Strategies for the measurement of MPI at ATLAS

Jan Strube Rutherford Appleton Laboratory

on behalf of the ATLAS collaboration

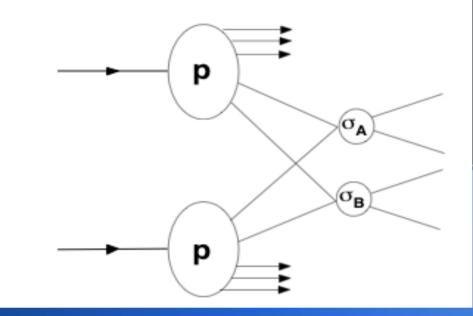
Science & Technology Facilities Council Rutherford Appleton Laboratory

Introduction

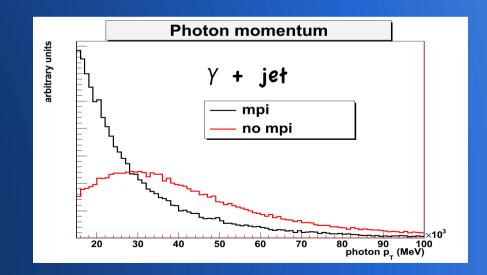
MPI have been measured by a number of collaborations.

Essential ingredient of the description of the UE in all major Event Generators

But: heavily tune dependent


Average number of $(3-4 \text{ GeV } p_T)$ multiparton interactions per p-p collision for different Pythia tunes at 7 TeV:

Perugia0: 3.54


7.37
2.76
2.77

For comparison:

Sherpa 1.2.2: 2.9 (pt>3 GeV)

 $\sigma_{DPI} = \frac{\sigma_A \cdot \sigma_B}{m \sigma_{eff}} m = \begin{bmatrix} 2 & \text{if A,B indistinguishable} \\ 1 & \text{else} \end{bmatrix}$

Prior Art

- AFS collaboration: 63 GeV, $p_T > 4$ GeV
 - <u>-</u> σ_{eff} ~ 5 mb
 - $\sigma_{\rm DP} / \sigma_{\rm dijet} = (6 \pm 1.5 \pm 2.0) \%$
- UA2: 630 GeV, p_T > 15 GeV
 - σ_{eff} > 8.3 mb
 - $\sigma_{_{DP}}$ = (0.49 ± 0.20) nb
- CDF: 1.8 TeV, 4 jets, $p_T > 25 \text{ GeV}$ - $\sigma_{eff} = (12.1 + 10.5 - 5.4) \text{ mb}$ - $\sigma_{DP} = (63 + 32 - 2.8) \text{ nb}$ - $F_{DP} = (5.4 + 1.6 - 2.0) \%$ • CDF: 1.8 TeV, $\gamma + 3 \text{ jets}$, $p_T(\gamma) > 15 \text{ GeV}$, $p_T(\text{jet}) = 5-7 \text{ GeV}$ - $\sigma_{eff} = (14.5 \pm 1.7 + 1.7 - 2.3) \text{ mb}$ - $F_{DP} = (52.6 \pm 2.5 \pm 0.9) \%$ • DØ: 1.96 TeV, $\gamma + 3 \text{ jets}$, 60 GeV < $p_T(\gamma) < 80 \text{ GeV}$, 1/fb - $\sigma_{eff} = (16.4 \pm 0.3 \pm 2.3) \text{ mb}$ - 0.23 < $f_{DP} < 0.47$

Motivation

- VBF Higgs analysis uses Jet veto
 - Irreducible background → Signal significance?
- How does f_{DP} depend on jet p_T
 - Looser cuts \rightarrow more data
- Is the rate really independent of the processes?
- Number of multi-parton scattering events strongly dependent on generator tune
- (How) does $\sigma_{_{eff}}$ depend on the collision energy?

Channels

- Jet-based (look for 2 back-to-back pairs)
 - 4 jets (produced in abundance)
 - γ + 3 jets
 - σ(prompt photon) ≈ 30xTevatron

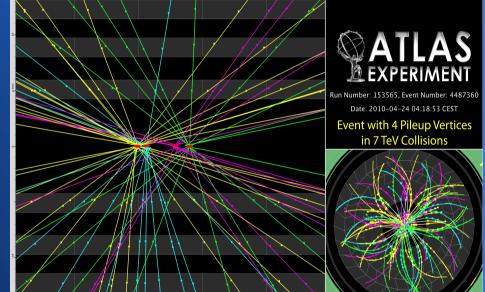
– bbjj

Two approaches within ATLAS.

Showing the one relying more on MC here

Heavy Vector Bosons (same sign leptons)

- W⁺ W⁺

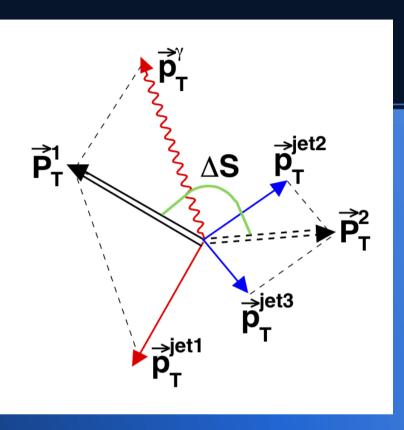

Focus on jet-based searches

Model for Signal

Looking for 4 jet (photon + 3 jets) signature

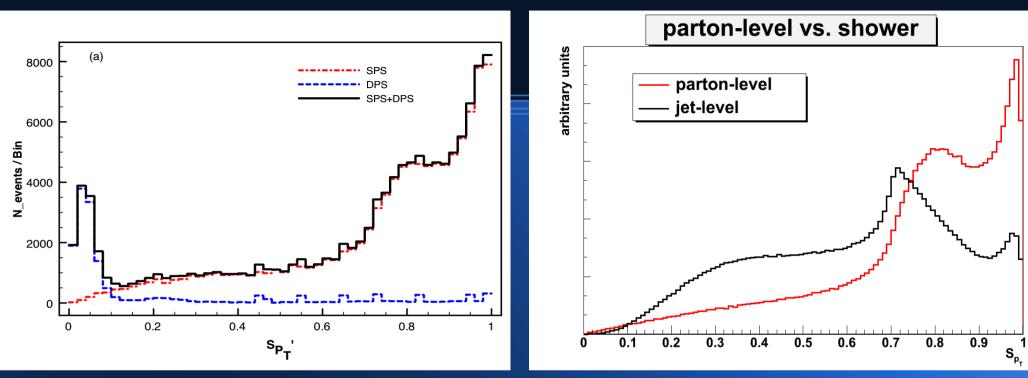
 2 independent parton interactions

> back-to-back final states from each



 Use 2 independent proton interactions (pileup)
(modelled merging events from different samples here)

Search strategy


- Use pile-up to model kinematics of multi-parton interactions
 - 2 jets (photon+jet) from primary parton scatter
 - 2 jets from pile-up vertex
- Background modelled by Monte Carlo (MPI off)
- Use pairwise pt-imbalance in template fit to determine rates

S

$$p_{T} = \frac{1}{\sqrt{2}} \sqrt{\frac{\vec{p}_{T}(\gamma j_{0})}{p_{T}^{\gamma} + p_{T}^{j_{0}}}} + \frac{\vec{p}_{T}(j_{1}j_{2})}{p_{T}^{j_{1}} + p_{T}^{j_{2}}}$$

Distinguishing variable in bbjj

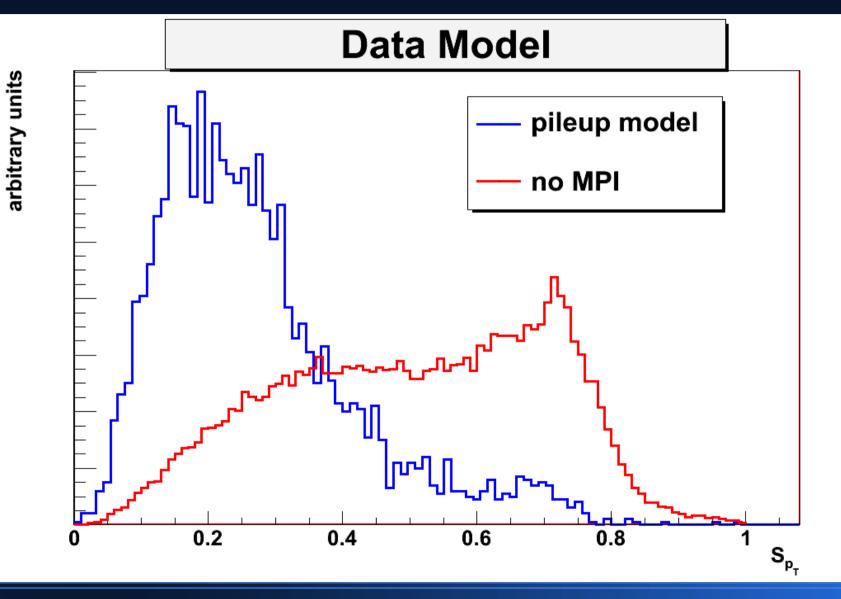
Phys.Rev.D81:014014,2010

Reproducing the parton-level distribution in Sherpa, and comparing to hadron shower

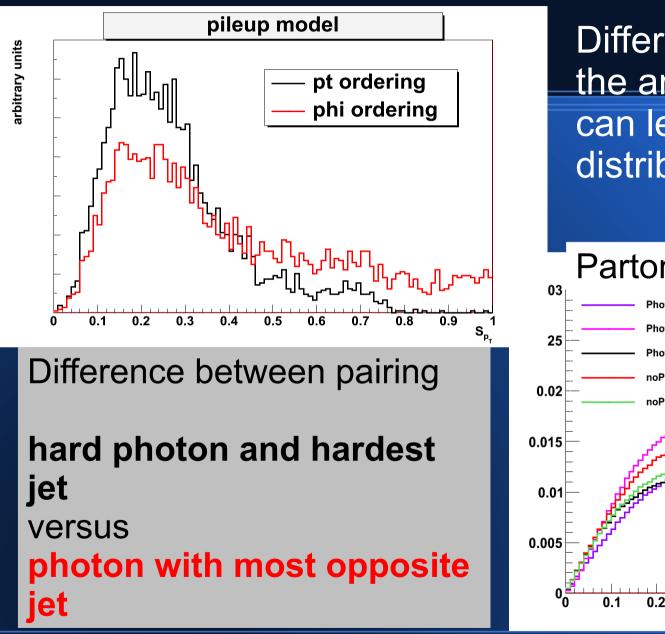
See also http://mpi10.desy.de/ Convenient channel

No ambiguity in matching

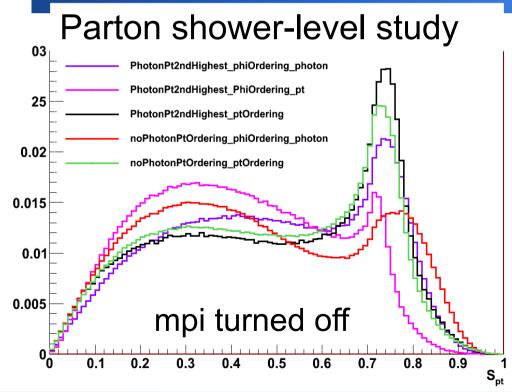
Immediate relevance to other channels


VH, Wbb, Zbb

Jan Strube - MPI@LHC10

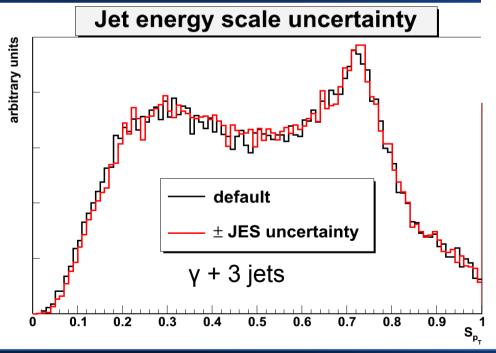

	Photon momentum	
Y + 3 jets	arbitrary units	
Need to find	[™]	
balance	no mpi	
between		
efficient		
trigger and		
enough MPI	20 30 40 50 60 70 80 9 photon	×10 ³ 0 100 p __ (MeV)

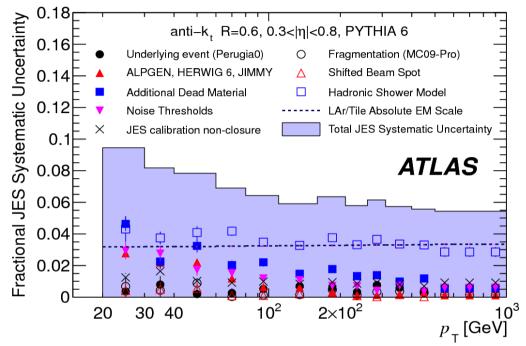
Trigger	Total Luminosity: (±11 %)
All	36.6 pb ⁻¹
10 GeV photon	1.2 pb ⁻¹
20 GeV photon	7.1 pb ⁻¹
2x 10 GeV photon	15.8 pb ⁻¹


Modelling signal and background

Possible selection bias

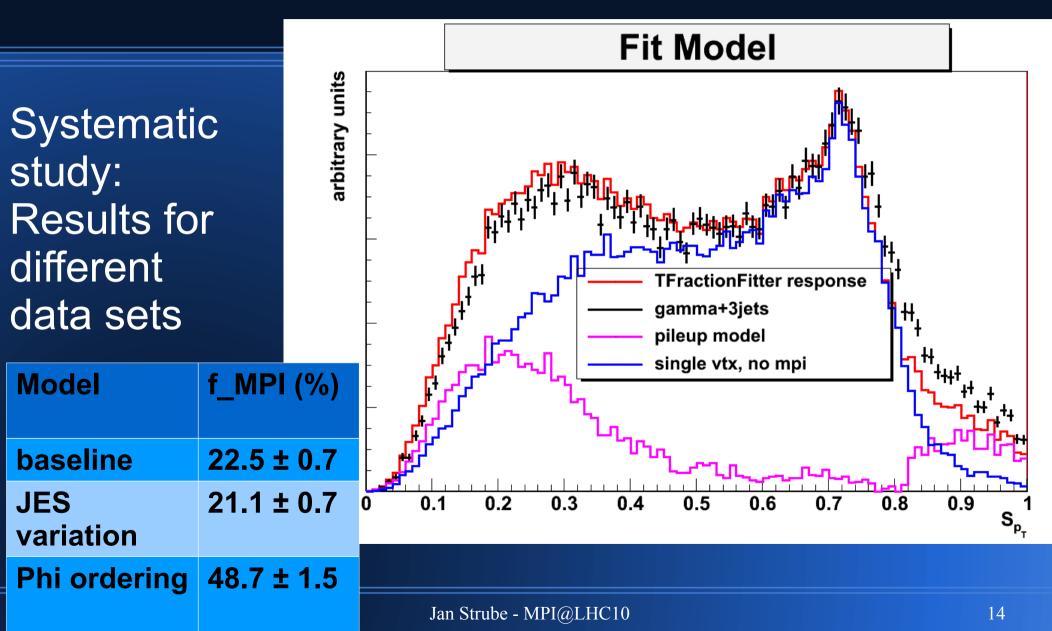
Different ways to resolve the ambiguity in pairing can lead to vastly different distributions


11

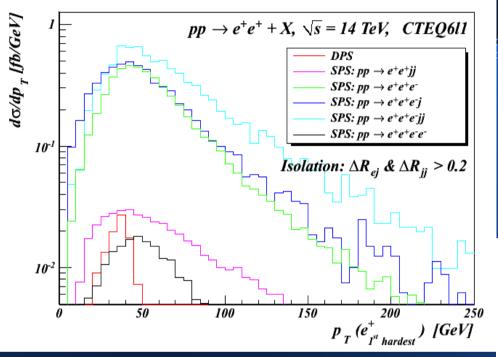

Selection

- Start with hard photon (pt > 15 GeV)
 - 80 % purity of the photon selection
- Sort jets by pt
 - Hardest jet > 20 GeV
 - All other jets > 15 GeV
 - Photon pt > second-hardest jet
 - |η| < 2.5
 - $\Delta R > 0.6$ pairwise between photon and 3 jets
 - $-\Delta R > 1$ between soft pair

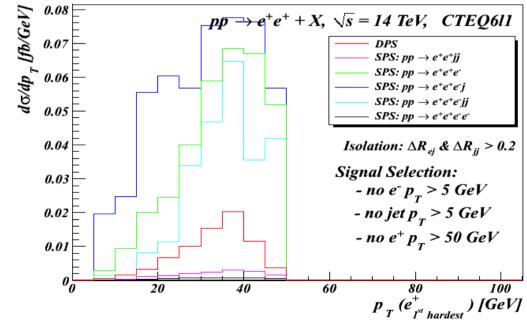
Jet Energy Scale uncertainty


- Jet Energy Scale uncertainty of 9% has a small effect on S_{pt}
- Notice systematic shift of low region

Folding Gaussian distribution (width=JES uncertainty) with px, py


Fit Results

$W^+ W^+$


- Unique signature
 - Not much background to be expected from real physics
- Not accessible at other machines But
- Background estimation:
 - Same-sign / opposite-sign?

Very preliminary look ahead

Also see Steve Kom's talk

"Probing double parton scattering with same-sign W pairs at the LHC" Preliminary set of cuts make this look feasible in simulation

Summary

- ATLAS is actively investigating multi-parton interactions in various channels
 - Important to try different channels for crosscheck
- Trying to take advantage of high luminosity and large beam energy
 - Using pileup to reduce reliance on generators
 - Investigating new heavy final states that weren't accessible before

Thank you

Questions?