Heavy lons: theory overview

 Konrad TywoniukUniversidade de Santiago de Compostela Lund University

Nuclear physics at high energies

[Gross, Wilczek, Politzer, Cabbibo,T.D. Lee, Bjorken, Shuryak...]

Nuclear physics at high energies

[Gross, Wilczek, Politzer, Cabbibo, T.D. Lee, Bjorken, Shuryak...]

Nuclear physics at high energies

[Gross, Wilczek, Politzer, Cabbibo,T.D. Lee, Bjorken, Shuryak...]

- the goal is to create large region of large energy density
- study of collective, dynamical properties of QCD

Nuclear physics at high energies

[Gross, Wilczek, Politzer, Cabbibo,T.D. Lee, Bjorken, Shuryak...]

- the goal is to create large region of large energy density
- study of collective, dynamical properties of QCD
- early Universe on a short timescale!

How dense is the system?

- Experimental facilities
\checkmark CERN SPS: 1986$\sqrt{\mathrm{s}}=17.3 \mathrm{GeV} ;[\mathrm{In}, \mathrm{Pb}]$
\checkmark BNL RHIC: 2000$\sqrt{ } \mathrm{s}=200 \mathrm{GeV}[\mathrm{Cu}, \mathrm{Au}]$
\checkmark CERN LHC: 2010$\sqrt{ } \mathrm{s}=2.76,5.5 \mathrm{TeV}[\mathrm{Pb}]$

$$
\epsilon_{B j}=\frac{d E_{T}}{d y} \frac{1}{\tau_{0} \pi R^{2}}
$$

[Bjorken]

How dense is the system?

- Experimental facilities
\checkmark CERN SPS: 1986$\sqrt{\mathrm{s}}=17.3 \mathrm{GeV} ;[\mathrm{In}, \mathrm{Pb}]$
\checkmark BNL RHIC: 2000$\sqrt{ } \mathrm{s}=200 \mathrm{GeV}[\mathrm{Cu}, \mathrm{Au}]$
\checkmark CERN LHC: 2010$\sqrt{ } \mathrm{s}=2.76,5.5 \mathrm{TeV}[\mathrm{Pb}]$

$$
\epsilon_{B j}=\frac{d E_{T}}{d y} \frac{1}{\tau_{0} \pi R^{2}}
$$

[Bjorken]

How dense is the system?

- Experimental facilities
\checkmark CERN SPS: 1986$\sqrt{\mathrm{s}}=17.3 \mathrm{GeV} ;[\mathrm{In}, \mathrm{Pb}]$
\checkmark BNL RHIC: 2000$\sqrt{ } \mathrm{s}=200 \mathrm{GeV}[\mathrm{Cu}, \mathrm{Au}]$
\checkmark CERN LHC: 2010$\sqrt{ } \mathrm{s}=2.76,5.5 \mathrm{TeV}[\mathrm{Pb}]$

$$
\epsilon_{B j}=\frac{d E_{T}}{d y} \frac{1}{\tau_{0} \pi R^{2}}
$$

[Bjorken]

Baselines

- p-p: QCD vacuum
- p,d-A: cold nuclear matter
- A-A: hot \& dense QCD matter

Baselines

- p-p: QCD vacuum
- p,d-A: cold nuclear matter
- A-A: hot \& dense QCD matter

Plasma volume dialed varying impact parameter b
("centrality")

Hadron yields

- matter is hot
- almost transparent for baryons

The QCD phase diagram

[Braun-Munzinger, Stachel Nature (2007)]

The QCD phase diagram

[Braun-Munzinger, Stachel Nature (2007)]

The QCD phase diagram

[Braun-Munzinger, Stachel Nature (2007)]

The QCD phase diagram

[Braun-Munzinger, Stachel Nature (2007)]

New territories @ LHC

[Salgado 20I0]

New territories @ LHC

[Salgado 2010]

[D’Enterria 2008]

New territories @ LHC

[Salgado 2010]

[D’Enterria 2008]

New territories @ LHC

- convolution
- dominated by deconfined phase
- density effects
- collectivity
- multiple scattering

Hard probes

- Disclaimer: choice of topic/framework/ perspective is highly biased...

Initial state

Deep inelastic scattering

Target is probed with a highly energetic electron that emits a virtual photon $\left(-q^{2}{ }^{2}=Q^{2}\right)$.

Deep inelastic scattering

Target is probed with a highly energetic electron that emits a virtual photon $\left(-q^{2}{ }^{2}=Q^{2}\right)$.

$$
\begin{aligned}
& W^{2}-m_{p}^{2}=(p+q)^{2}-m_{p}^{2} \\
&=2 p \cdot q\left(1-\frac{-q^{2}}{2 p \cdot q}\right)=2 p \cdot q(1-x) \\
& x=\frac{-q^{2}}{2 p \cdot q} \quad \text { momentum fraction carried by the }
\end{aligned}
$$

Deep inelastic scattering

Target is probed with a highly energetic electron that emits a virtual photon $\left(-q^{2}=Q^{2}\right)$.

$$
\begin{aligned}
W^{2}-m_{p}^{2} & =(p+q)^{2}-m_{p}^{2} \\
& =2 p \cdot q\left(1-\frac{-q^{2}}{2 p \cdot q}\right)=2 p \cdot q(1-x)
\end{aligned}
$$

$$
x=\frac{-q^{2}}{2 p \cdot q} \quad \begin{aligned}
& \text { momentum fraction carried by the } \\
& \text { parton probed by the virtual photon }
\end{aligned}
$$

i) DIS regime: $Q^{2} \gg M^{2}$
ii) HE regime: $s \gg \mathrm{Q}^{2} \Rightarrow \mathrm{x} \sim \mathrm{Q}^{2 / s} \ll 1$

Deep inelastic scattering

Target is probed with a highly energetic electron that emits a virtual photon $\left(-q^{2}{ }^{2}=Q^{2}\right)$.

$$
\begin{aligned}
W^{2}-m_{p}^{2} & =(p+q)^{2}-m_{p}^{2} \\
& =2 p \cdot q\left(1-\frac{-q^{2}}{2 p \cdot q}\right)=2 p \cdot q(1-x)
\end{aligned}
$$

$$
x=\frac{-q^{2}}{2 p \cdot q} \quad \text { momentum fraction carried by the } \quad \text { parton probed by the virtual photon }
$$

i) DIS regime: $Q^{2} \gg M^{2}$
ii) $H E$ regime: $s \gg Q^{2} \Rightarrow x \sim Q^{2 / s} \ll 1$

Deep inelastic scattering

Target is probed with a highly energetic electron that emits a virtual photon $\left(-q^{2}{ }^{2}=Q^{2}\right)$.

$$
\begin{aligned}
W^{2}-m_{p}^{2} & =(p+q)^{2}-m_{p}^{2} \\
& =2 p \cdot q\left(1-\frac{-q^{2}}{2 p \cdot q}\right)=2 p \cdot q(1-x)
\end{aligned}
$$

$$
x=\frac{-q^{2}}{2 p \cdot q} \quad \begin{aligned}
& \text { momentum fraction carried by the } \\
& \text { parton probed by the virtual photon }
\end{aligned}
$$

i) DIS regime $\cdot \mathrm{Q}^{2} \gg \mathrm{M}^{2}$
ii) HE regime: $s \gg Q^{2} \Rightarrow x \sim Q^{2 / s} \ll$ I

Most relvant for HIC! $x_{A} \simeq \frac{p_{\perp}}{\sqrt{s}}<0.01$

Gluon saturation

Large gluon occupation number: $n\left(x, k_{\perp}\right) \sim 1 / \alpha_{s}$

Gluon saturation

Large gluon occupation number: $n\left(x, k_{\perp}\right) \sim 1 / \alpha_{s}$

[Gribov, Levin, Ryskin,
Mueller, McLerran...]

Gluon saturation

Large gluon occupation number: $n\left(x, k_{\perp}\right) \sim 1 / \alpha_{s}$

Gluon saturation

Large gluon occupation number: $n\left(x, k_{\perp}\right) \sim 1 / \alpha_{s}$

High energy QCD

- collinear factorization
\checkmark well-known
framework
\checkmark precision physics
\checkmark so far, so good!
\checkmark has its limitations
- "saturation"
\checkmark unitarity
\checkmark high-energy factorization
\checkmark quantitative results are coming
\checkmark up for the test!

High energy QCD

- collinear factorization
\checkmark well-known framework
\checkmark precision physics
\checkmark so far, so good!
\checkmark has its limitations
- "saturation"
\checkmark unitarity
\checkmark high-energy factorization
\checkmark quantitative results are coming
\checkmark up for the test!
rcBK equation: $\frac{\mathcal{N}(r, Y)}{\partial \ln (1 / x)}=\int d^{2} \mathbf{r}_{1} K^{\mathrm{run}}\left(\mathbf{r}, \mathbf{r}_{1}, \mathbf{r}_{2}\right)\left[\mathcal{N}\left(r_{1}, Y\right)+\mathcal{N}\left(r_{2}, Y\right)\right.$

$$
\left.-\mathcal{N}(r, Y)-\mathcal{N}\left(r_{1}, Y\right) \mathcal{N}\left(r_{2}, Y\right)\right]
$$

NLO: Balitksy, Kovchegov, Albacete,Weigert, Chirilli

High energy QCD

- collinear factorization
\checkmark well-known framework
\checkmark precision physics
\checkmark so far, so good!
\checkmark has its limitations
- "saturation"
\checkmark unitarity
\checkmark high-energy factorization
\checkmark quantitative results are coming
\checkmark up for the test!
rcBK equation: $\frac{\mathcal{N}(r, Y)}{\partial \ln (1 / x)}=\int d^{2} \mathbf{r}_{\mathbf{1}} K^{\mathrm{run}}\left(\mathbf{r}, \mathbf{r}_{\mathbf{1}}, \mathbf{r}_{2}\right)\left[\mathcal{N}\left(r_{1}, Y\right)+\mathcal{N}\left(r_{2}, Y\right)\right.$ $-\mathcal{N}(r, Y)-\mathcal{N}\left(r_{1}, Y\right) \mathcal{N}\left(r_{2}, Y\right)$
NLO: Balitksy, Kovchegov, Albacete,Weigert, Chirilli

Cold nuclear matter

- forward rapidity means probing low-x gluons of the nucleus
- a systematic depletion is observed
- we're close to kinematical phase space - energy loss/ large-x effects (related to projectile) can be involved!

Models of nuclear PDFs

- IC from model (e.g. Regge theory) or fitted - DGLAP evolution

Different models

- ok at mid-rap
- forward strongly suppressed
- problem with pp?

Revealing saturation physics @ LHC

Collinear factorization nPDFs

CGC Albacete and Marquet

Huge differences in predictions for particle yields @ LHC!

Breakdown of factorization

$2 \rightarrow \mid$ rather than $2 \rightarrow 2$ process at forward rapidity!

Breakdown of factorization

$2 \rightarrow \mid$ rather than $2 \rightarrow 2$ process at forward rapidity!

Strongest suggestion of breakdown of collinear factorization so far!

Soft probes

Multiplicity predictions

Charged multiplicity for $\eta=0$ in central $\mathrm{Pb}+\mathrm{Pb}$ a $\sqrt{\mathrm{s}_{\mathrm{NN}}}=5.5 \mathrm{TeV}$

Proceedings from "Heavy lon Collisions at the LHC - Last Call for LHC predictions" workshop, CERN 2007, arXiv:07I I. 0974

Multiplicity predictions

Charged multiplicity for $\eta=0$ in central $\mathrm{Pb}+\mathrm{Pb}$ at $\sqrt{\mathrm{s}_{\mathrm{NN}}}=5.5 \mathrm{TeV}$

Proceedings from "Heavy lon Collisions at the LHC - Last Call for LHC predictions" workshop, CERN 2007, arXiv:07I I. 0974

Multiplicity predictions

Charged multiplicity for $\eta=0$ in central $\mathrm{Pb}+\mathrm{Pb}$ at $\sqrt{\mathrm{s}_{\mathrm{NN}}}=5.5 \mathrm{TeV}$
> "percolation" of color strings log-extrapolation from RHIC

Proceedings from "Heavy lon Collisions at the LHC - Last Call for LHC predictions" workshop, CERN 2007, arXiv:07 I I. 0974

Multiplicity predictions

Charged multiplicity for $\eta=0$ in central $\mathrm{Pb}+\mathrm{Pb}$ at $\sqrt{\mathrm{s}_{\mathrm{NN}}}=5.5 \mathrm{TeV}$

"naive"
saturation

"percolation" of color strings log-extrapolation from RHIC

Proceedings from "Heavy Ion Collisions at the LHC - Last Call for LHC predictions" workshop, CERN 2007, arXiv:07I I. 0974

Multiplicity predictions

Charged multiplicity for $\eta=0$ in central $\mathrm{Pb}+\mathrm{Pb}$ at $\sqrt{\mathrm{s}_{\mathrm{NN}}}=5.5 \mathrm{TeV}$

"naive"
saturation

"percolation" of color strings log-extrapolation from RHIC
running coupling saturation

Proceedings from "Heavy lon Collisions at the LHC - Last Call
for LHC predictions" workshop, CERN 2007, arXiv:07I I. 0974

Multiplicity @ 2.76

ALICE Collaboration arxiv:I011.3916

- constrains initial conditions, such as the energy density, of the medium
- grows like DIS pomeron, $(\sqrt{ } \mathrm{s})^{0.3}$
- indicates strong screening in the hadronic wavefunction

Multiplicity @ 2.76

ALICE Collaboration arxiv:I011.3916

- constrains initial conditions, such as the energy density, of the medium
- grows like DIS pomeron, $(\sqrt{ } \mathrm{s})^{0.3}$
- indicates strong screening in the hadronic wavefunction

Geometrical scaling

- due to appearance of Q_{s}, there should be a scaling of data
- observed! (also for data beyond saturation application region..?)
- scaling exists in "standard" DGLAP too (although not so explicit)
- should tell the difference @ higher energies

Geometrical scaling

- due to appearance of Q_{s}, there should be a scaling of data SAT
- observed! (also for data beyond saturation application region..?)
- scaling exists in "standard" DGLAP too (although not so explicit)
- should tell the difference @ higher energies

Multiplicity from geometrical scaling

[Armesto, Salgado,Wiedemann PRL (2005)]
$\sqrt{5}(\mathrm{GeV} / \mathrm{A})$

- DIS data consistent with $\mathrm{Q}^{2}{ }_{\text {sat }} \sim x^{\lambda}$, where $\lambda=0.288$
- additional parameter fitted to go to the nuclear case
- multiplicities are given straightforwardly!
- factorization of geometry and saturation

$$
Q_{\mathrm{sat}, \mathrm{~A}}^{2}=Q_{\mathrm{sat}, \mathrm{p}}^{2}\left(\frac{A \pi R_{p}^{2}}{\pi R_{A}^{2}}\right)^{\circ}:\left.\longleftarrow \frac{1}{N_{\mathrm{part}}} \frac{d N^{A A}}{d \eta}\right|_{\eta \sim 0}=N_{0} \sqrt{s}^{\lambda} N_{\mathrm{part}}^{\frac{1-\delta}{3 \delta}}
$$

Collective properties

$$
\frac{d N}{d \varphi} \propto 1+2 v_{2} \cos \langle 2 \varphi\rangle
$$

Collective properties

$$
\frac{d N}{d \varphi} \propto 1+2 v_{2} \cos \langle 2 \varphi\rangle
$$

- input: initial condition, hadronization

Collective properties

$$
\frac{d N}{d \varphi} \propto 1+2 v_{2} \cos \langle 2 \varphi\rangle
$$

- input: initial condition, hadronization
- lattice-QCD EOS

Collective properties

$$
\frac{d N}{d \varphi} \propto 1+2 v_{2} \cos \langle 2 \varphi\rangle
$$

- input: initial condition, hadronization
- lattice-QCD EOS
- indications
\checkmark early thermalization!
\checkmark most perfect fluid
\checkmark strongly interacting system

23

Predictions for v2

- Generic expectation: v_{2} the smaller or the same at low PT
- mean-Pt increases \rightarrow increase in PT-integrated v_{2}
- strong decrease at low Pт would signal an increase in the η / s ratio
- initial conditions have to be settled

Elliptic flow @ 2.76 GeV

ALICE Collaboration arXiv: 1011.3914

- V_{2} at small Pт the same as at RHIC \checkmark similar (small) viscosity
- since mean PT grows, total v_{2} too
- probes qhat at large PT

Long range correlations

$$
b=\frac{\left\langle n_{f} n_{b}\right\rangle-\left\langle n_{f}\right\rangle\left\langle n_{b}\right\rangle}{\left\langle n_{f}^{2}\right\rangle-\left\langle n_{f}\right\rangle^{2}}
$$

- indicates strong correlations in the initial state
- can extend up to 15 units of rapidity!

Bautista, De Deus, Pajares, arXiv:IOI I.I870

STAR Collaboration, PRL 103 (2009)

The "ridge",

The "ridge",

- large $\Delta \eta$ implies early times

The "ridge" ${ }^{\text {"mumben }}$

- large $\Delta \eta$ implies early times
- "ridge" and "cone" have very different pT dependence and hadrochemistry

The "ridge" ${ }^{\text {"mumben }}$

- large $\Delta \eta$ implies early times
- "ridge" and "cone" have very different pT dependence and hadrochemistry
- not jet-like?

The "ridge" ${ }^{\text {"muntmons.ane }}$

- large $\Delta \eta$ implies early times
- "ridge" and "cone" have very different pT dependence and hadrochemistry
- not jet-like?
- convolution of intial state
 correlations (longitudinal flux tubes) and flow?

The "ridge" ${ }^{\text {"mumbenmenem }}$

- large $\Delta \eta$ implies early times
- "ridge" and "cone" have very different pT dependence and hadrochemistry
- not jet-like?
- convolution of intial state
 correlations (longitudinal flux tubes) and flow?

The "ridge" ${ }^{\text {"mumbinmenem }}$

- large $\Delta \eta$ implies early times
- "ridge" and "cone" have very different pT dependence and hadrochemistry
- not jet-like?
- convolution of intial state correlations (longitudinal flux tubes) and flow?

long-range rapidity corr in Pp ?
(d) $\mathrm{CMS} \mathrm{N} \geq 110,1.0 \mathrm{GeV} / \mathrm{c}<\mathrm{p}_{\mathrm{T}}<3.0 \mathrm{GeV} / \mathrm{c}$
(d) $\mathrm{N} \geq 110,1.0 \mathrm{GeV} / \mathrm{c}_{\mathrm{T}} \times 3.0 \mathrm{GeV} / \mathrm{c}$

What about the IC?

[Takahashi et al. PRL (2009)]

- NEXSPHERIO: uses IC from NEXUS GribovRegge model
- non-smooth IC
- generates ridge and apparent "Mach" cones
- could check IC??

Hard probes

Hard probes

- processes associated with a large momentum transfer
- domain of perturbative QCD!
\checkmark calculable
\checkmark well-tested ($\mathrm{e}^{+} \mathrm{e}^{-}$, PP collisions)
- factorization

$$
\sigma^{p p \rightarrow h}=f_{p}\left(x_{1}, Q^{2}\right) \otimes f_{p}\left(x_{2}, Q^{2}\right) \otimes \sigma\left(x_{1}, x_{2}, Q^{2}\right) \otimes D\left(z, Q^{2}\right)
$$

Hard probes

- processes associated with a large momentum transfer
- domain of perturbative QCD!
\checkmark calculable
\checkmark well-tested ($\mathrm{e}^{+} \mathrm{e}^{-}$, PP collisions)
- factorization

$$
\sigma^{p p \rightarrow h}=\left(f_{p}\left(x_{1}, Q^{2}\right) \otimes f_{p}\left(x_{2}, Q^{2}\right) \otimes \sigma\left(x_{1}, x_{2}, Q^{2}\right) \otimes D\left(z, Q^{2}\right)\right.
$$

nuclear parton distribution functions

Hard probes

- processes associated with a large momentum transfer
- domain of perturbative QCD!
\checkmark calculable
\checkmark well-tested ($\mathrm{e}^{+} \mathrm{e}^{-}, \mathrm{pp}$ collisions)
- factorization

$$
\sigma^{p p \rightarrow h}=f_{p}\left(x_{1}, Q^{2}\right) \otimes f_{p}\left(x_{2}, Q^{2}\right) \otimes \sigma\left(x_{1}, x_{2}, Q^{2}\right) \otimes D\left(z, Q^{2}\right)
$$

Leading particle suppression @ RHIC

- matter is opaque for colored objects!
- suppression of heavy quarks!

$$
R_{A A}=\frac{d N^{A A} / d p_{\perp}}{N_{\text {coll }} \times d N^{p p} / d p_{\perp}}
$$

Leading particle suppression @ RHIC

- matter is opaque for colored objects!
- suppression of heavy quarks!

$$
R_{A A}=\frac{d N^{A A} / d p_{\perp}}{N_{\text {coll }} \times d N^{p p} / d p_{\perp}}
$$

Radiative energy-loss in QGP

Energy loss: $\Delta E \simeq \frac{\alpha_{s} C_{R}}{2 \pi} \hat{q} L^{2}$
Broadening: $k_{\perp}^{2} \simeq \hat{q} L \propto \frac{\Delta E}{L}$

$$
\lim _{R \rightarrow \infty} \omega \frac{d I}{d \omega} \simeq \frac{2 \alpha_{s} C_{R}}{\pi}\left\{\begin{array}{cl}
\sqrt{\frac{\omega_{c}}{2 \omega}} & \text { for } \omega<\omega_{c} \\
\frac{1}{12}\left(\frac{\omega_{c}}{\omega}\right)^{2} & \text { for } \omega>\omega_{c}
\end{array}\right.
$$

[Baier, Dokshitzer, Mueller, Peigné, Schiff, Gyulassy Wang, Levai, Vitev, Wiedemann, Salgado, Armesto...]

Radiative energy-loss in QGP

Energy loss: $\Delta E \simeq \frac{\alpha_{s} C_{R}}{2 \pi} \hat{q} L^{2}$
Broadening: $k_{\perp}^{2} \simeq \hat{q} L \propto \frac{\Delta E}{L}$

$$
\lim _{R \rightarrow \infty} \omega \frac{d I}{d \omega} \simeq \frac{2 \alpha_{s} C_{R}}{\pi}\left\{\begin{array}{cc}
\sqrt{\frac{\omega_{c}}{2 \omega}} & \text { for } \omega<\omega_{c}, \\
\frac{1}{12}\left(\frac{\omega_{c}}{\omega}\right)^{2} & \text { for } \omega>\omega_{c}
\end{array}\right.
$$

[Baier, Dokshitzer, Mueller, Peigné, Schiff, Gyulassy Wang, Levai, Vitev, Wiedemann, Salgado, Armesto...]

Radiative energy-loss in QGP

Energy loss: $\Delta E \simeq \frac{\alpha_{s} C_{R}}{2 \pi} \hat{q} L^{2}$
Broadening: $k_{\perp}^{2} \simeq \hat{q} L \propto \frac{\Delta E}{L}$

$$
\lim _{R \rightarrow \infty} \omega \frac{d I}{d \omega} \simeq \frac{2 \alpha_{s} C_{R}}{\pi}\left\{\begin{array}{cc}
\sqrt{\frac{\omega_{c}}{2 \omega}} & \text { for } \omega<\omega_{c}, \\
\frac{1}{12}\left(\frac{\omega_{c}}{\omega}\right)^{2} & \text { for } \omega>\omega_{c}
\end{array}\right.
$$

[Baier, Dokshitzer, Mueller, Peigné, Schiff, Gyulassy Wang, Levai, Vitev, Wiedemann, Salgado, Armesto...]

Extracted medium properties

"Brick" problem

$\hat{q}(\vec{r}, \tau)$ scales as	ASW \hat{q}_{0}	HT \hat{q}_{0}	AMY \hat{q}_{0}
$T(\vec{r}, \tau)$	$10 \mathrm{GeV}^{2} / \mathrm{fm}$	$2.3 \mathrm{GeV}^{2} / \mathrm{fm}$	$4.1 \mathrm{GeV}^{2} / \mathrm{fm}$
$\epsilon^{3 / 4}(\vec{r}, \tau)$	$18.5 \mathrm{GeV}^{2} / \mathrm{fm}$	$4.5 \mathrm{GeV}^{2} / \mathrm{fm}$	
$s(\vec{r}, \tau)$		$4.3 \mathrm{GeV}^{2} / \mathrm{fm}$	

Ideal gas: $\quad \hat{q}_{F} \simeq \frac{72}{\pi} \xi(3) \alpha_{s}^{2} T^{3} \simeq 2 \epsilon^{3 / 4}$
In principle has also time dep: $\hat{q}(\tau)=\hat{q}_{0}\left(\frac{\tau_{0}}{\tau}\right)^{\alpha}$
Should be consistent with bulk observables!
Still a lot of uncertainties in the calculations...

Extracted medium properties

"Brick" problem

$\hat{q}(\vec{r}, \tau)$ scales as	ASW \hat{q}_{0}	HT \hat{q}_{0}	AMY \hat{q}_{0}
$T(\vec{r}, \tau)$	$10 \mathrm{GeV}^{2} / \mathrm{fm}$	$2.3 \mathrm{GeV}^{2} / \mathrm{fm}$	$4.1 \mathrm{GeV}^{2} / \mathrm{fm}$
$\epsilon^{3 / 4}(\vec{r}, \tau)$	$18.5 \mathrm{GeV}^{2} / \mathrm{fm}$	$4.5 \mathrm{GeV}^{2} / \mathrm{fm}$	
$s(\vec{r}, \tau)$		$4.3 \mathrm{GeV}^{2} / \mathrm{fm}$	

Ideal gas: $\quad \hat{q}_{F} \simeq \frac{72}{\pi} \xi(3) \alpha_{s}^{2} T^{3} \simeq 2 \epsilon^{3 / 4}$
In principle has also time dep: $\hat{q}(\tau)=\hat{q}_{0}\left(\frac{\tau_{0}}{\tau}\right)^{\alpha}$
Should be consistent with bulk observables!
Still a lot of uncertainties in the calculations...

Extracted medium properties

"Brick" problem

$\hat{q}(\vec{r}, \tau)$ scales as	ASW \hat{q}_{0}	HT \hat{q}_{0}	AMY \hat{q}_{0}
$T(\vec{r}, \tau)$	$10 \mathrm{GeV}^{2} / \mathrm{fm}$	$2.3 \mathrm{GeV}^{2} / \mathrm{fm}$	$4.1 \mathrm{GeV}^{2} / \mathrm{fm}$
$\epsilon^{3 / 4}(\vec{r}, \tau)$	$18.5 \mathrm{GeV}^{2} / \mathrm{fm}$	$4.5 \mathrm{GeV}^{2} / \mathrm{fm}$	
$s(\vec{r}, \tau)$		$4.3 \mathrm{GeV}^{2} / \mathrm{fm}$	

Ideal gas: $\quad \hat{q}_{F} \simeq \frac{72}{\pi} \xi(3) \alpha_{s}^{2} T^{3} \simeq 2 \epsilon^{3 / 4}$
In principle has also time dep: $\hat{q}(\tau)=\hat{q}_{0}\left(\frac{\tau_{0}}{\tau}\right)^{\alpha}$
Should be consistent with bulk observables!
Still a lot of uncertainties in the calculations...

Extracted medium properties

"Brick" problem
thermal
approach

$\hat{q}(\vec{r}, \tau)$ scales as	ASW \hat{q}_{0}	HT \hat{q}_{0}	AMY \hat{q}_{0}	
$T(\vec{r}, \tau)$	$10 \mathrm{GeV}^{2} / \mathrm{fm}$	$2.3 \mathrm{GeV}^{2} / \mathrm{fm}$	$1.1 \mathrm{GeV}^{2} / \mathrm{fm}$ $\epsilon^{3 / 4}(\vec{r}, \tau)$ $18.5 \mathrm{GeV}^{2} / \mathrm{fm}$ $s(\vec{r}, \tau)$ 	$4.5 \mathrm{GeV}^{2} / \mathrm{fm}$

Ideal gas: $\quad \hat{q}_{F} \simeq \frac{72}{\pi} \xi(3) \alpha_{s}^{2} T^{3} \simeq 2 \epsilon^{3 / 4}$
In principle has also time dep: $\hat{q}(\tau)=\hat{q}_{0}\left(\frac{\tau_{0}}{\tau}\right)^{\alpha}$
Should be consistent with bulk observables! Still a lot of uncertainties in the calculations...

Jet quenching predictions

$R_{\text {PbPb }}\left(\mathrm{P}_{\mathrm{T}}=20,50 \mathrm{GeV}, \eta=0\right)$ in central $\mathrm{Pb}+\mathrm{Pb}$ at $\sqrt{\mathrm{s}_{\mathrm{NN}}}=5.5 \mathrm{TeV}$

Proceedings from "Heavy Ion Collisions at the LHC - Last Call for LHC predictions" workshop, CERN 2007, arXiv:07 I I. 0974

Back-to-back correlations

- jet in opposite direction is strongly suppressed
- complicated structures

Jets in HIC

[Cacciari, Rojo, Salam, Soyez 20IO]
An example hard event

$$
p_{t} \sim 100 \mathrm{GeV}
$$

Generated with Pythia

Mixed into LHC HI environment
HydJet, $d N_{c h} / d y \simeq 1600$

Jets in HIC

$\mathrm{P}_{\mathrm{t}}[\mathrm{GeV}]$
[Cacciari, Rojo, Salam, Soyez 20IO]
First results appeared in HP2008!
An example hard event
$p_{t} \sim 100 \mathrm{GeV}$
Generated with Pythia
[Putschke HP08]
STAR preliminary
$\mathrm{Au}+\mathrm{Au} \mathbf{0 - 2 0} \% \mathbf{p}_{\text {t,jet }}^{\text {reot }} \sim \mathbf{2 1 ~ G e V}$

Jets@RHIC

First jet measurements in HIC!

Out of cone emissions!

First jet measurements in HIC!

Out of cone emissions!

Jet doesn't get as collimated!

Dijet asymmetry @ 2.76 GeV

ATLAS Collaboration arXiv:1011.6182

$$
A_{J}=\frac{E_{T 1}-E_{T 2}}{E_{T 1}+E_{T 2}}
$$

Signals strong medium effect!

A missing ingredient

\checkmark Previous calculations treat I-gluon emission.
\checkmark Know that we need at least 2 gluons to see QCD coherence!

A missing ingredient

\checkmark Previous calculations treat I-gluon emission.
\checkmark Know that we need at least 2 gluons to see QCD coherence!
$\mathrm{O}\left(\mathrm{n}_{0}{ }^{1}\right)$

Laboratory to study color coherence in medium...

- fixed opening angle \rightarrow small angle approximation
- eikonal approximation \rightarrow color rotation

Anti-angular ordering of medium-induced radiation

Mehtar-Tani, Salgado, KT, arXiv:I009.2965

$$
\begin{aligned}
& d N_{q}=\frac{\alpha_{s} C_{F}}{\pi} \frac{d \omega}{\omega} \frac{d \theta}{\theta}\left(\Theta\left(\cos \theta-\cos \theta_{q \bar{q}}\right)+A\left(\theta_{q \bar{q}}, L\right) \Theta\left(\cos \theta_{q \bar{q}}-\cos \theta\right)\right) \\
& \mathrm{O}\left(\mathrm{n}_{0}{ }^{0}+\mathrm{n}_{0} \mathrm{l}\right)
\end{aligned}
$$

Anti-angular ordering of medium-induced radiation

Mehtar-Tani, Salgado, KT, arXiv:I009.2965

$$
\begin{aligned}
& d N_{q}=\frac{\alpha_{s} C_{F}}{\pi} \frac{d \omega}{\omega} \frac{d \theta}{\theta}\left(\Theta\left(\cos \theta-\cos \theta_{q \bar{q}}\right)+A\left(\theta_{q \bar{q}}, L\right) \Theta\left(\cos \theta_{q \bar{q}}-\cos \theta\right)\right) \\
& \mathrm{O}\left(\mathrm{n}_{0}{ }^{0}+\mathrm{n}_{0}{ }^{\mathrm{l}}\right)
\end{aligned}
$$

Angular ordering in vacuum

Anti-angular ordering in the medium

Anti-angular ordering of medium-induced radiation

Mehtar-Tani, Salgado, KT, arXiv:I009.2965

$$
\begin{aligned}
& d N_{q}=\frac{\alpha_{s} C_{F}}{\pi} \frac{d \omega}{\omega} \frac{d \theta}{\theta}\left(\Theta\left(\cos \theta-\cos \theta_{q \bar{q}}\right)+A\left(\theta_{q \bar{q}}, L\right) \Theta\left(\cos \theta_{q \bar{q}}-\cos \theta\right)\right) \\
& \mathrm{O}\left(\mathrm{n}_{0}{ }^{0}+\mathrm{n}_{0}{ }^{\mathrm{l}}\right)
\end{aligned}
$$

Angular ordering in vacuum

Anti-angular ordering in the medium

Anti-angular ordering of medium-induced radiation

Mehtar-Tani, Salgado, KT, arXiv:I009.2965

$$
\begin{aligned}
& d N_{q}=\frac{\alpha_{s} C_{F}}{\pi} \frac{d \omega}{\omega} \frac{d \theta}{\theta}\left(\Theta\left(\cos \theta-\cos \theta_{q \bar{q}}\right)+A\left(\theta_{q \bar{q}}, L\right) \Theta\left(\cos \theta_{q \bar{q}}-\cos \theta\right)\right. \\
& \mathrm{O}\left(\mathrm{n}_{0}{ }^{0}+\mathrm{n}_{0}^{\mathrm{l}}\right)
\end{aligned}
$$

Geometrical separation!

Angular ordering in vacuum

Anti-angular ordering in the medium

Anti-angular ordering of medium-induced radiation

Mehtar-Tani, Salgado, KT, arXiv:I009.2965

$$
\begin{aligned}
& d N_{q}=\frac{\alpha_{s} C_{F}}{\pi} \frac{d \omega}{\omega} \frac{d \theta}{\theta}\left(\Theta\left(\cos \theta-\cos \theta_{q \bar{q}}\right)+A\left(\theta_{q \bar{q}}, L\right) \Theta\left(\cos \theta_{q \bar{q}}-\cos \theta\right)\right) \\
& \mathrm{O}\left(\mathrm{n}_{0}{ }^{0}+\mathrm{n}_{0}{ }^{\mathrm{l}}\right)
\end{aligned}
$$

Geometrical separation!

Angular ordering in vacuum

Anti-angular ordering in the medium

First ever Z observed in HIC!!

- futare present is exciting!

Summary

- RHIC results suggest strong "collective" effects \checkmark screening of initial w.f. (cold) $\sqrt{ }$ early thermalization and low viscosity (hot) $\boldsymbol{\checkmark}$ strong effect on hard probes (dense)
- LHC gives access to a huge, hitherto unexplored kinematical regime: \checkmark small-× and large pT (jets!!)
- We will learn a lot....
- "ridge" structures
- classical color fields
- "cold" suppression
- IC and η / s linked
- non-smooth IC \& v3
- mechanism for thermalization?
- medium density and time-evolution
- v2 at high pT

