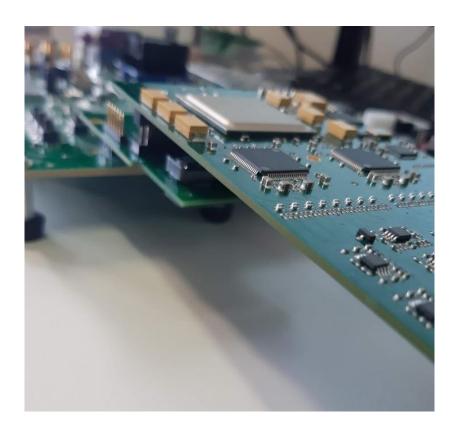



## Multidisciplinary Laboratory

MSADC

2Ch (continuous) and


16Ch (triggered) System

ICTP

Bruno Valinoti



## Readout system, two DAQ approaches



- MSADC
  - Two independent channels, continuos data stream
  - Sixteen channels fixed 4k data, triggered events
- Carrier Design
  - Two channels MSADC hardware handler and packet builder
  - Sixteen channels trigger handler
- Python Scripts
  - 2 channels design, packet length, source mode and channel selection options are available
  - 16 channels, trigger mode, source mode and pre-trigger time options are available
- Adapter and Power board
  - 9V @ 3A power input
  - Full QSH-90 to FMC signals mapping
  - All four power domains to feed MSADC (only one 3.3V domain)



## System design for 2Ch (selectable) MSADC output data stream

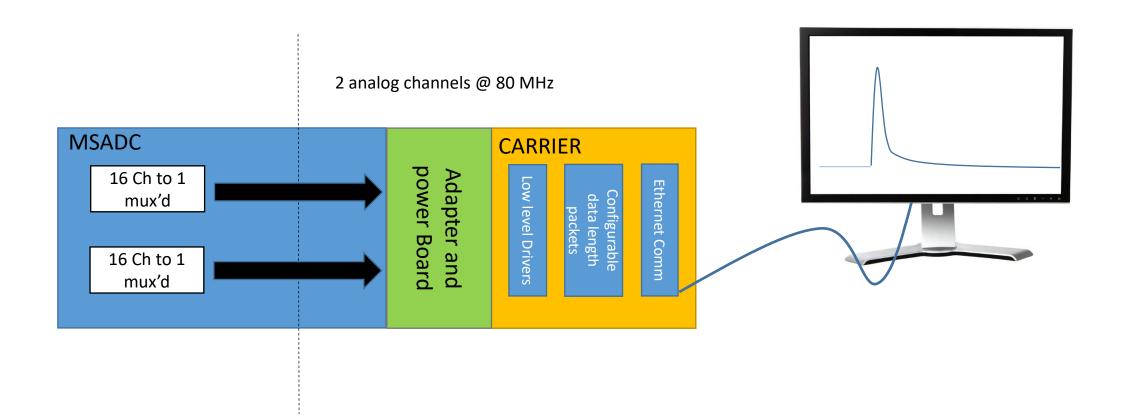
#### **MSADC** Requirements

- Up to 40 MHz clock input
- System reset signal
- Two independent channels streamers
- Individual channel selection signals

#### **MSADC** to Carrier Interface Characteristics

- 12 bits data width
- 80MHz data rate
- Data valid signaling
- 12 LVDS DDR Data transmission lines

### **Carrier Design (Firmware/Hardware)**

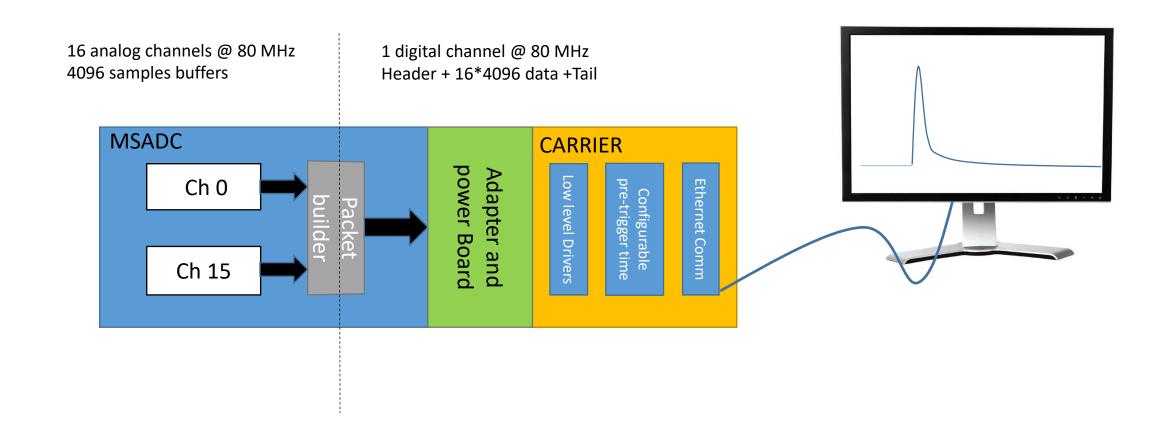

- Programmable frequency clock output
- System reset generator
- Multi-platform design
- Online programmable data length packets

#### **PC Software Interface**

- Up to 4 Million data points retrieval
- Channel selection
- Configurable Ethernet communication parameters



## MSADC system design for 2Ch




## **MSADC** -- Readout system for 16 channels

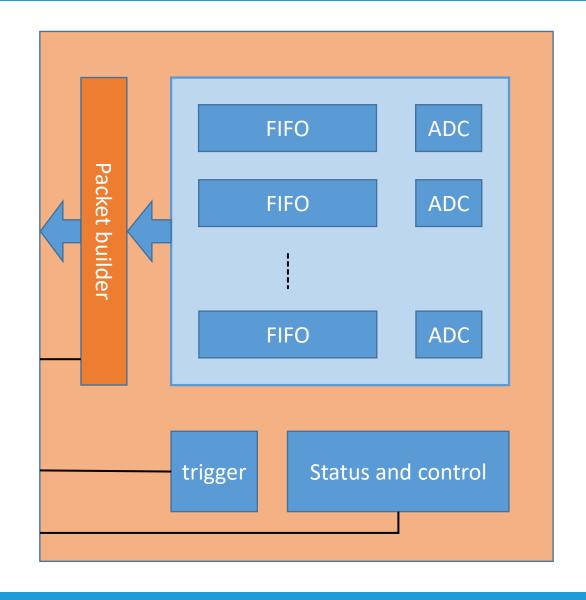
- Selectable trigger depth on runtime
- Selectable trigger source (software/external)
- 16 Channels @ 80MHz 4096 samples per channel
- Ethernet communication to transmit the data stream
- Personal Computer interface to retrieve the data when desired
- Test suite in hardware to verify the correct working of the entire system
- Portable design, implemented in the zedboard but can be easily ported to any zynq7000 based board.



## **MSADC Firmware Modifications and Carrier Board development**






# Modifications, Test beam in Mainz and proton radius measurement

#### **MSADC** Triggered and buffered data approach

- 16 channels readout system
- 4096 continuous stream per channel
- External triggering
- Interleaved channels stream mode
- 12 LVDS DDR Data transmission lines

#### **Future work**

- Selectable data lenght per channel
- Channel interleaved or atomic transmission packets
- Continuous stream readout system
- Need of some loseless data compression method
- Study of maximum number of channels
- Data transmission needs and capabilities study, theoretical and practical





## I/O Data rate using the SERDES blocks (theoretical)

Data transmission capabilities are not enough

- •16 available LVDS lines (Total 20, 2 used for clocks, 2 for MCU I2C)
- •Max data rate specification is 800 Mb/s
- •Total transmission capability could be 16 \* 800 Mb/s = 12800 Mb/s
- •Each ADC produces 12bit x 80 Msps = 960 Mb/s
- •Total transmission needs, 16 \* 960 Mb/s = 15360 Mb/s
- •Theoretical speed ratio: 83,3%



#### **Git repositories**

- MSADC Firmware Project
  - https://gitlab.com/brunovali/msadc\_muxd\_single\_ch/
- MSADC to Carrier Adapter Board
  - <a href="https://gitlab.com/brunovali/msadc\_interposer">https://gitlab.com/brunovali/msadc\_interposer</a>
- Carrier design and PC Software
  - <a href="https://gitlab.com/brunovali/mainz ciaa msadc">https://gitlab.com/brunovali/mainz ciaa msadc</a>