Preliminary Results from the TOTEM Experiment

INFN
 Giuseppe Latino

(University of Siena \& Pisa INFN)

(on behalf of the TOTEM Collaboration)

MPI@LHC 2010 Glasgow - December 2, 2010

, Experiment Overview
> Detector Commissioning
>Preliminary Results

TOTEM Collaboration: Bari, Budapest, Case Western Reserve, CERN, Genova, Helsinki, Pisa/Siena, Prague, Tallin (~ 80 physicists)

TOTEM Physics Program Overview

Stand-Alone

- $\sigma_{\text {TOT }}{ }^{\mathbf{p p}}$ with a precision $\sim 1-2 \%$, simultaneously measuring:

$$
N_{e l} \text { down to }-\mathrm{t} \sim 10^{-3} \mathrm{GeV}^{2} \quad \text { and }
$$

$N_{\text {inel }}$ with losses $<3 \%$

- Elastic pp scattering in the range $10^{-3}<|\mathrm{t}| \sim(\mathrm{p} \theta)^{2}<10 \mathrm{GeV}^{2}$
- Soft diffraction (SD and DPE)
- Particle flow in the forward region (cosmic ray MC validation/tuning)

CMS-TOTEM (CMS/TOTEM Physics TDR, CERN/LHCC 2006-039/G-124)

- Soft and hard diffraction in SD and DPE (production of jets, bosons, h.f.)
- Central exclusive particle production
- Low-x physics
- Particle and energy flow in the forward region

Total Cross Section $\sigma_{p p}$

\square Current models predict at $\sqrt{\mathrm{S}}=14 \mathrm{TeV}: \sigma_{\mathrm{PP}}=90-130 \mathrm{mb}$
\square TOTEM goal: absolute error $\sim 1 \mathrm{mb}\left(\mathcal{L}_{\text {inst }} \sim 10^{28} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}\right)$

$$
\sigma_{t o t}=111.5 \pm 1.2_{-2.1}^{+4.1} \mathrm{mb}
$$

\Rightarrow possibility to distinguish among different models

Luminosity independent method:

- elastic scattering (down to $|\mathrm{t}| \sim 10^{-3} \mathrm{GeV}^{2}$)
- inelastic scattering
\Rightarrow proper tracking acceptance in forward region required
Optical Theorem: $\quad \sigma_{T}=\left.\frac{8 \pi}{p \sqrt{s}} \operatorname{Im} F(s, t)\right|_{t=0}$
$\mathrm{L} \sigma_{T}^{2}=\frac{16 \pi}{1+\rho^{2}} \times\left.\frac{d N_{e l}}{d t}\right|_{t=0} \quad\left(\rho=\left.\frac{\operatorname{Re} F}{\operatorname{Im} F}\right|_{t=0} \sim 0.136\right)$
$\mathrm{L} \sigma_{T}=N_{e l}+N_{\text {inel }}$

$$
\sigma_{T}=\frac{16 \pi}{1+\rho^{2}} \times \frac{\left.\left(d N_{e l} / d t\right)\right|_{t=0}}{N_{e l}+N_{\text {inel }}}
$$

Elastic Scattering Cross Section $\mathrm{d} \sigma_{\mathrm{pp}}{ }^{\mathrm{el} / \mathrm{dt}}\left(\mathrm{V}_{\mathrm{S}}=14 \mathrm{TeV}\right)$

Predicted at LHC:

$$
\sigma_{\mathrm{PP}}{ }^{\mathrm{el}} \sim 18-35 \mathrm{mb}
$$

Wide range of predictions; big uncertainties at large $|t|$; whole |t| range measured with good statistics.

Allowed $|t|$ range

Dedicated short runs at high- β^{*} (and reduced ε) are required for precise measurement of the scattering angles of a few μ rad

Leading Protons measured at -147m \& -220m from IP
 Fwd energy flows: Castor \& ZDC (CMS)

TOTEM Detectors: Setup in IP5

Each arm:
$\square 5$ planes with 3 coordinates/plane, each formed by 6 trapezoidal CSC detectors
\square Trigger from anode wires
\square Resolution: $\sigma \sim 1 \mathrm{~mm}$
Ageing studies at CERN GIF: no loss of performance during test with a dose equivalent to ~ 5 years at $\mathcal{L}_{\text {inst }}=10^{30} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$

Installation foreseen for Winter 2010 shutdown

Each arm:

$\square \mathbf{1 0}$ planes, each formed by 2 "triple-GEM" semi-circular detectors
Double readout layer: Strips for radial position (R); Pads for R, ϕ
Trigger from Pads

- Resolution: $\sigma_{R} \sim 100 \mu \mathrm{~m}, \sigma_{\phi} \sim 1^{0}$

T2 triple-GEM technology adequate to work at least 1 yr at $\mathcal{L}=10^{33} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$

Fully installed

Roman Pots

Each Pot:

$\square 10$ planes of Si detectors
$\square 512$ strips at 45° orthogonal
\square Pitch: $66 \mu \mathrm{~m}$

- Resolution: $\sigma \sim 20 \mu \mathrm{~m}$

Detectors expected to work up to $\mathcal{L}_{\text {int }} \sim 1 \mathrm{fb}^{-1}$

RP 220m fully installed

RP 147 m installation foreseen in Winter 2010 shutdown

T2 Alignment - I

Not negligible effects to be corrected for:

- internal alignment (among planes in a quarter)
- quarter-quarter alignment (using overlap region)
- global alignment (arm respect to the vertex)

Internal alignment

Relative shifts ($\Delta \mathrm{X}, \Delta \mathrm{Y}$) among planes are the most important source of this misalignment Two different methods (HIP and Millepede) implemented in order to resolve misalignment

Simulated and Reconstructed ΔY Displacements

Simulation: misalignment simulation
\rightarrow Millepede uncertainty $<20 \mu \mathrm{~m}$

G. Latino - Preliminary Results from TOTEM

T2 Alignment - II

Quarter-quarter and global alignment

 Most important quarter global misalignment: tilts in the XZ-YZ plane and shifts.

Tilts: corrections from expected symmetry in the parameter distribution of the tracks coming from the vtx

Shifts: corrections from expected position of the Beam pipe "shadow" on each plane

Track BY before/after alignment, Plus Far

T2 Global Alignment and Vertex Reconstruction

After T2 Primary Vertex X
Align.

T2 Primary Vertex \mathbf{Y}

T2 Primary Vertex \mathbf{Y}

$\mathrm{rms}=1.0 \mathrm{~cm}$

T2 Primary Vertex Z

T2 Primary Vertex Z

G. Latino - Preliminary Results from TOTEM

15/27

Inelastic Processes: Preliminary dNch/d η Distribution

Track $\mathbf{d N}_{\mathbf{c H}} / \mathbf{d} \eta$ (Statistical error only)

$\sim 400 \mathrm{~K}$ inelastic events from 30/10/10 TOTEM dedicated run with low proton density bunches.

- No smearing corrections
"Raw" distribution: - No efficiency corrections
- No secondaries contribution subtraction

Work ongoing on unfolding corrections

Towards the Unfolding Corrections

Roman Pot Alignment

Fundamental for any physics measurement:

Resolve misalignments within detector assembly method: local track

Resolve relative positions of the pots
(principal information from motor control \rightarrow calibration, reliability, ...) method: local track based (detector overlap)

Resolve position of beam
(uncertainties and variations of optics):
method: hit profiles from physics events and Beam Halo Cross-check: Beam Position Monitors, alignment with collimators

Resolve left-right position method: global (elastic) track based

Expected precision of the alignment correction methods: few $\mu \mathrm{m}$ (internal), $\sim 10 \mu \mathrm{~m}$ (beam position, using elastic scattering)

y profile in horizontal RP

RP Alignment w.r.t. the Beam: Beam-Based Method

Test done at 450 GeV and at 3.5 TeV using BLM (beam loss monitor) signal during special collimator/RP setup runs

Collimator cuts a sharp beam edge symmetrically to the centre

When both top and bottom pots "feel" the edge: they are at the same number of sigmas from the beam centre as the collimator and the beam centre is exactly in the middle between top and bottom pot

Procedure repeated in different configurations, allowing safe insertion down to 18σ (V) in standard runs and down to $7 \sigma(\mathrm{~V})$ in special runs.
$\left(1 \sigma_{\mathrm{x}}\left(\sigma_{\mathrm{y}}\right)=0.19(0.42) \mathrm{mm} @ \beta^{*}=3.5 \mathrm{~m}\right)$

RP Alignment (Example@20б): Track Profiles

Tracks in horizontal pot (diffractive protons)

Horizontal alignment

Tracks in vertical pot (halo protons)
Now done with elastic protons

"Raw" Data: Hit Map for L-R Coincidences (El. Scat.)

Hits related to elastic scattering candidates

Tracks reconstructed in "left" (45) and "right" (56) sides

Elastic Scattering Selection: Collinearity in $\theta_{v}^{*}\left(\theta_{x}^{*}\right)$

2500

Low ξ, i.e.:
$|\mathrm{x}|<0.4 \mathrm{~mm}$, 2σ cut in $\Delta \theta_{\mathrm{x}}^{*}\left(\Delta \theta_{\mathrm{y}}^{*}\right)$

Compatible with Beam divergence (17 $\mu \mathrm{rad}$, for nominal $\varepsilon=3.75 \mu \mathrm{rad})$
G. Latino - Preliminary Results from TOTEM

Elastic Scattering: Preliminary t Distribution

~ 84K elastic scattering candidate events from 30/10/10 TOTEM special run

$\sqrt{ } \mathrm{s}=7 \mathrm{TeV}$
$\beta^{*}=3.5 \mathrm{~m}$
RPs@ $7 \sigma(\mathrm{~V})$ and $16 \sigma(\mathrm{H})$

"Raw" distribution:

- No smearing corrections
- No acceptance corrections
- No background subtraction

Sys. err. sources under study: alignment, beam position and divergence, background, optical functions, efficiency, ...

Topologies of Diffractive Events: SD@ Low

sector 45 IP sector 56

run: 37280004, event: 22784

G. Latino - Preliminary Results from TOTEM

Topologies of Diffractive Events: SD @ High ξ

sector 45 IP sector 56

run: 37280006, event: 6074

G. Latino - Preliminary Results from TOTEM

Topologies of Diffractive Events: DPE

sector 45 IP sector 56

G. Latino - Preliminary Results from TOTEM

Summary \& Conclusions

TOTEM RP220 and T2 detectors fully installed and operative.
\square Commissioning on collision data finished.
\square First data analysis is ongoing on special TOTEM run data taking, early measurements with $\beta^{*}=3.5 \mathrm{~m}$ at $\sqrt{\mathrm{s}}=7 \mathrm{TeV}$:

- study of SD and DPE at high mass
- elastic scattering at large $|\mathrm{t}|\left(0.5<|\mathrm{t}|<5 \mathrm{GeV}^{2}\right)$
- measurement of forward charged multiplicity.
\square Analysis work focused in understanding efficiencies, systematics and biases from secondary particles and background.
\square Installation of RP147 and T1 scheduled for Winter 2010 shutdown.
\square The measurement of total pp cross-section (and \mathcal{L}) with a precision of $5 \%(1-2 \%)$ with $\beta^{*}=90 \mathrm{~m}(1540 \mathrm{~m})$, and the study of elastic scattering and diffraction in a wider $|t|$ and η range, will require dedicated runs of data taking with the detector fully equipped.
\square Looking forward for new data in 2011!

| Scenario Physics: | 1
 low \|t| elastic, $\sigma_{\text {tot }}$ (@~1\%), MB, soft diffr. | 2
 low/large \|t| elastic, $\sigma_{\text {tot }}(@ ~ 5 \%),$
 MB, soft/semi-h. diffr. | 3
 large \|t| elastic, hard diffraction |
| :---: | :---: | :---: | :---: |
| β^{*} [m] | 1540 | 90 | $2 \div 0.5$ |
| N of bunches | $43 \div 156$ | 156 | $936 \div 2808$ |
| Bunch spacing [ns] | $2025 \div 525$ | 525 | 25 |
| N of part. per bunch | $(0.6 \div 1.15) \times 10^{11}$ | 1.15×10^{11} | 1.15×10^{11} |
| Half crossing angle [$\mu \mathrm{rad}$] | 0 | 0 | 92 |
| Transv. norm. emitt. ε_{n} [$\mu \mathrm{m} \mathrm{rad}$] | 1 | 3.75 | 3.75 |
| RMS beam size at IP [$\mu \mathrm{m}$] | 450 | 213 | 32 |
| RMS beam diverg. at IP [$\mu \mathrm{rad}$] | 0.3 | 2.3 | 16 |
| Peak Luminosity [$\mathrm{cm}^{-2} \mathrm{~s}^{-1}$] | $10^{28} \div 2 \times 10^{29}$ | 3×10^{30} | 10^{33} |

Cross section
Luminosity

$\beta^{*}(\mathrm{~m})$	1540	90	2	0.5
$\mathrm{~L}\left(\mathrm{~cm}^{-2} \mathrm{~s}^{-1}\right)$	10^{29}	10^{30}	10^{32}	10^{33}
	TOTEM runs	Standard runs		

Accessible physics depends on luminosity $\& \beta^{*}$
beam ang. spread at IP: $\sigma_{\theta^{*}}=\sqrt{ }\left(\varepsilon / \beta^{*}\right)$ beam size at IP: $\quad \sigma^{*}=\sqrt{ }\left(\varepsilon \beta^{*}\right)$

- Optimal $\beta^{*}=1540 \mathrm{~m}$ optics requires special injection optics: probably NOT available at the beginning of LHC
\square 'Early' $\beta^{*}=90 \mathrm{~m}$ optics achievable using the standard LHC injection optics

$$
\sigma_{t o t}=\frac{16 \pi}{1+\rho^{2}} \frac{d N_{e l} /\left.d t\right|_{t=0}}{N_{e l}+N_{i n e l}}
$$

$$
\mathcal{L}=\frac{1+\rho^{2}}{16 \pi} \frac{\left(N_{e l}+N_{i n e l}\right)^{2}}{d N_{e l} /\left.d t\right|_{t=0}}
$$

$$
\beta^{*}=90 \mathrm{~m} \quad 1540 \mathrm{~m}
$$

\square Extrapolation of elastic cross-section to $\mathbf{t}=0$:

$$
\pm 4 \% \quad \pm 0.2 \%
$$

\square Total elastic rate (strongly correlated with extrapolation):
$\pm 2 \% \quad \pm 0.1 \%$
\square Total inelastic rate:
$\pm 1 \% \quad \pm 0.8 \%$ (error dominated by Single Diffractive trigger losses)
\square Error contribution from $\left(1+\rho^{2}\right)$: $\pm 1.2 \%$ (using full COMPETE error band $\mathrm{d} \rho / \rho=33 \%$)
\Rightarrow Total uncertainty in $\sigma_{\text {tot }}$ including correlations in the error propagation:

$$
\beta^{*}=90 \mathrm{~m}: \pm 5 \% \quad \beta^{*}=1540 \mathrm{~m}: \pm(1 \div 2) \%
$$

Slightly worse in \mathcal{L} (\sim total rate squared) $: \pm 7 \%(\pm 2 \%)$
$\beta^{*}=90 \mathrm{~m}$ required for early $\sigma_{\text {tot }}$ measurement at $V_{\mathrm{s}}=7 \mathrm{TeV}$ (foreseen in 2011)

Measurement of $\sigma_{\text {TOT }}$ at $\sim 1 \%$

Trigger Losses (mb):

	$\sigma(\mathrm{mb})$	Double arm T1/T2	Single arm T1/T2	Uncertainty after Extrapolation (mb)
		0.3	0.06	0.06
Minimum bias	58	-	2.5	0.6
Single diffractive	14	7	2.8	0.3

$$
\Delta \sigma_{\mathrm{T}} / \sigma_{\mathrm{T}} \sim \sqrt{ }\left[(0.006)^{2}+(0.002)^{2}+(0.012)^{2}\right] \sim 0.014
$$

Total 0.8\%

Determination of do/dt at $\mathrm{t}=0$

Model dependent uncertainty due to Coulomb interferences

Measurement of the exponential slope B in the t-range 0.002-0.2 GeV^{2} needs beams with tiny angular spread \Rightarrow large β^{*}

Possibilities of ρ measurement

Try to reach the Coulomb region and measure interference:

- move the detectors closer to the beam than $10 \sigma+0.5 \mathrm{~mm}$
- run at lower energy @ $\sqrt{ } \mathbf{s}<14 \mathrm{TeV}$

Pythia 6.420 Settings

```
'MSTJ(11)=3 ! Choice of the fragmentation function',
'MSTJ(22)=2 ! Decay those unstable particles',
'PARJ(71)=10. ! for which ctau 10 mm',
'MSTP(2)=2 !which order running alphaS',
'MSTP(33)=3 ! no K factors in hard cross sections',
'MSTP(51)=7 !choice of proton parton-distribution set (D=7 and means CTEQ 5L)',
'MSTP(52)=1 !choice of proton pdf library (D=1 and means internal pythia one, according to MSTP(51) above',
'MSTP(81)=1 !multiple parton interactions 1 is Pythia default',
'MSTP(82)=4 ! Defines the multi-parton model',
'MSTU(21)=1 ! Check on possible errors during program execution',
'PARP(82)=1.9409 ! pt cutoff for multiparton interactions',
'PARP(89)=1960. ! sqrts for which PARP82 is set',
'PARP(83)=0.5 ! Multiple interactions: matter distrbn parameter',
'PARP(84)=0.4 !Multiple interactions: matter distribution parameter',
'PARP(90)=0.16 ! Multiple interactions: rescaling power',
'PARP(67)=2.5 !amount of initial-state radiation',
'PARP(85)=1.0 ! gluon prod. mechanism in MI',
'PARP(86)=1.0 ! gluon prod. mechanism in MI',
'PARP(62)=1.25 !',
'PARP(64)=0.2 !',
'MSTP(91)=1 !',
'PARP(91)=2.1 ! kt distribution'
'PARP(93)=15.0 !')
```


Details on Beam Optics

optical functions

Proton transport equation:

$$
\begin{aligned}
& \xi=\Delta \mathrm{p} / \mathrm{p} ; \mathrm{t}=\mathrm{t}_{\mathrm{x}}+\mathrm{t}_{\mathrm{y}} ; \mathrm{t}_{\mathrm{i}} \sim-\left(\mathrm{p} \theta_{\mathrm{i}}{ }^{*}\right)^{2} \\
& \left(\mathrm{x}^{*}, \mathrm{y}^{*}\right): \text { vertex position at IP } \\
& \left(\theta_{\mathrm{x}}^{*}, \theta_{\mathrm{y}}^{*}\right): \text { emission angle at IP }
\end{aligned}
$$

$$
\begin{aligned}
& x=L_{x} \theta_{x}{ }^{*}+v_{x} x^{*}+D \xi \\
& y=L_{y} \theta_{y}{ }^{*}+v_{y} y^{*}
\end{aligned}
$$

Optical functions:

- L (effective length); - v (magnification);
- D (machine dispersion)

Describe the explicit path of particles through the magnetic elements as a function of the particle parameters at IP.
\Rightarrow Define t and ξ range (acceptance)

Diffractive protons : hit distribution @ RP220

Example same sample of diffractive protons at different β^{*}

- low β^{*} : p detected by momentum loss (ξ)
- high β^{*} : p detected by trans. momentum (t_{y})

Optical Functions: Example at $\beta^{*}=90 \mathrm{~m}$

\quad Idea:
L_{y} large $\quad L_{x}=0$
$v_{y}=0$
$\mu_{y}(220)=\pi / 2 \quad \mu_{x}(220)=\pi$
(parallel-to-point focussing on y)

$$
x=L_{x} \theta_{x}{ }^{*}+v_{x} x^{*}+D \xi
$$

$$
y=L_{y} \theta_{y}^{*}+y_{y} y^{*}
$$

$\xi=\Delta \mathrm{p} / \mathrm{p}$
$\left(x^{*}, y^{*}\right)$: vertex position at IP $\left(\theta_{x}{ }^{*}, \theta_{y}{ }^{*}\right)$: emission angle at IP

$$
\begin{gathered}
\mathrm{t}=\mathrm{t}_{\mathrm{x}}+\mathrm{t}_{\mathrm{y}} \\
\mathrm{t}_{\mathrm{i}} \sim-\left(\mathrm{p} \theta_{\mathrm{i}}^{*}\right)^{2}
\end{gathered}
$$

hit distribution (elastic)

G. Latino - Preliminary Results from TOTEM

Optical functions:

- L (effective length)
-v (magnification)
defined by β (betatron function) and μ (phase advance);
- D (machine dispersion)
\Rightarrow describe the explicit path of particles through the magnetic elements as a function of the particle parameters at IP

Physics with Low β^{*} Optics

Single Diffraction

$\mathrm{d} \sigma / \mathrm{dM}: \mathbf{0 . 0 2 5}<\boldsymbol{\xi}<0.15$ $1<\mathrm{M}<3 \mathrm{TeV}$ $\sigma(M) / M \sim 2-5 \%$

Central Diffraction

do/dM: $0.2<\mathrm{M}<1 \mathrm{TeV}$ $\sigma(M) / M \sim 2-5 \%$

Elastic Scattering
$0.5<|\mathrm{t}|<5 \mathrm{GeV}^{2}$
$\sigma(|t|) \sim 0.2 \vee|t|$

Acceptance

G. Latino - Preliminary Results from TOTEM

Physics with High β^{*} Optics

- Total cross section measurement at $\sim 5 \%(\sim 1 \%)$
- Elastic scattering: $0.0004<|t|<2.5 \mathbf{G e V}^{2}$
- Soft diffraction: all masses - $\mathbf{6 5} \%$ of diffractive protons seen
- Classification of inelastic events: rates \& multiplicity

CMS/TOTEM Common Physics Program

CMS + TOTEM \Rightarrow largest acceptance detector ever built at a hadron collider: the large η coverage and p detection on both sides allow the study of a wide range of physics processes in diffractive interactions

Double Pomeron Exchange

Multi Pomeron Exchange

$\ll 1 \mathrm{mb}$

Forward Physics:

Total multiplicity in T2 $(5<\eta<7)$

p-p collisions @ LHC as predicted by generators tipically used to model hadronic showers generated by VHE CR

Interpreting cosmic ray data depends on hadronic simulation programs. Forward region poorly known/constr. Models differ by factor 2 or more. Need forward particle/energy measurements e.g. $\mathrm{dN} / \mathrm{d} \eta, \mathrm{dE} / \mathrm{d} \eta \ldots$

Machine Induced Background

T1/T2 Detectors:

\square beam-gas interactions: prel. ext. $\sim \mathbf{1 4} \mathbf{~ H z}$ per beam;
$\sim 19 \mathrm{KHz}$ for MB events ($\sigma \mathrm{MB}=\mathbf{8 0} \mathrm{mb}, \mathrm{L}=2.4 \cdot 10^{29} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$)
\Rightarrow reduced by vertex reconstruction
\square muon halo (expected to be very small, not yet quantified)

Roman Pot Detectors:

\square beam halo (protons out of design orbit): ext. ($\beta^{*}=1540 \mathrm{~m}$) $\sim 12 \cdot 10^{-4} /$ bunch
\Rightarrow reduced by requiring coincidence between RP arms
\square beam-gas interactions: ext. $\left(\beta^{*}=1540 \mathrm{~m}\right) \sim 3 \cdot 10^{-4} /$ bunch after cuts
\Rightarrow reduced with cuts on track angles and multiplicities
\square p-p collision (at IP) background: ext $\left(\beta^{*}=1540 \mathrm{~m}\right) \sim(0.4 \div 2) \cdot 10^{-4} /$ bunch after cuts
\Rightarrow reduced with cuts on track angles and hit multiplicities
Tot. elast. evts $\sim 3 \mathrm{KHz}\left(\mathrm{L}=1 \mathbf{1 0}^{29} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}\right)$; prel. expt. $\mathrm{S} / \mathrm{B} \sim(0.6 \div 0.7) \cdot 10^{\mathbf{3}}$

Si CTS Edgeless Detectors for Roman Pots

Planar technology with CTS (Current Terminating Structure)

AC coupled microstrips ma technology with novel guard and biasing scheme

$50 \mu \mathrm{~m}$ of dead area

T1 Cathode Strip Chamber (CSC)

Cathode strips - 5 mm pitch

\square Detector design similar to CMS CSC muon chamber
\square Gas Mixture $\mathrm{Ar} / \mathrm{CO}_{2} / \mathrm{CF}_{4}$
Max size: $\sim 1 \mathrm{mx} 0.68 \mathrm{~m}$
\square Gas gap: 10 mm
\square Anode wires: $\varnothing 30 \mu \mathrm{~m}, 3 \mathrm{~mm}$ pitch
\square Cathode strips: 4.5 mm width, 5 mm pitch
\square Digital readout (VFAT)

Ageing studies at CERN Gamma Irradiation Facility:

no loss of performance during 12-month test, with $\sim 0.07 \mathrm{C} / \mathrm{cm}$ accumulated charge on wires corresponding to a dose equivalent to ~ 5 years at $\mathrm{L}=10^{30} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$

Gas Electron Multiplier (GEM)

T2 GEM:

GEM Technology

- Developed at CERN (F. Sauli ~ 1997) \square Used in COMPASS, LHCb, ...
\square Gas Detector
- "Rad-hard", high rate, good spatial and timing resolution
\square Electrodes: $50 \mu \mathrm{~m}$ kapton $+2 \mathrm{x} 5 \mu \mathrm{~m} \mathrm{Cu}$
- Density: 50-100 holes $/ \mathrm{mm}^{2}$
-Electric field (channel) ~ $100 \mathrm{KV} / \mathrm{cm}$ $\left(\mathrm{V}_{\text {gem }}=500 \mathrm{~V}\right) \Rightarrow$ electron cascade
- Gain: 10-100

T2 Triple-GEM Detectors

$65(\varphi) \times 24(\eta)=1560$ pads
Pads: $\quad \Delta \eta \times \Delta \varphi=0.06 \times 0.018 \pi$ $\sim 2 \times 2 \mathrm{~mm}^{2}-\sim 7 \times 7 \mathrm{~mm}^{2}$

Strips: 256×2 (width $80 \mu \mathrm{~m}$, pitch $400 \mu \mathrm{~m}$)

