

Luminosity Run of a typical storage ring:

LHC Storage Ring: Protons accelerated and stored for 12 hours distance of particles travelling at about v ≈ c L = 10¹⁰ -10¹¹ km

... several times Sun - Pluto and back

intensity (10¹¹)

- \rightarrow guide the particles on a well defined orbit (*design orbit*")
- *focus the particles to keep each single particle trajectory within the vacuum chamber of the storage ring, i.e. close to the design orbit.*

1.) Introduction and Basic Ideas

" ... in the end and after all it should be a kind of circular machine" need transverse deflecting force

Lorentz force
$$
\vec{F} = q * \times + \vec{v} \times \vec{B}
$$

typical velocity in high energy machines: $v \approx c \approx 3 * 10^8 m/s$

Example:

$$
B = 1 T \rightarrow F = q * 3 * 10^8 \frac{m}{s} * 1 \frac{V_s}{m^2}
$$

$$
F = q * 300 \frac{MV}{m}
$$

equivalent el. field ... E

technical limit for el. field:

$$
E \le 1 \frac{MV}{m}
$$

old greek dictum of wisdom:

if you are clever, you use magnetic fields in an accelerator wherever it is possible.

The ideal circular orbit

circular coordinate system

condition for circular orbit:

Lorentz force

centrifugal force

$$
F_{L} = e v B
$$

$$
F_{\text{centr}} = \frac{\gamma m_0 v^2}{\rho} \qquad \qquad \frac{P}{e} = B
$$

 $m_{\alpha} v^{\lambda}$ 0

 $e \setminus B$

e $p = B \rho$

 $B \rho =$ *"beam rigidity"*

2.) The Magnetic Guide Field

Dipole Magnets:

define the ideal orbit homogeneous field created by two flat pole shoes

$$
B = \frac{\mu_0 n I}{h}
$$

p

1 *e B*

Normalise magnetic field to momentum:

convenient units:

$$
B = \mathbf{F} = \begin{bmatrix} V_s \\ m^2 \end{bmatrix} \qquad p = \begin{bmatrix} GeV \\ c \end{bmatrix}
$$

Example LHC:

e

p

B

$$
B = 8.3 T
$$

\n
$$
p = 7000 \frac{GeV}{c}
$$

\n
$$
\frac{1}{\rho} = e \frac{8.3 Vs}{7000 * 10^{9} eV/c} = \frac{8.3 s * 3 * 10^{8} m/s}{7000 * 10^{9} m^{2}}
$$

\n
$$
\frac{1}{\rho} = 0.333 \frac{8.3}{7000} \frac{1}{m}
$$

The Magnetic Guide Field

field map of a storage ring dipole magnet

$$
\rho = 2.53 \text{ km} \longrightarrow 2\pi \rho = 17.6 \text{ km}
$$

$$
\approx 66\%
$$

$$
B \approx 1 ... 8 T
$$

rule of thumb:

$$
\frac{1}{\rho} \approx 0.3 \frac{B}{p} \frac{1}{\text{keV}} - \frac{1}{c}
$$

"normalised bending strength"

2.) Focusing Properties – Transverse Beam Optics

classical mechanics: pendulum

there is a restoring force, proportional to the elongation x:

$$
m * \frac{d^2x}{dt^2} = -c * x
$$

general solution: free harmonic oszillation

 $x(t) = A * cos(\omega_t + \varphi)$

Storage Ring: we need a Lorentz force that rises as a function of the distance to ?

................... the design orbit

$$
F(x) = q * v * B(x)
$$

Quadrupole Magnets:

required: focusing forces to keep trajectories in vicinity of the ideal orbit linear increasing Lorentz force linear increasing magnetic field

normalised quadrupole field:

$$
k = \frac{g}{p/e}
$$

$$
k=\frac{b}{p/e}
$$

simple rule:

$$
k = 0.3 \frac{g(T/m)}{p(GeV/c)}
$$

$$
B_y = g x \qquad B_x = g y
$$

 \Rightarrow

LHC main quadrupole magnet

 $g \approx 25$... 220 *T* / *m*

what about the vertical plane:
 $\vec{\nabla} \times \vec{B} = \cancel{\bigtimes} + \frac{\delta B}{\delta B}$

$$
\vec{\nabla} \times \vec{\mathbf{B}} = \cancel{\bigtimes} + \frac{\delta \vec{\mathbf{B}}}{\delta \lambda} = 0
$$

$$
\frac{\partial B_y}{\partial x} = \frac{\partial B_x}{\partial y} = g
$$

Focusing forces and particle trajectories:

*normalise magnet fields to momentum (remember: B*ρ = p / q)*

1 *B B* $p/q = B$ $\boxed{\rho}$

Dipole Magnet Quadrupole Magnet

$$
k := \frac{g}{p/q}
$$

3.) The Equation of Motion:

$$
\frac{B(x)}{p/e} = \frac{1}{\rho} + k x + \frac{1}{2!}mx^{2} + \frac{1}{3!}nx^{3} + ...
$$

only terms linear in x, y taken into account dipole fields quadrupole fields

Separate Function Machines:

Split the magnets and optimise them according to their job:

bending, focusing etc

Example: heavy ion storage ring TSR

The Equation of Motion:

** Equation for the horizontal motion:*

$$
x'' + x \left(\frac{1}{\rho^2} - k\right) = 0
$$

** Equation for the vertical motion:*

$$
\frac{1}{\rho^2} = 0
$$
 no dipoles ... in general ...

$$
k \quad \leftrightarrow \quad -k \qquad quadrupole field changes sign
$$

$$
y'' + k y = 0
$$

4.) Solution of Trajectory Equations

Define ... hor. plane:
$$
K = 1/\rho^2 - k
$$

... *vert. Plane:* $K = k$ $x'' + K x = 0$

Differential Equation of harmonic oscillator … with spring constant K

Ansatz: Hor. Focusing Quadrupole K > 0:

$$
x(s) = x_0 \cdot \cos(\sqrt{|K|}s) + x'_0 \cdot \frac{1}{\sqrt{|K|}} \sin(\sqrt{|K|}s)
$$

$$
x'(s) = -x_0 \cdot \sqrt{|K|} \cdot \sin(\sqrt{|K|}s) + x'_0 \cdot \cos(\sqrt{|K|}s)
$$

For convenience expressed in matrix formalism:

$$
\begin{pmatrix} x \\ x' \end{pmatrix}_{s1} = M_{foc} * \begin{pmatrix} x \\ x' \end{pmatrix}_{s0}
$$

hor. defocusing quadrupole:

$$
x'' - K x = 0
$$

Ansatz: Remember from school

$$
x(s) = a_1 \cdot \cosh(\omega s) + a_2 \cdot \sinh(\omega s)
$$

$$
M_{defoc} = \begin{pmatrix} \cosh\sqrt{|K|}l & \frac{1}{\sqrt{|K|}}\sinh\sqrt{|K|}l \\ \sqrt{|K|}\sinh\sqrt{|K|}l & \cosh\sqrt{|K|}l \end{pmatrix}
$$

! with the assumptions made, the motion in the horizontal and vertical planes are independent, ... the particle motion in x & y is uncoupled"

Transformation through a system of lattice elements

combine the single element solutions by multiplication of the matrices

in each accelerator element the particle trajectory corresponds to the movement of a harmonic oscillator "

5.) Orbit & Tune:

Tune: number of oscillations per turn

64.31 59.32

LHC revolution frequency: 11.3 kHz

 $0.31 * 11.3 = 3.5$ *kHz*

LHC Operation: Beam Commissioning

First turn steering "by sector:"

one beam at the time

 \Box Beam through 1 sector (1/8 ring),

correct trajectory, open collimator and move on.

Question: what will happen, if the particle performs a second turn ?

... or a third one or ... 10¹⁰ turns

II.) The Ideal World: Particle Trajectories, Beams & Bunches

Astronomer Hill:

differential equation for motions with periodic focusing properties "Hill"s equation"

Example: particle motion with periodic coefficient

equation of motion: $x''(s) - k(s)x(s) = 0$

 $k(s+L) = k(s)$, periodic function **on the position s** in the ring.

restoring force ≠ const, we expect a kind of quasi harmonic $k(s) = depending on the position s$ oscillation: amplitude & phase will depend

"it is convenient to see" ... after some beer ... general solution of Mr Hill can be written in the form:

Ansatz:

 $x(s) = \sqrt{\varepsilon} * \sqrt{\beta(s)} * \cos(\psi(s) + \phi)$

ε, Φ = integration constants determined by initial conditions

β(s) periodic function given by focusing properties of the lattice ↔ quadrupoles

 β _{(s} + L) = β _(s)

ε beam emittance = woozilycity of the particle ensemble, intrinsic beam parameter, cannot be changed by the foc. properties. scientifiquely spoken: area covered in transverse x, x´ *phase space … and it*

is

constant !!!

 $\Psi(s) =$ n , phase advance^a of the oscillation between point n , 0 and n , s in the lattice. *For one complete revolution: number of oscillations per turn "Tune"*

> 1 $\frac{y}{2\pi}$, $\frac{y}{\beta(s)}$ *d s Q s*

7.) Beam Emittance and Phase Space Ellipse

$$
\varepsilon = \gamma(s) * x^2(s) + 2\alpha(s)x(s)x'(s) + \beta(s)x'(s)^2
$$

ε beam emittance = woozilycity of the particle ensemble, intrinsic beam parameter, cannot be changed by the foc. properties. Scientifiquely spoken: area covered in transverse x, x´ *phase space … and it is constant !!!*

Particle Tracking in a Storage Ring

Calculate x, x´ **for each linear accelerator element according to matrix formalism**

plot x, x'as a function of "s"

… and now the ellipse:

note for each turn **x**, **x´at a given position "s** $_1$ " and plot in the **phase space diagram**

Уt

Emittance of the Particle Ensemble:

Emittance of the Particle Ensemble:

Gauß Particle Distribution:

$$
\rho(x) = \frac{N \cdot e}{\sqrt{2\pi}\sigma_x} \cdot e^{-\frac{1}{2}\frac{x^2}{\sigma_x^2}}
$$

particle at distance 1 σ from centre ↔ 68.3 % of all beam particles

single particle trajectories, $N \approx 10^{11}$ *per bunch*

LHC:
$$
\beta = 180 \text{ m}
$$

$$
\varepsilon = 5 * 10^{-10} \text{ m rad}
$$

$$
\sigma = \sqrt{\varepsilon * \beta} = \sqrt{5 * 10^{-10} m * 180 m} = 0.3 mm
$$

aperture requirements: $r_{0} = 12 * \sigma$

III.) The "not so ideal" World Lattice Design in Particle Accelerators

1952: Courant, Livingston, Snyder: Theory of strong focusing in particle beams

Recapitulation: ...the story with the matrices !!!

Equation of Motion:

Solution of Trajectory Equations

*

M

x

1 0 *s s x x x … hor. plane: … vert. Plane:* 2 *K k* 1 *K k ^x ^K ^x* ⁰

 M _{*total*} = M _{*QF*} $*$ M _{*D*} $*$ M _{*B*} $*$ M _{*D*} $*$ M _{*D*}

8.) Lattice Design: "... how to build a storage ring"

Geometry of the ring: $B * \rho = p / e$

p = momentum of the particle, ρ = curvature radius

Bρ= beam rigidity

Circular Orbit: bending angle of one dipole

$$
\alpha = \frac{ds}{\rho} \approx \frac{dl}{\rho} = \frac{Bdl}{B\rho}
$$

The angle run out in one revolution must be 2π, so for a full circle

$$
\alpha = \frac{\int B dl}{B \rho} = 2 \pi
$$

$$
\int B dl = 2 \pi \frac{p}{q}
$$

… defines the integrated dipole field around the machine.

7000 GeV Proton storage ring dipole magnets $N = 1232$ $l = 15$ m $q = +1$ e

B $dl \approx N$ *l* $B = 2\pi p/e$

$$
B \approx \frac{2\pi \ 7000 \ 10^{9} eV}{1232 \ 15 \ m \ 3 \ 10^{8} \ \frac{m}{s}} = 8.3 \ \text{Tesla}
$$

Starting point for the calculation: in the middle of a focusing quadrupole Phase advance per cell $\mu = 45^{\circ}$, **calculate the twiss parameters for a periodic solution**

9.) Insertions

β-Function in a Drift:

$$
\beta(\ell) = \beta_0 + \frac{\ell^2}{\beta_0}
$$

At the end of a long symmetric drift space the beta function reaches its maximum value in the complete lattice. -> here we get the largest beam dimension.

-> keep l as small as possible

7 sima beam size iside a mini beta quadrupole

... clearly there is and

Example: Luminosity of *installed in that drift spaces ... unfortunately ... in general high energy detectors that are*

formallest a little bit bigger than a few centimeters ... and keep the distance "s" as small as possible.

The Mini-β Insertion:

$$
R = L * \Sigma_{react}
$$

production rate of events is determined by the cross section Σ_{react} and a parameter L that is given by the design of the accelerator: … the luminosity $R = L$ *
oduction *r*
determine
oss section
od a param
r the desig
. the lumin
 $= \frac{1}{4\pi e^2 f}$

SATLAS Jet Event at 2.36 TeV Collision Energy 2009-12-14, 04:30 CET, Run 142308, Event 482137

 $\frac{1 - 7}{2}$ $\frac{1}{2}$ f b σ^* π^* 0 1 I_1^* $4 \pi e^2 f_0 b \stackrel{*}{\sigma} \frac{1-2}{x}$ $I_1 * I$ *L*

http://atlas.web.cern.ch/Atlas/public/EVTDISPLAY/events.html

Example: Luminosity run at LHC

 $\mu_{x,y} = 17 \mu m$ $r_{x,y}$ = 5 $*$ 10⁻¹⁰ rad m $_{x,y}$ = 0.55 m , n_{b} = 2808 f_{0} = 11.245 kHz

$$
L = \frac{1}{4\pi e^2 f_0 n_b} * \frac{I_{p1} I_{p2}}{\sigma_x \sigma_y}
$$

 $I_p = 584$ *mA*

$$
L = 1.0 * 10^{34} \frac{1}{cm^2 s}
$$

Mini-β Insertions: Betafunctions

A mini-β insertion is always a kind of special symmetric drift space. \rightarrow greetings from Liouville

Mini-β Insertions: some guide lines

** calculate the periodic solution in the arc*

** introduce the drift space needed for the insertion device (detector ...)*

** put a quadrupole doublet (triplet ?) as close as possible*

** introduce additional quadrupole lenses to match the beam parameters to the values at the beginning of the arc structure*

 $,~\beta$ _x D _x,

 $\boldsymbol{\mu}_x$, $\boldsymbol{\mu}_x$, $\boldsymbol{\mu}_x$, $\boldsymbol{\mu}_x$

 D_x , D

 Q_x , Q

 $\mathcal{Y}, \ \mathcal{P}_{\mathcal{Y}}$ $\mathcal{Q}_{\mathcal{X}}, \ \mathcal{Q}_{\mathcal{Y}}$

, β_{y} Q_{x} ,

parameters to be optimised & matched to the periodic solution:

8 individually powered quad magnets are needed to match the insertion (... at least)

*Problems: * Particle energy limited by high voltage discharges * high voltage can only be applied once per particle or twice ?*

** The "Tandem principle": Apply the accelerating voltage twice by working with negative ions (e.g. H-) and stripping the electrons in the centre of the structure*

Example for such a "steam engine": 12 MV-Tandem van de Graaff Accelerator at MPI Heidelberg

12.) Linear Accelerator 1928, Wideroe

Energy Gain per "Gap":

$$
W = q U_0 \sin \omega_{RF} t
$$

drift tube structure at a proton linac (GSI Unilac)

* **RF Acceleration: multiple application of the same acceleration voltage; brillant idea to gain higher energies**

500 MHz cavities in an electron storage ring

13.) The Acceleration

Where is the acceleration? Install an RF accelerating structure in the ring:

B. Salvant N. Biancacci

14.) The Acceleration for *Δ***p/p≠0 "Phase Focusing" below transition**

... so sorry, here we need help from Albert:

kinetic energy of a proton

15.) The Acceleration for *Δ***p/p≠0 "Phase Focusing" above transition**

Focussing effect in the longitudinal direction keeping the particles close together ... forming a "bunch"

... and how do we accelerate now ??? with the dipole magnets !

The RF system: IR4

Nb on Cu cavities @4.5 K (=LEP2) Beam pipe diam.=300mm

Problem: panta rhei !!! (Heraklit: 540-480 v. Chr.)

just a stupid (and nearly wrong) example) *Bunch length of Electrons ≈ 1cm*

typical momentum spread of an electron bunch:

17.) Dispersion and Chromaticity: Magnet Errors for Δp/p ≠ 0

Influence of external fields on the beam: prop. to magn. field & prop. zu 1/p

Dispersion

Example: homogeneous dipole field

Matrix formalism:

$$
x(s) = x_{\beta}(s) + D(s) \cdot \frac{\Delta p}{p}
$$

$$
x(s) = C(s) \cdot x_0 + S(s) \cdot x'_0 + D(s) \cdot \frac{\Delta p}{p}
$$

$$
\left(\frac{x}{x'}\right)_s = \left(\frac{C}{C'} \frac{S}{S'}\right)\left(\frac{x}{x'}\right)_0 + \frac{\Delta p}{p}\left(\frac{D}{D'}\right)_0
$$

Calculate D, D´*: ... takes a couple of sunny Sunday evenings !*

$$
x_{\beta} = 1 ... 2 \, mm
$$

$$
D(s) \approx 1 ... 2 \, m
$$

$$
\frac{\Delta p}{p} \approx 1 \cdot 10^{-3}
$$

Amplitude of Orbit oscillation contribution due to Dispersion ≈ beam size Dispersion must vanish at the collision point

!

V.) Are there Any Problems ???

sure there are

Some Golden Rules to Avoid Trouble

I.) Golden Rule number one: do not focus the beam !

Problem: Resonances

Integer tunes lead to a resonant increase of the closed orbit amplitude in presence of the smallest dipole field error.

Teilchenbahnen und Enveloppe

Qualitatively spoken:

Tune and Resonances

 $m^*Q_x + n^*Q_y + l^*Q_s = integer$

Tune diagram up to 3rd order

… and up to 7th order

Homework for the operateurs: find a nice place for the tune where against all probability the beam will survive

II.) Golden Rule number two: Never accelerate charged particles !

Transport line with quadrupoles Transport line with quadrupoles and space charge

$$
x'' + K(s)x = 0
$$

$$
x'' + K(s)x = 0
$$

$$
x'' + (K(s) + K_{SC}(s))x = 0
$$

$$
x'' + \left(K(s) - \frac{2r_0 I}{ea^2 \beta^3 \gamma^3 c}\right) x = 0
$$

$$
K_{SC}
$$

Golden Rule number two: Never accelerate charged particles !

Problem at low energies Tune Shift due to Space Charge Effect

v/c

... at low speed the particles repel each other

III.) Golden Rule number three:

Never Collide the Beams !

the colliding bunches influence each other change the focusing properties of the ring !!

most simple case: linear beam beam tune shift

$$
\Delta Q_x = \frac{\beta_x^* * r_p^* * N_p}{2 \pi \gamma_p (\sigma_x + \sigma_y^*) * \sigma_x}
$$

and again the resonances !!!

Clearly there is another problem if it were easy everybody could do it

Again: the phase space ellipse

for each turn write down – at a given position "s" in the ring – the single partilce amplitude x and the angle $\boldsymbol{\mathsf{x}}'$... and plot it. $\left(\mathbf{x}'\right)_{s1}$ and $\left(\mathbf{x}'\right)_{s0}$ $\begin{array}{c} \text{and} \\ \text{s} \end{array}$ *M x x*

A beam of 4 particles *– each having a slightly different emittance:*

*

x

turn

s

Installation of a weak (!!!) sextupole magnet

The good news: sextupole fields in accelerators cannot be treated analytically anymore. no equatiuons; instead: Computer simulation " particle tracking "

B \bullet

"dynamic aperture"

Golden Rule XXL: COURAGE

and with a lot of effort from Bachelor / Master / Diploma / PhD and Summer-Students the machine is running !!!

thank"x for your help and have a lot of fun