

Double electroweak scattering processes at the LHC

MPI@LHC 2010 Glasgow 29 Nov – 3 Dec 2010

Steve Chun-Hay Kom (Cambridge)

with J. Gaunt, A. Kulesza, J. Stirling

(arXiv:1003.3953 + work in progress)

Electroweak DPS at the LHC - p. 1/24

- Quick recap of DPS basics
- Singal/background studies of
 - same sign W pairs
 - $Z(\gamma^*)$ pairs
- Summary

Double parton scattering (DPS)

Two simultaneous hard interactions in one (p-p) collision.

 $\sigma_{\rm DS}^{(W_1,W_2)} = \frac{1}{2\sigma_{\rm eff}} \int dx_1 dx_2 dx'_1 dx'_2$ $D^{ij}(x_1, x_2, t_1, t_2) D^{kl}(x'_1, x'_2, t_1, t_2) \hat{\sigma}^{W_1}_{ik}(x_1, x'_1) \hat{\sigma}^{W_2}_{jl}(x_2, x'_2)$

Double parton scattering (DPS)

Two simultaneous hard interactions in one (p-p) collision.

 $\sigma_{\rm DS}^{(W_1,W_2)} = \frac{1}{2\sigma_{\rm eff}} \int dx_1 dx_2 dx'_1 dx'_2$ $D^{ij}(x_1, x_2, t_1, t_2) D^{kl}(x'_1, x'_2, t_1, t_2) \hat{\sigma}^{W_1}_{ik}(x_1, x'_1) \hat{\sigma}^{W_2}_{jl}(x_2, x'_2)$

Usual assumptions:

- Uncorrelated longitudinal and transverse distributions (σ_{eff})
- Same transverse distributions for different partons (universal σ_{eff})
- **•** Factorised double distributions $(D^{ij}(x_1, x_2) = D^i(x_1)D^j(x_2))$

Correlation effects

Lots of room to improve on this ! E.g.

Correlation effects

Lots of room to improve on this ! E.g.

scale evolution ?

Snigirev 03, Korotkikh, Snigirev 04, Cattaruzza et. al. 05

Momentum and number sum rule constraints ? Gaunt, Stirling 09

Connections between sea and valence distributions ?
Calucci, Treleani 99

In different σ_{eff} for different terms in dDGLAP ?

Cattaruzza, Treleani et. al. 05

Correlation effects

Lots of room to improve on this ! E.g.

scale evolution ?

Snigirev 03, Korotkikh, Snigirev 04, Cattaruzza et. al. 05

momentum and number sum rule constraints ?

Gaunt, Stirling 09

Connections between sea and valence distributions ?
Calucci, Treleani 99

Ifferent σ_{eff} for different terms in dDGLAP ?

Cattaruzza, Treleani et. al. 05

Need experimental handles from processes sensitive to different scales and initial state partons.

DPS phenomenology

Experimental studies:
AFS, (UA2,) & CDF on 4j, CDF & D0 on $\gamma + 3j$, and RHIC also Drees, Han 96

DPS phenomenology

Experimental studies:
AFS, (UA2,) & CDF on 4j, CDF & D0 on $\gamma + 3j$, and RHIC also Drees, Han 96

LHC studies:

 $b\bar{b}b\bar{b}, b\bar{b}jj, jjjj$ Del Fabbro, Treleani 02, Cattaruzza et. al. 05, Berger et. al. 09, Blok et. al. 10 W/Z + 4j Maina 09 Same sign W pairs (+ nj) Kulesza, Stirling 99; Maina 09

DPS phenomenology

Experimental studies:
AFS, (UA2,) & CDF on 4j, CDF & D0 on $\gamma + 3j$, and RHIC also Drees, Han 96

LHC studies:

 $b\bar{b}b\bar{b}, b\bar{b}jj, jjjj$ Del Fabbro, Treleani 02, Cattaruzza et. al. 05, Berger et. al. 09, Blok et. al. 10 W/Z + 4j Maina 09 Same sign W pairs (+ nj) Kulesza, Stirling 99; Maina 09

Background:

Associated W/Z+H production Del Fabbro, Treleani 00, Hussein 06

Why study double electroweak processes ?

Why study double electroweak processes ?

- clean signal
- corresponding single processes well understood, and
- will be measured accurately at the LHC

Why study double electroweak processes ?

- clean signal
- corresponding single processes well understood, and
- will be measured accurately at the LHC

 $W^{\pm}W^{\pm} \rightarrow l^{\pm}l^{\pm} + \not\!\!\!E_T$:

- no 'irreducible' single scattering at the same order !
- valence quarks (sum rules) relatively important

Why study double electroweak processes ?

- clean signal
- corresponding single processes well understood, and
- will be measured accurately at the LHC

 $W^{\pm}W^{\pm} \rightarrow l^{\pm}l^{\pm} + \not\!\!\!E_T$:

- no 'irreducible' single scattering at the same order !
- valence quarks (sum rules) relatively important

 $Z(\gamma^*)Z(\gamma^*) \to 4l$:

- characteristic DPS kinematics
- Iow scales compared to jet based observables possible

Aim: $W^{\pm}W^{\pm} \rightarrow l^{\pm}l^{\pm} + \not\!\!\!E_T$:

- study sum rule effects using GS09 dPDF Gaunt, Stirling 09
- towards a genuine signal/background study

Aim: $W^{\pm}W^{\pm} \rightarrow l^{\pm}l^{\pm} + \not\!\!\!E_T$:

- study sum rule effects using GS09 dPDF Gaunt, Stirling 09
- towards a genuine signal/background study

 $Z(\gamma^*)Z(\gamma^*) \to 4l$:

- study 'typical' DPS observables at LOW scale
- find ways to extract the signal !!

Aim: $W^{\pm}W^{\pm} \rightarrow l^{\pm}l^{\pm} + \not\!\!\!E_T$:

- study sum rule effects using GS09 dPDF Gaunt, Stirling 09
- towards a genuine signal/background study

 $Z(\gamma^*)Z(\gamma^*) \to 4l$:

- study 'typical' DPS observables at LOW scale
- find ways to extract the signal !!

Note:

The rate for these processes are low (signal \sim bkgd $\mathcal{O}(1)$ fb after BRs at 14TeV).

We are talking about longer term LHC possibilities here.

$W^{\pm}W^{\pm}$: **DPS correlations**

dPDFs correlations break factorisations :

 $R\equiv 4\frac{\sigma_{W^+W^+}\sigma_{W^-W^-}}{\sigma_{W^+W^-}^2}$ (= 1 in the factorised limit)

$W^{\pm}W^{\pm}$: **DPS correlations**

dPDFs correlations break factorisations :

 $R\equiv 4\frac{\sigma_{W^+W^+}~\sigma_{W^-W^-}}{\sigma_{W^+W^-}^2}$ (= 1 in the factorised limit)

For comparison we have $MSTW_n$ (n = 0, 1, 2) sets :

 $D_h^{ab}(x_1, x_2, t) = D_h^a(x_1, t) D_h^b(x_2, t) \theta(1 - x_1 - x_2) \times (1 - x_1 - x_2)^n$

(pb)	$\sigma_{ m GS09}$	$\sigma_{\rm MSTW_0}$	$\sigma_{\rm MSTW_1}$	$\sigma_{\rm MSTW_2}$	(pb)		$\sigma_{ m GS09}$	
	$\sqrt{s} =$ 14 TeV					$\sqrt{s}=$ 7 TeV	$\sqrt{s}=$ 10 TeV	$\sqrt{s}=$ 14 TeV
W^+W^-	0.546	0.496	0.409	0.348	W^+W^-	0.107	0.250	0.546
W^+W^+	0.321	0.338	0.269	0.223	W^+W^+	0.0640	0.148	0.321
W^-W^-	0.182	0.182	0.156	0.136	W^-W^-	0.0317	0.0793	0.182
	R					R		
	0.784	1.00	1.00	1.00		0.709	0.751	0.784

$W^{\pm}W^{\pm}$: **DPS correlations**

dPDFs correlations break factorisations :

 $R\equiv 4\frac{\sigma_{W^+W^+}~\sigma_{W^-W^-}}{\sigma_{W^+W^-}^2}$ (= 1 in the factorised limit)

For comparison we have $MSTW_n$ (n = 0, 1, 2) sets :

 $D_h^{ab}(x_1, x_2, t) = D_h^a(x_1, t) D_h^b(x_2, t) \theta(1 - x_1 - x_2) \times (1 - x_1 - x_2)^n$

(pb)	$\sigma_{ m GS09}$	$\sigma_{\rm MSTW_0}$	$\sigma_{\rm MSTW_1}$	$\sigma_{\rm MSTW_2}$		(pb)		$\sigma_{ m GS09}$	
	$\sqrt{s} =$ 14 TeV						$\sqrt{s}=$ 7 TeV	$\sqrt{s}=$ 10 TeV	$\sqrt{s}=$ 14 TeV
W^+W^-	0.546	0.496	0.409	0.348		W^+W^-	0.107	0.250	0.546
W^+W^+	0.321	0.338	0.269	0.223		W^+W^+	0.0640	0.148	0.321
W^-W^-	0.182	0.182	0.156	0.136		W^-W^-	0.0317	0.0793	0.182
	R						R		
	0.784	1.00	1.00	1.00			0.709	0.751	0.784

Factorised approximation becomes better when \sqrt{s} increases.

 $V^{\pm}W^{\pm}$: DPS correlations (2)

 η_l well modelled by MSTW₁

Electroweak DPS at the LHC - p. 9/24

: signal vs (SPS) bkgd

Assume @ LHC $\sigma_{\rm eff} = 14.5 \,\mathrm{mb}$ $\sigma_{\rm DS}(2W^{\pm}) \sim \mathcal{O}(500) \,\mathrm{fb}$

Bkgd considered:

- 1) single scattering $W^{\pm}W^{\pm}jj$ 2) diboson ($W^{\pm}Z(\gamma^{*})$)
- 3) heavy flavours ($Q\bar{Q}$)

Electroweak DPS at the LHC - p. 10/24

 $W^{\pm}W^{\pm}$: SPS bkgd

• $W^{\pm}W^{\pm}jj$: total cross section $\sim \sigma_{\rm DS}(W^{\pm}W^{\pm})$

$W^{\pm}W^{\pm}$: SPS bkgd

$$\blacksquare W^{\pm}W^{\pm}jj$$
: total cross section $\sim \sigma_{\rm DS}(W^{\pm}W^{\pm})$

Solution Central jet veto (η_{j}^{min} , p_{Tj}^{max}) effective:

- Diboson production, and when some leptons not identified : $q\bar{q}' \to W^{\pm}Z(\gamma^*) \to l^{\pm}\nu l^{\pm}(l^{\mp})$ $q\bar{q} \to Z(\gamma^*)Z(\gamma^*) \to l^{\pm}(l^{\mp})l^{\pm}(l^{\mp})$
 - Z contributions ~ 2 orders larger than $\sigma_{\rm DS}(W^{\pm}W^{\pm})$
 - γ^* even larger (asymmetric decay into 1 hard + 1 soft *l*'s)
 - cuts : central OSSF lepton veto, max lepton p_T , isolated charged tracks Chanowitz,Kilgore 95

■ Heavy flavour production:
$$pp \rightarrow Q\bar{Q} + X$$
, $Q = t, b$

- cut: central jet veto, max lepton p_T , tight lepton isolation

■ Heavy flavour production:
$$pp \rightarrow Q\bar{Q} + X$$
, $Q = t, b$

 \checkmark cut: central jet veto, max lepton p_T , tight lepton isolation

- \checkmark huge cross section, $b p_T$ falls steeply, ν soft
- cut: tight lepton isolation, min lepton $p_T \& \not\!\!\! E_T$

 \pm : simulation

DS signal: MADGRAPH with GS09 and resummed $W p_T$ distribution.

- $b\bar{b}$: HERWIG6.510 with parton level cuts, forced semi-leptonic B decay and one B_d^0 - \bar{B}_d^0 mixing. $\sigma_{b\bar{b}}(p_T^b > 20 \text{GeV}) \sim 5 \,\mu\text{b}$.
- **Diboson:** MADGRAPH + VEGAS at LO.
- $\blacksquare W^{\pm}W^{\pm}jj$ & $t\bar{t}$: neglected as discussed before.
- Other backgrounds: multi-particle interactions estimated. Found negligible.
- Detector effects: not simulated.

: cuts

- Isolated SSL pair $|\eta| < 2.5$, $20 \le p_T^l \le 60$ GeV.
- Solution Section OSSF lepton veto when a 3rd lepton is identified (100% eff. assumed when $p_T^l \ge 10$ GeV and $|\eta| < 2.5$.
- Reject an event if a charged (lepton) track with $p_T^{id} \ge p_T \ge 1$ GeV forms an invariant mass < 1 GeV with one of the same-sign leptons.</p>
- **J**et veto to reject $W^{\pm}W^{\pm}jj$.

: results

 $\sqrt{s} = 14 \text{TeV}$

After cuts	$\sigma_{\mu^+\mu^+}$ (fb)	$\sigma_{\mu^-\mu^-}$ (fb)
$W^{\pm}W^{\pm}$ (DPS)	0.82	0.46
$W^{\pm}Z(\gamma^*)$	5.1	3.6
$Z(\gamma^*)Z(\gamma^*)$	0.84	0.67
$b\bar{b}\;(p_T^b\geq 20~{\rm GeV})$	0.43	0.43

Bkgd dominated by $W^{\pm}Z(\gamma^*)$, basic kinematic distributions similar to DPS signal.

high $p_{\rm T}^l$

± : further handles

 η asymmetry: SPS final states prefer small $\Delta \eta$, less so for signal :

: further handles

 η asymmetry: SPS final states prefer small $\Delta \eta$, less so for signal :

Charge asymmetry ratio $\frac{\sigma(++)}{\sigma(--)}$ also different

Look for 4 muons, $2\mu^+ 2\mu^-$

- 4 isolated leptons: very clean signal
- double $Z \rightarrow l^+ l^-$ rate low
- want to go to low scales, where DPS rate increases

need to trigger on (low
$$p_T$$
) leptons

LHCb might find easier in studying this process Signal: $(q\bar{q} \rightarrow Z(\gamma^*) \rightarrow \mu^+ \mu^-)^2$ Bkgd: $q\bar{q} \rightarrow Z(\gamma^*) \rightarrow 4\mu$, $q\bar{q} \rightarrow 2(Z(\gamma^*) \rightarrow \mu^+ \mu^-)$ Again consider only physics bkgd

 $(\gamma^*)Z(\gamma^*)$: simulation

Signal: HERWIG++, assuming simple factorised model

Bkgd: MADEVENT + HERWIG++

Cuts:

- $1.9 < \eta_l < 4.9$
- $1 < p_T^l < 50 \; \text{GeV}$
- $\Delta R_{\mu\mu} > 0.2$ for all muon (++,--,+-) pairs
- $4 < m_{\mu^+\mu^-} < 50$ GeV for both $\mu^+\mu^-$ pairs
- \square $m_{4l} < 50$ GeV (to suppress the Z single resonance bkgd)

*) : preliminary results

Electroweak DPS at the LHC - p. 20/24

) $Z(\gamma^)$: pair-wise balance

Define p_T imbalance S as

different from D0 variables. Comparisons needed.

effectiveness depends on mass scales involved

Summary and next steps

- PDFs including correlation effects (GS09) leads to qualitative changes in signal properties (rapidity asymmetry, cross section ratios).
- DPS W[±]W[±] has many appealing properties, but background can be problematic. However strategies are available to help suppress bkgd beyond basic cuts.
- DPS $Z(\gamma^*)Z(\gamma^*)$ very clean signal. Simple distributions different from bkgd, but can be hard to cut on.
- Looking at correlations between different dilepton/vector boson observables

Backup slides

Multiple particle interactions

- Given luminosity (L = 10³⁴ cm⁻²s⁻¹), single scattering cross section (σ), rate of bunch crossing (B = 4 · 10⁷s⁻¹):
 Average number of events per bunch crossing, (n) = Lσ/B
- Multiple particle interaction cross section, σ_N :

$$\sigma_N = e^{-\langle n \rangle} \frac{\langle n \rangle^N}{N!} \frac{B}{L} \simeq \frac{\sigma^N}{N!} \left(\frac{L}{B}\right)^{N-1}$$
$$= \frac{\sigma^N}{N! (\sigma_{N,\text{eff}})^{N-1}}$$
$$\sigma_{N,\text{eff}} \equiv \left(\frac{B}{L}\right) = 4 \text{ mb}$$

RMS bunch length : 7.5 cm, z-resolution : 115 µm (Pixel), 580 µm (SCT) at ATLAS the probability that 2 independent scatterings overlap ~ $\mathcal{O}(0.1)$ %.