcontribution due to Dispersion ≈ beam size→ Dispersion must vanish at the collision point

Calculate D, D : ... takes a couple of sunny Sunday evenings !

V.) Are there Any Problems ???

sure there are

Some Golden Rules to Avoid Trouble

I.) Golden Rule number one: do not focus the beam !

Problem: Resonances

Qualitatively spoken:

Integer tunes lead to a resonant increase of the closed orbit amplitude in presence of the smallest dipole field error.

Teilchenbahnen und Enveloppe

Tune and Resonances

 $m^*Q_x + n^*Q_y + l^*Q_s = integer$

Tune diagram up to 3rd order

... and up to 7th order

Homework for the operateurs: find a nice place for the tune where against all probability the beam will survive

II.) Golden Rule number two: Never accelerate charged particles !

Transport line with quadrupoles

Transport line with quadrupoles and space charge

$$\mathbf{x}'' + \mathbf{K}(\mathbf{s})\mathbf{x} = 0$$

 $x'' + (K(s) + K_{SC}(s))x = 0$

$$\mathbf{x}'' + \left(\mathbf{K}(\mathbf{s}) - \underbrace{\frac{2\mathbf{r}_0 \mathbf{I}}{\mathbf{e} \mathbf{a}^2 \beta^3 \gamma^3 \mathbf{c}}}_{\mathbf{K}_{SC}} \right) \mathbf{x} = 0$$

Golden Rule number two:

Never accelerate charged particles !

Tune Shift due to Space Charge Effect Problem at low energies

v/c

... at low speed the particles repel each other

III.) Golden Rule number three:

Never Collide the Beams !

the colliding bunches influence each other → change the focusing properties of the ring !!

most simple case: linear beam beam tune shift

$$\Delta Q_{x} = \frac{\beta_{x}^{*} * r_{p} * N_{p}}{2 \pi \gamma_{p} (\sigma_{x} + \sigma_{y}) * \sigma_{x}}$$

and again the resonances !!!

Clearly there is another problem if it were easy everybody could do it

Again: the phase space ellipse

for each turn write down - at a given position "s" in the ring - the single partilce amplitude xand the angle x'... and plot it. $\begin{pmatrix} x \\ x' \end{pmatrix}_{s1} = M_{turn} * \begin{pmatrix} x \\ x' \end{pmatrix}_{s}$

A beam of 4 particles – each having a slightly different emittance:

Installation of a weak (!!!) sextupole magnet

The good news: sextupole fields in accelerators cannot be treated analytically anymore. → no equations; instead: Computer simulation " particle tracking "

 $x_{n,1}, x_{n,2}, x_{n,3}, x_{n,4}$

"dynamic aperture"

Golden Rule XXL: COURAGE

and with a lot of effort from Bachelor / Master / Diploma / PhD and Summer-Students the machine is running !!!

thank'x for your help and have a lot of fun