MPI@LHC November 29_{th} - December 3_{rd} 2010

ALICE Underlying Event Measurements

S. Vallero

(University of Heidelberg)

J.F Grosse Oetringhaus (CERN)

Development and Application of Intelligent Detectors

ALICE UE Working Group

• Arian Abrahantes Quintana,

Centro de Aplicaciones Tecnologicas y Desarrollo Nuclear (CEADEN), Cuba

- Jan Fiete Grosse-Oetringhaus, Centre Europeen pour la Recherche Nucleaire (CERN), Switzerland
- Ernesto Lopez Torres,

Centro de Aplicaciones Tecnologicas y Desarrollo Nuclear (CEADEN), Cuba

• Sara Vallero,

Physikalisches Institut Ruprecht-Karls-Universitaet Heidelberg, Germany

- Introduction: why and how measuring the UE?
- Data correction procedure
- Systematic uncertainties
- ALICE UE Measurement and MC comparison:

• Conclusions

The Underlying Physics

We define the UE as everything else but the hardest scattering in a pp collision.

Experimental Method

On event-by-event basis: π AWAY 1) Identify the leading object in the event TRANSVERSE 2) Build TRANSVERSE REGIONS w.r.t. it Leading-track 3) Compute Σp_T of charged particles (or multiplicity) TOWARDS in the different regions $\Delta \phi$ φ \bigcirc Leading track OWARD **SETTINGS**: • pT > 0.5 GeV/c TRANSVERSE **TRANSVERSE** TRANSVERSE (tracks and leading-track) • $|\eta| < 0.8$ AWAY AWA -0.8 -► 0.8 • leading-track not included η in distributions

DETECTOR LEVEL

DETECTOR LEVEL

Correct for detector effects: EVENT LEVEL

- trigger
- vertex reconstruction
- leading track misidentification
- TRACK LEVEL
- tracking efficiency
- contamination

DETECTOR LEVEL

Correct for detector effects: EVENT LEVEL

- trigger
- vertex reconstruction
- leading track misidentification
- TRACK LEVEL
- tracking efficiency
- contamination

Estimate systematic errors:

(uncertainties in systematic correction factors)

- track cuts
- particle composition
- model dependence
- non closure in MC

DETECTOR LEVEL

PARTICLE LEVEL (compare with theory)

Correct for detector effects: EVENT LEVEL

- trigger
- vertex reconstruction
- leading track misidentification
- TRACK LEVEL
- tracking efficiency
- contamination

Estimate systematic errors:

(uncertainties in systematic correction factors)

- track cuts
- particle composition
- model dependence
- non closure in MC

Leading track misidentification

If instead of the leading-track, the sub-leading is taken...

• Bin migration:

along leading-track p_T axis (X)

• Event disorientation: effect on number density or Σp_T (Y)

In ~ 5% of the cases the sub-leading track falls in the transverse region.

Data driven estimate of bias

Assume that the misidentification is due to tracking efficiency only:

- Starting from the reconstructed distribution, for each event:
 - apply the tracking efficiency a second time on the data
 - with the help of a random number generator decide if the leading-track is reconstructed
- if it is reconstructed:
 - •use the reconstructed leading track to define topological regions
- if not:

 \bullet use the sub-leading track instead the correction is extracted as function of leading track p_T 12

Monte Carlo driven estimate of bias

Example: misidentification bias on number density distribution.

In the Monte Carlo driven procedure the correction comes from the ratio between events defined by:

- reconstructed leading-track
- true leading-track

The data driven correction is validated by its compatibility with the Monte Carlo driven correction.

Track Cuts

- Combined information from
 Time Projection Chamber (TPC) and
 Inner Tracking System (ITS)
- Cuts optimized to minimize contamination from secondaries:
 - produced in silicon layers and thermal shield
 - from strangeness decays
- Require hits in ITS inner layers
- p_T dependent DCA_{XY} cut (7 σ of distribution)

Vertex and tracking efficiency

VERTEX RECONSTRUCTION EFFICIENCY:

- Correction as function of multiplicity
- Convert measured multiplicity into true via correction factor
 - (from profile of response matrix)
- Fit correction factor vs. true multiplicity

TRACKING EFFICIENCY:

Secondaries contamination

Example of correction validation

- PYTHIA sample corrected with factors from PHOJET.
- Final step: all corrections included.
- Non-closure effect: 2% in first leading p_T bin

Summary of corrections

	Relevant Variables	Correction	
		1 _{st} bin	Other
Misidentification bias	lead. track p _T	~10%	< 5%
Vertex reconstruction	measured multiplicity	~10%	< 5%
Tracking efficiency	track pT , η	~30%	~20%
Contamination	track pT , η	~10%	< 5%

Systematic errors

Values for 7 TeV in % (900 GeV similar)	$0.5 < p_T < 1 (GeV/c)$	$p_T > (1 \text{ GeV/c})$
Particle composition	0.8	
ITS/TPC efficiency	1.0 (+0.5)	0.6 (+0.5)
Track Cuts	3	
Misidentification bias	4-5	0
MC dependence (x-correction)	2	0
MC dependence (data corrected w/ both)	0.8	
Vertex efficiency correction	1	0
Strangeness estimation	2 (for p _T < 1.5)	1
Diffraction	0	
Triggering efficiency	0	
Beam-gas	0	
Pile-up	0	

* Ranges indicate different uncertainty for different distributions.

19

Corrected Data

Compared with ATLAS results from ATLAS-CONF-2010-029 (May 2010)

Good agreement ALICE/ATLAS

Results @ 900 GeV: sum p_T

- ALICE and ATLAS data are not directly comparable:
- different acceptance
- ALICE excludes leading track from distributions
- Favored tune: Perugia 0

Results @ 900 GeV: $\Delta \phi$ correlation

Azimuthal correlation between leading track and all tracks.

Good agreement ALICE/ATLAS

20

20

Discrepancy explained by considerations on acceptance (same as \sqrt{s} 900 GeV).

- Remember:
 - different acceptance ALICE/ATLAS
 - ALICE excludes leading track from distributions
- Favored tunes Transverse + Away:
 - Perugia 0: low p_T (< 2 GeV/c)
 - CMS D6T: high p_T
- Favored tune Towards: Perugia 0

Results @ 7 TeV: $\Delta \phi$ correlation

Azimuthal correlation between leading track and all tracks.

Conclusions

- ALICE has measured the Underlying Event in transverse regions w.r.t. leading track at $\sqrt{s} = 900$ GeV and $\sqrt{s} = 7$ TeV
- Charged particles analysis
- Data corrected to particle level
- Fair comparison with ATLAS results:
 - Different acceptance (discrepancy in toward region)
 - ALICE excludes leading track from distributions
- Comparison with various PYTHIA tunes and PHOJET:
 - $-\,$ Perugia 0 favoured tune at 900 GeV
 - $-\,$ Perugia 0 favoured tune at 7 TeV for $p_T < 2$ GeV/c
 - $-\,$ CMS D6T favoured tune at 7 TeV for higher p_T

Motivations

- Understand particle production mechanisms at LHC (models fail to reproduce data...)
- A pp di-jet event is NOT just 2 jets + Minimum Bias (QCD radiation, MPI ...)
- Experimental point of view: define observables more sensitive to hard/soft component of the UE
- Correct jet measurements for soft-UE for fair comparison with NLO pQCD
- Constrain phenomenological model for the non-perturbative aspect (Monte Carlo/tune)

Detectors used in the analysis:

Time Projection Chamber (TPC) ALICE \rightarrow high track density in heavy-ion collisions (up to 8000 in central rapidity unit).

ALICE \rightarrow high track density in heavy-ion collisions (up to 8000 in central rapidity unit). High granularity and good 2-track separation \rightarrow 3D hit information and many points in the track (plus weak magnetic field).

Min. Radius: \sim 80 cm (limited by hit density) Max. Radius: \sim 280 cm (10% dE/dx resolution) Acceptance: $|\eta|$ < 0.9

TPC: main device in the central barrel to detect charged particle tracks and perform particle identification (ionization density). Can cope with up to 20000 tracks in a single Pb-Pb interaction. BUT it's slow (200 Hz)!

Detectors used in the analysis: Inner Tracking System (ITS)

- Vertexing detector plus dE/dx in non-relativistic region (stand-alone low p_T spectrometer).
- High granularity and excellent spatial resolution.
- About 90 tracks per cm² in innermost layers.

6 silicon layers:

- 2 x pixel (intrinsically 2D)
- 2 x drift (intrinsically 2D)
- 2 x strip

 $\begin{array}{l} \mathsf{R} \sim 4\text{-}44 \text{ cm} \\ |\,\eta\,| \, < 0.9 \end{array}$

JU