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This talk brings attention to what is knowable from perturbative
QCD theory on multiparton distribution functions in the light of
CDF and D0 measurements of the inclusive cross section for double
parton scattering.



In a parton model (which was established in the quantum field theory
in the leading logarithm approximation) the differential cross section
for the two-jet process, for instance, is given by

dσ =
∑

q/g
dσ12 Dp(x1, Q2) Dp̄(x2, Q2)

where Dp(xi, Q
2) are the single quark/gluon momentum distributions

at the scale Q2 (determined by a hard process).



And the differential cross section for the four-jet process is given by

dσ =
∑

q/g
dσ12(2 → 4) Dp(x1, Q2) Dp̄(x2, Q2)

——————————————
But there is the possibility of the simultaneous interaction of two
parton pairs which has been proposed since long
Landshoff, Polkinghorne, Goebel, Halzen, Scott,... (∼ 1980)
and from that has also developed in a number of works.
Takagi, Paver, Treleani, Humpert, Odorico, Sjostrand, van Zijl, Calucci, Del
Fabbro, Stirling,...
CDF and D0 collaborations have MEASURED a large number of
double parton scattering



The differential cross section for the four-jet process (due to the si-
multaneous interaction of two parton pairs) is given by

dσ =
∑

q/g

dσ12 dσ34

2σeff

Dp(x1, x3) Dp̄(x2, x4), (1)

where dσij stands for the two-jet cross section. The dimensional factor
σeff in the denominator represents the total inelastic cross section
which is an estimate of the size of the hadron.



With the effective cross section measured by CDF and DO
(σeff)CDF ≃ (σeff)D0 ≃ 15 mb,

one can estimate the transverse size rp, which is too small in compar-
ison with the proton radius Rp extracted from ep elastic scattering
experiments. The relatively small value of (σeff)CDF with respect to
the naive expectation was, in fact, considered as evidence of nontriv-
ial correlation effects in transverse space (Treleani ....).

But, apart from these correlations, the longitudinal momentum cor-
relations can also exist and they are under consideration. The factor-
ization ansatz is just applied to the two-parton distributions incoming
in eq. (1):

Dp(xi, xj) = Dp(xi, Q2) Dp(xj, Q2) (1 − xi − xj), (2)

where Dp(xi, Q
2) are the single quark/gluon momentum distributions

at the scale Q2 (determined by a hard process).

However many parton distributions satisfy the generalized DGLAP
evolution equations (derived by Kirschner; Shelest, Snigirev, Zinovjev) as
well as single parton distributions.



Under certain initial conditions these generalized equations lead to
solutions, which are identical with the jet calculus rules proposed
originally for multiparton fragmentation functions by Konishi-Ukawa-
Veneziano and are in some contradiction with the factorization hy-
pothesis (2). Here one should note that at the parton level this is
the strict assertion within the leading logarithm approximation.

After introducing the natural dimensionless variable

t =
1

2πb
ln

[

1 +
g2(µ2)

4π
b ln

(Q2

µ2

)]

=
1

2πb
ln

[

ln( Q2

Λ2
QCD

)

ln( µ2

Λ2
QCD

)

]

, b =
33 − 2nf

12π
,

where g(µ2) is the running coupling constant at the reference scale
µ2, nf is the number of active flavours, ΛQCD is the dimensional QCD
parameter, the DGLAP equations read

dDj
i (x, t)

dt
=

∑

j′

1
∫

x

dx′

x′
Dj′

i (x′, t)Pj′→j

( x

x′

)

.

They describe the scaling violation of the parton distributions Dj
i (x, t)

inside a dressed quark or gluon (i, j = q/g).



dDj1j2
i (x1, x2, t)

dt
=

∑

j1′

1−x2
∫

x1

dx1
′

x1
′
Dj1

′j2
i (x1

′, x2, t)Pj1′→j1

( x1

x1
′

)

+
∑

j2′

1−x1
∫

x2

dx2
′

x2
′
Dj1j2

′

i (x1, x2
′, t)Pj2′→j2

( x2

x2
′

)

+
∑

j′
Dj′

i (x1 + x2, t)
1

x1 + x2

Pj′→j1j2

( x1

x1 + x2

)



We will not write the kernels P explicitly and derive the generalized
equations for two-parton distributions Dj1j2

i (x1, x2, t), representing the
probability that in a dressed constituent i one finds two bare partons
of types j1 and j2 with the given longitudinal momentum fractions
x1 and x2 (referring to our papers for details), we give only their
solutions via the convolution of single distributions

Dj1j2
i (x1, x2, t) =

∑

j′j1′j2′

t
∫

0
dt′

1−x2
∫

x1

dz1

z1

1−z1
∫

x2

dz2

z2

Dj′

i (z1 + z2, t′)

1

z1 + z2

Pj′→j1′j2′

( z1

z1 + z2

)

Dj1
j1′(

x1

z1

, t − t′)Dj2
j2′(

x2

z2

, t − t′).

This convolution coincides with the jet calculus rules as mentioned
above and is the generalization of the well-known Gribov-Lipatov re-
lation installed for single functions (the distribution of bare partons
inside a dressed constituent is identical to the distribution of dressed
constituents in the fragmentation of a bare parton in the leading log-
arithm approximation). The solution shows that the distribution of
partons is correlated in the leading logarithm approximation.



Of course, it is interesting to find out the phenomenological issue of
this parton level consideration. This can be done within the well-
known factorization of soft and hard stages (physics of short and
long distances). As a result the DGLAP equations describe the evo-
lution of parton distributions in a hadron with t (Q2), if one replaces
the index i by index h only. However, the initial conditions for new
equations at t = 0 (Q2 = µ2) are unknown a priori and must be intro-
duced phenomenologically or must be extracted from experiments or
some models dealing with physics of long distances [at the parton
level: Dj

i (x, t = 0) = δijδ(x − 1); Dj1j2
i (x1, x2, t = 0) = 0].

Nevertheless the solution of the generalized DGLAP evolution equa-
tions with the given initial condition may be written as before via
the convolution of single distributions

Dj1j2
h (x1, x2, t) = Dj1j2

h(QCD)(x1, x2, t) +

∑

j1′j2′

1−x2
∫

x1

dz1

z1

1−z1
∫

x2

dz2

z2

Dj1
′j2

′

h (z1, z2, 0)Dj1
j1′(

x1

z1

, t)Dj2
j2′(

x2

z2

, t) ,



where
Dj1j2

h(QCD)(x1, x2, t) =

∑

j′j1′j2′

t
∫

0
dt′

1−x2
∫

x1

dz1

z1

1−z1
∫

x2

dz2

z2

Dj′

h (z1 + z2, t′)

1

z1 + z2

Pj′→j1′j2′

( z1

z1 + z2

)

Dj1
j1′(

x1

z1

, t − t′)Dj2
j2′(

x2

z2

, t − t′) (3)

are the dynamically correlated distributions given by perturbative
QCD.

The reckoning for the unsolved confinement problem (physics of long
distances) is the unknown nonperturbative two-parton correlation

function Dj1
′j2

′

h (z1, z2, 0) at some scale µ2. One can suppose that this
function is the product of two single-parton distributions times a
momentum conserving factor at this scale µ2:

Dj1j2
h (z1, z2, 0) = Dj1

h (z1, 0)Dj2
h (z2, 0)θ(1 − z1 − z2).



Then

Dj1j2
h (x1, x2, t) = Dj1j2

h(QCD)(x1, x2, t) + θ(1 − x1 − x2)(D
j1
h (x1, t)Dj2

h (x2, t)+

∑

j1′j2′

1
∫

x1

dz1

z1

1
∫

x2

dz2

z2

Dj1
′

h (z1, 0)Dj2
′

h (z2, 0)Dj1
j1′(

x1

z1

, t)Dj2
j2′(

x2

z2

, t)[θ(1 − z1 − z2) − 1]),

where

Dj
h(x, t) =

∑

j′

1
∫

x

dz

z
Dj′

h (z, 0) Dj
j′(

x

z
, t)

is the solution of DGLAP eq. with the given initial condition Dj
h(x, 0)

for parton distributions inside a hadron expressed via distributions
at the parton level.

This MAIN result shows that if the two-parton distributions are fac-
torized at some scale µ2, then the evolution violates this factorization
inevitably at any different scale (Q2 6= µ2), apart from the violation due
to the kinematic correlations induced by the momentum conservation
(given by θ functions)



For a practical employment it is interesting to know the degree of
this violation. We do it using the CTEQ fit for single distribu-
tions as an input in eq. (3). The nonperturbative initial conditions
Dj

h(x, 0) are specified in a parametrized form at a fixed low-energy
scale Q0 = µ = 1.3 GeV. The particular function forms and the value
of Q0 are not crucial for the CTEQ global analysis at the flexible
enough parametrization, which reads

xDj
p(x, 0) = Aj

0x
A

j
1(1 − x)A

j
2eA

j
3x(1 + eA

j
4x)A

j
5.

The independent parameters Aj
0, Aj

1, Aj
2, Aj

3, Aj
4, Aj

5 for parton flavour
combinations uv ≡ u− ū, dv ≡ d− d̄, g and ū + d̄ are given in Appendix
A of work: J.Pamplin, et al., JHEP 0207 (2002) 012.

The results of numerical calculations are presented on fig. for the
ratio:

R(x, t) = (Dgg
p(QCD)(x1, x2, t)/Dg

p(x1, t)Dg
p(x2, t)(1 − x1 − x2)

2)|x1=x2=x.
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One should note that the momentum conserving phase space factor
(1−x1−x2)

2 is introduced instead of (1−x1−x2) usually used. The reason
is simple: this factor was introduced in eq. (2), generally speaking,
“by hand” in order to “save” the momentum conservation law, i.e.
in order to make the product of two single distributions is equal to
zero smoothly at x1 + x2 = 1. However the generalized QCD evolution
equations demand higher power of (1−x1−x2) at x1 +x2 → 1: only the
phase space integrals give

1−x2
∫

x1

dz1

1−z1
∫

x2

dz2 = (1 − x1 − x2)
2/2.

In fact this power must depend on t increasing with its growth as
this takes place for single distributions at x → 1 Our numerical cal-
culations support this assertion also: the power of (1 − x1 − x2) for
the perturbative QCD gluon-gluon correlations is higher than 2 and
increases with t(Q) as one can see from fig. However the introduced
factor (1−x1−x2)

2 has not an influence practically on the ratio under
consideration in the region of small x1, x2. And namely this region, in
which multiple interactions can contribute to the cross section visibly,
is interesting from experimental point of view.



Fig. shows that at the scale of CDF hard process (∼ 5 GeV) the ratio
R(x) is nearly 10% and increases right up to 30% at the LHC scale (∼
100 GeV) for the longitudinal momentum fractions x ≤ 0.1 accessible
to these measurements.

For the finite longitudinal momentum fractions x ∼ 0.2 ÷ 0.4 the
correlations are large right up to 90% . They become important in
more and more x region with the growth of t in accordance with the
predicted QCD asymptotic behaviour.



A non minor role of the QCD evolution of multiparton distribution
functions has been demonstrated: (E. Cattaruzza, A. Del Fabbro, D. Tre-
leani, Phys. Rev. D 72 (2005) 034022 )

In the case of multiple production of W bosons with equal sign, the
terms with correlations may represent a correction of the order of
40% of the cross sections, for pp collisions at 1 TeV c.m. energy, and
a correction of the order of 20% at 14 TeV.

In the case of bb̄ pairs the correction terms are of the order of 10-15%
at 1 TeV and of the order of 5% at 14 TeV.



J.R. Gaunt, W.J. Stirling
IHEP 1003 (2010) 005:

DGLAP equations have been numerically integrated and a set of
publicly available grids covering the ranges:

10−6 < x1 < 1, 10−6 < x2 < 1, 1 < Q2 < 109GeV

is given.

——————————————
Possible manifestation of QCD evolution at the LHC:

J.R. Gaunt, C.-H. Kom, A. Kulesza, W.J. Stirling
EPJ C 69 (2010) 53.

E. Maina
arXiv:1010.5674 [hep-ph].



DO Collaboration has measured σeff at 3 different resolution scales
Phys. Rev. D 81, 052012 (2010)

These results can be interpreted as a first inderect observation of the
QCD evolution of double parton distributions

!? !?
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σγjσjj
= [σexp

eff ]−1 σexp
eff = σ0

eff[1 + k ln(pjet2
T /pjet2

T0 ]−1
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evolution variable t (k = 0.1 (dashed line) and k = 0.5 (solid line))



Asymptotic behavior of double parton distribution functions:
arXiv:1010.4874 [hep-ph]

At x close to 1 these functions include the factors
(1 − x1 − x2) (1 − x1) (1 − x2)

with the exponents depending on parton types. These exponents are
known at the parton level and can be calculated in principle at the
hadron level fixing the asymptotic form of initial conditions near this
kinematical boundary.

The two-parton distribution functions become practically uncorre-
lated in the kinematical range of relatively small longitudinal mo-
mentum fractions. The additional “factorization” contribution in-
duced by evolution being suppressed by the initial gluon and quark
multiplicities in comparison with the “genuine” factorization compo-
nent (the solution of homogeneous equation) in the case of one slow
(x1 ∼ 0) and one fast (x2 = finite) parton:

Dgj2
h0 (x1, x2, t)

Dgj2
hfact(x1, x2, t)

|x1→0 ∼
1

M g
h(0, 0) + CF

Nc

∑

q
M q

h(0, 0)
.



OUTLOOK

It is interesting to study the double parton distribution functions
beyond the leading logarithm approximation over Q2:

• two different scales (done, Gaunt, Stirling)

• BFKL regime Q2 = const , ln (1/x) → ∞

• colour glass condensate approach

• fixing relative transverse momentum or invariant mass of partons

(DDT-formfactor ? Kirschner, Preprint TH 2823-CERN,1980 (parton
level only))



m-parton distributions:

dDj1...jm
i (x1, ..., xm, t)

dt
=

m
∑

l=1

∑

j′

1−x1−...−xl−1−xl+1−...−xm
∫

xl

dx′

x′
×

×D
j1...jl−1j′jl+1...jm
i (x1, ..., xl−1, x′, xl+1, ..., xm, t)Pj′→jl

(xl

x′

)

+
m
∑

l=1

m
∑

p=l+1

∑

j′

1

xl + xp

Pj′→jljp

( xl

xl + xp

)

×

×D
j1...jl−1j′jl+1...jp−1jp+1...jm
i (x1, ..., xl−1, xl + xp, xl+1, ..., xp−1, xp+1, ..., xm, t)

V.P. Shelest, A.M. Snigirev, and G.M. Zinovjev, Preprint ITP-83-46E, Kiev,
1983


