

Minimum-Bias Measurements with ALICE

Eva Sicking for the ALICE Collaboration MPI@LHC Workshop Glasgow, Scotland, 2010-11-29

Eva Sicking for the ALICE Collaboration

A Large Ion Collider Experiment

- ALICE is especially designed for heavy-ion collisions
- ALICE studies also p+p
 - Several signals in heavy ion collisions are measured relative to p+p
 - ALICE also has a rich p+p program!
- ALICE special features for p+p minimum bias physics
 - Low momentum sensitivity
 - low material budget and low magnetic field
 - Primary vertex resolution of 100µm in p+p and 10µm in Pb+Pb
 - Excellent Particle Identification (PID) capability
- ALICE can give important input to p+p studies
 - Rare signals need good description of soft underlying event
 - Tuning of MC generators in low- p_{T} region
 - Study of high-multiplicity collisions

A Large Ion Collider Experiment

Minimum Bias Measurements with ALICE

Eva Sicking for the ALICE Collaboration

Data Taking Summary

ALICE

- > 100M single muon triggers
- > 25M high multiplicity triggers
- Pb+Pb
 - > 12 M min bias triggers

4

Eva Sicking for the ALICE Collaboration

Physics Results, Publications

- Pseudorapidity density & multiplicity
 - √s=900 GeV:
 - √s=900 GeV, 2.36 TeV:

- √s=7 TeV:

- pbar/p ratio ($\sqrt{s}=900$ GeV & 7 TeV)
 - Momentum distributions (900 GeV)
 - Bose-Einstein correlations (900 GeV)
 - Identified Particle spectra (0.9, 7TeV)
 - Strangeness (900GeV)

Pb+Pb $\begin{cases} - & \text{Multiplicity } (\sqrt{s_{NN}} = 2.76 \text{TeV}) \\ - & \text{Elliptic flow } (\sqrt{s_{NN}} = 2.76 \text{TeV}) \end{cases}$

- EJC: Vol. 65 (2010) 111
- EPJC: Vol. 68 (2010) 89
- EPJC: Vol. 68 (2010) 345
- PRL: Vol. 105 (2010) 072002
 - PL B: Vol. 693 (2010) 53
 - PRD: Vol. 82 (2010) 052001
 - will be published soon will be published soon
 - arXiv:1011.3916
- arXiv:1011.3914

And many more in preparation....

p+p

 $0.9 \rightarrow 2.36 \text{TeV}$:

 $0.9 \rightarrow 7 \text{TeV}$:

 Compare measured dN/dη distributions with predictions of MC generators

Eva Sicking for the ALICE Collaboration

+1.1

+3.6

15.4-17.6

33.4-47.6

23.3 ±0.4 _{-0.7}

57.6 ±0.4

Minimum Bias Measurements with ALICE

 $dN_{ch}/d\eta$ Versus \sqrt{s}

EPJC: Vol. 68 (2010) 345

- $dN_{ch}/d\eta$ increase with \sqrt{s}
- Increase well described by a power law $(\sqrt{s})^{0.2}$
- Good agreement between ALICE and CMS results (difference <3%)

Charged Multiplicity

- Measurement of charged multiplicity at 0.9, 2.36 and 7 TeV
 - Negative binomial distribution describes shape of distributions fairly well
- Event generators do not reproduce shape and tail of multiplicity distribution
 - Pythia tune ATLAS-CSC is close to data only at high multiplicities

Transverse Momentum Distribution

PL B: Vol. 693 (2010) 53

- non-single-diffractive (NSD) events
- p_⊤ spectrum from 0.15 to
 10 GeV/c at √s=900 GeV
- Comparison to ALICE's dN_{ch}/dp_T to CMS and ATLAS results
 - Different η acceptance at ALICE, ATLAS, and CMS
 - Spectrum seems to be harder at mid-rapidity region

Transverse Momentum Distribution

- Modified Hagedorn function describes full range of spectrum
- Starting from 3 GeV/c, the power law fit gives a good description

10

Transverse Momentum Distribution

- Pythia Perugia-0 and D6T describe shape of momentum distribution well, but yield is lower than data
- Results of Pythia tune ATLAS-CSC and Phojet differ from data
 - ATLAS-CSC tune described multiplicity distribution better than the other tunes

Average Transverse Momentum

- <p_T> versus charged multiplicity with p_{T,Min} cut of 0.15 and 0.5 GeV/c
- Also extrapolation to 0 GeV/c
- Check for MCs
 - Need to reproduce both, multiplicity distribution and p_T distribution

- Pythia Perugia-0 works well for data starting at 0.5 GeV/c
- Distribution including softer particles down to 0.15 GeV/c is not reproduced
 - Soft particles production important to measure
 - Strong point of ALICE

Two-Pion Bose-Einstein Correlations

- Bose-Einstein enhancement of identical-pion pairs at low momentum differences q=p₁-p₂
 - Asses the spatial scale of the emitting source
 - As function of
 - multiplicity and
 - pair transverse momentum $k_T = |\mathbf{p}_{T1} + \mathbf{p}_{T2}|/2$
- Measure space-time evolution of dense matter systems in heavy-ion collisions
- Increase of one-dimensional HBT radius R_{inv} as function of charged multiplicity at mid-rapidity

PRD: Vol. 82 (2010) 052001

Shaded bands represent the systematic errors related to the baseline shape assumption and the fit range

<k_T> Dependence of R_{ir}

- One-dimensional HBT radius $R_{_{inv}}^{}$ does not change with average pair transverse momentum $k_{_{\rm T}}^{}$
- Radii measured at STAR and E735
 are inconsistent with results
- Measurement sensitive to choice of baseline (see backup)
- Phojet simulations are used to determine baseline of the correlation

Shaded bands represent the systematic errors related to the baseline shape assumption and the fit range

Pair transverse momentum: $k_T = |\mathbf{p}_{T1} + \mathbf{p}_{T2}|/2$

Minimum Bias Measurements with ALICE

Eva Sicking for the ALICE Collaboration

- Initial state of p+p collision has baryon number of 2
- Study of redistribution of baryon number in final state allows to investigate baryon number transfer
 - How far towards mid-rapidity can the baryon number be transferred?
 - Model of transfer mechanism
 - Breaking of several strings between valence quarks and so-called string junctions
 - Rapidity loss $\Delta y = y_{\text{beam}} y_{\text{baryon}}$
 - Process with large Δy can be described by Regge trajectories
- ALICE has measured \overline{p}/p ratio at mid-rapidity at $\sqrt{s} = 0.9 \& 7 \text{ TeV}$
 - Challenging measurement: Need to know material budget, cross sections
 - Measurement as function of transverse momentum and collision energy

PRL: Vol. 105 (2010) 072002

$\frac{p}{p}$ ratio versus Transverse Momentum

- Results of both energies show no dependence on transverse momentum
- Experimental points are compared with different model predictions
 - Models with enhanced stopping do not reproduce the data

 $\alpha_1=0.5$ (fixed)

 α_{p} =1.2 (fixed)

6

5

4

Fit function: PRL: Vol. 105 (2010) 072002

Minimum Bias Measurements with ALICE

ratio can be parameterized based on the contribution of different diagrams Baryon pair production at

Energy dependence of the

- mid-rapidity and baryon number transfer
- Junction intercept set to 0.5
- Result sets tight limits on any additional contributions to baryon number transfer over large rapidity gaps

0.9 TeV: $pbar/p = 0.957 \pm 0.006(stat) \pm 0.014(syst)$ 7.0 TeV: $pbar/p = 0.990 \pm 0.006(stat) \pm 0.014(syst)$

8

7

9

10

 Δv

<u>p</u> **Ratio Versus Collision Energy**

<u>p</u>∕p ratio

0.8

0.6

0.4

0.2

3

 $1+C\overline{\cdot e^{(\alpha_J-\alpha_P)\Delta y}}$

10

- Identified particle spectra measured with different detectors show good agreement in overlapping areas
 - Details: see backup slides
- All relevant efficiencies are under control
- Combining results of detectors by averaging results using systematic errors as weight
- Lévy (Tsallis) function fits resulting spectra

MC Comparison Hadron Yields

- PYTHIA tunes Perugia0 and D6T gave a reasonable description of the unidentified charged hadron spectra (slide 11)
- Especially kaon and proton spectra show large deviations
 - Kaon yield underestimated at high p_{τ} by all event generators
 - Proton yield underestimated except by Pythia D6T

Strange Particle Yields

Eva Sicking for the ALICE Collaboration

21

Strange Particle Yields

Eva Sicking for the ALICE Collaboration

22

$dN_{ch}/d\eta$ in central Pb+Pb at $\sqrt{s_{NN}} = 2.76 TeV$

arXiv:1011.3916

$$(dN_{ch}/d\eta)/(0.5 < N_{part} >) = 8.3 \pm 0.4$$
 (syst.)
using $=381 \pm 18$ from Glauber model fit

- Charged-particle pseudorapidity density for the most central 5% of hadronic cross section
 - Stronger energy dependence than measured in p+p
 - Values significantly larger than those measured at RHIC
 - Increase by factor
 2.2 with respect to
 RHIC Au-Au 200
 GeV
 - Value 1.9 higher as at p+p at same energy

Minimum Bias Measurements with ALICE

Elliptic flow in Pb+Pb at $\sqrt{s_{NN}} = 2.76 TeV$

arXiv:1011.3914

- Medium geometry is asymmetric in non-central collision (almond shape)
- Spacial asymmetry is converted into anisotropic momentum distribution
- Second moment of final state -0.0 hadron azimuthal distribution is call elliptic flow v₂

- Integrated elliptic flow at 20-30% centrality increases about 30% from RHIC to LHC energies
 - Increase is higher than current predictions from ideal hydrodynamic models
 - Hydrodynamical models which incorporate viscous corrections and hybrid models reproduced such an increase

Summary

- Multiplicity
 - Increase with collision energy is significantly larger than expected by MCs
- Transverse Momentum Spectra
 - Correlation of $<p_T>$ and N_{ch} not explained by any MC model, especially at low p_T
- Two-Pion Bose-Einstein Correlations
 - Source size R_{inv} increases
 with event multiplicity
 - R_{inv} shows no dependence
 on pair momentum k_T

- Antiproton to Proton Ratio
- Identified particle yields
 - Kaon and proton yields are underestimated by Monte Carlos
- Strangeness
 - Yields of K_s^{0} , Λ and Ξ are underestimated by MC, whereas Φ is described well
- Heavy Ion collisions
 - Multiplicity
 - Elliptic flow
- Much more to come

Backup

Minimum Bias Measurements with ALICE

Eva Sicking for the ALICE Collaboration

Baseline for k_{τ} Dependence

- Measurement sensitive to choice of baseline
- Usage of flat baseline changes $k_{\!_{\rm T}}$ dependence
 - R_{inv} is falling with increasing <k_T>
- STAR and E735 use flat baseline
 - Choice of baseline is again under investigation in STAR

.5

Identification of charged hadrons (π, K, p) using ITS, TPC, TOF

- Specific energy loss dE/dx in ITS and TPC
- Time of flight (TOF) information for particle
- Identification on a track-by-track basis where bands are clearly separated
- Identification on statistical basis in overlapping regions
- Complementary measurement of kaons via identification of weak decay kink topology in TPC

Eva Sicking for the ALICE Collaboration

momentum p (GeV/c)

Strange Particle Yields

- Measurement of strange mesons and single and double strange baryons at central rapidity and $\sqrt{s}=900GeV$
 - K_{S}^{0} , Φ and Λ , Ξ
- Scaled for visibility
- Fit with Levy
 function
- Fit values are used in combination with measured range to estimate the the integrated yields

Baryon to Meson (Λ -K⁰_S) Ratio

- Acceptance windows of experiments differ significantly
- Good agreement between STAR (200 GeV) and ALICE (900 GeV)
- Results of CDF at two energies are close
 - Both results would suggest no energy dependence
- ALICE results are different from CDF and UA1 results for p₁>1.5
- Results at same energy of 630 GeV from CDF and UA1 do not agree with each other
 - Not feed down corrected
- To be further investigated

Hadron Yield Ratios

- K/ π ratio almost independent of \sqrt{s}
- both ratios (kaons/pions and protons/pions) obtained from real data are not completely described by any model prediction