A new possible MSADC Carrier Board

- **1.** Main Data Processing Device: *Plain FPGA, SOC-FPGA or MPSOC-FPGA?*
- 2. Hardware Design Approach: Single board or Carrier + System on Module?
- 3. A survey of inspiring commercial products

Selection of Main Data Processing Device

Main considerations

- Required Functionalities: Peripheral ports and Connectivity, External memory, Booting options, ...
- **uP performance:** nr of cores, bus width, clock freq, cache, DMA, interrupts, . . .
- Logic resources: CLB, memory blocks, DSP blocks, IOs, High Speed Links, . . .
- Cost: per unit, and total system cost including associated components (RAM, ROM, Clock gen, Volt regs, . . .)
- Power consumption and dissipation: average, peak, max temperature, heat dissipator, fan, . . .
- **Design time and Complexity:** HDL, Embedded uP Operating System, SW programming, Debugging, . . .
- EDA Tools and Support: Paid/free licenses, third party IP cores, Libraries, open ref designs, ...
- **Obsolescence and Maintenance:** EDA tools, Embedded Operative System, SW design environment, . . .
- Scalability and Upgradeability: Pin compatibility with larger devices, Memory expansion, . . .
- **Portability:** Porting of HDL design and software programs to other FPGA vendor or device families, . . .

Hardware Design

Main considerations

- Modularity: Single Board vs Carrier & SOM, Onboard Memory (soldered vs SODIMM)
- Size, Power Supply (V ranges and I max), connectors, Over Volt/Current protections, shielding
- Main Services: Remote control, Voltage/Temp monitoring, SMD Card, Debugging facilities, Cooling,
- Connectors: Power, Ethernet, Optical links, JTAG, USB, Data specific, General purpose, . . .
- PCB Technology: Nr of layers, Thickness, Min trace width, Buried vias, Impedance control,
- **Performance**: Max working frequency, Trace equalization, Mechanical robustness,
- **Budget**: Prototyping, Small volume, and Mass production, Possible redesigns & iterations
- Design time and complexity: Schematics, Layout, PCB production, Debugging, Components availability
- Software EDA Tools and Support: Commercial, Open source, Cost free, CAD and Libraries,
- **Obsolescence and Maintenance:** Components life cycle, Repairing,
- Expandability and Versatility: Adaptability and reutilization in other contexts or for other applications

FPGA SOC System On Module

- Positive aspects
 - To encapsulate a complex SoC FPGA along with essential common components in order to facilitate the design of large hardware systems avoiding risk of errors related to critical interconnections such as between SoC FPGA and DDR memories.
 - To standardize a board to board connection to facilitate hardware upgradeability, partial replacement and interchangeability.
 - To allow the HW designer to concentrate the efforts on the application specific aspects, relaying on an error-free partial system module.
 - Availability of several affordable commercial solutions and design support.
- Potential issues due to the quality of the board-to-board connectors
 - Some signals may experience speed degradation
 - Some extra cost
 - Electrical connection reliability
 - Precise and reliable mechanical mounting may need securing screws.

Commercial SoC FPGA SOM

UltraSOM+ MPSoC Module with Zynq UltraScale+ XCZU9EG-1FFVC900E, 4 GByte DDR4 (€1,064.00)

Main components description

Figure 2: TE0808 MPSoC module.

1. Xilinx ZYNQ UltraScale+ XCZU9EG MPSoC, U1

2. Low-power programmable oscillator @ 33.333333 MHz (PS_CLK), U32

3. Red LED (DONE), D1

4. 256Mx16 DDR4-2400 SDRAM, U12

5. 256Mx16 DDR4-2400 SDRAM, U9

6. 256Mx16 DDR4-2400 SDRAM, U2

7. 256Mx16 DDR4-2400 SDRAM, U3

8. 12A PowerSoC DC-DC converter, U4

9. Quartz crystal, Y1

10. Low-power programmable oscillator @ 25.000000 MHz (IN0 for U5), U25

11. 10-channel programmable PLL clock generator, U5

12. Ultra fine 0.50 mm pitch, Razor Beam™ LP Slim Terminal Strip with 160 contacts, J4

13. Ultra fine 0.50 mm pitch, Razor Beam™ LP Slim Terminal Strip with 160 contacts, J2

14. Ultra fine 0.50 mm pitch, Razor Beam™ LP Slim Terminal Strip with 160 contacts, J3

15. Ultra fine 0.50 mm pitch, Razor Beam™ LP Slim Terminal Strip with 160 contacts, J1

16. Quartz crystal, Y2

17. 256 Mbit serial NOR Flash memory, U7

18. 256 Mbit serial NOR Flash memory, U17

Design complexity

***	Wiki Fo	rum						
electronic	Search	Q						
Home Products Download	Company Services Jobs News Distrib	outors						
Download > Trenz_Electronic >	Modules_and_Module_Carriers > 5.2x7.6 > TE0808	3						
Digilent	Online Documentation:							
Digiterit	Trenz Electronic Wiki Documentation » » TE0808	Resources						
OHO-Elektronik	Notes:	and a request stall to Trans Electronic Support.						
SunDance	 If you did not find the necessary documents, please 	send a request mail to Trenz Electronic Support						
Trenz Electronic	PCN - Product change notifications							
-corporate	REV02 - PCB Revision: Schematics, AD, STEP, HW Desig	n Files and more						
-corporate	REV03 - PCB Revision							
-obsolete_products	REV04 - PCB Revision							
Accessories	REVUS - PCB Revision	Vivada Varriana						
ingular Snip	 Reference_Design - FFGA Design Examples for different 	vivado versions						
Development_Boards								
Digital_IO								
FMC_Cards								

SW/Design Support

Availability of reference designs

111	Wiki Forum
electronic	Search Q
Home Products Download	Company Services Jobs News Distributors
Download > Trenz_Electronic >	Modules_and_Module_Carriers > 5.2x7.6 > TE0808 > Reference_Design > 2019.2 > StarterKit
Digilent	
OHO-Elektronik	TE0808 StarterKit Linux Design
SupDance	8
SunDance	-Downloadable files are located below the description-
Trenz_Electronic	Short Description:
-corporate	These Wiki Deservestations
-obsolete_products	Trenz Wiki Documentation: Trenz Electronic TE0808 StarterKit Reference Design Documentation
Accessories	Disclaimer:
CPCIS_Cards	 Please read the Legal Notices before downloading Trenz Electronics documents and files.
Development_Boards	Files
Digital_IO	Reference Design - Source Code only (1 Files)
FMC_Cards	🔍 TE0808-StarterKit_noprebuilt-vivado_2019.2-build_8_20200325083508.zip
JTAG_Programmer	Size 11,83 MB / Modified 25.03.2020 - 08:35:12
Modules_and_Module_Carriers	✤ Reference Design - Source Code and Configuration Files (1 Files)
2.5x6.15	TE0808-StarterKit-vivado_2019.2-build_8_20200325083436.zip
2.5x8.65	Size 75,43 MB / Modified 25.03.2020 - 08:34:47
2.7x5.2	Reference Design - Documentation (0 Files)
3.05×6.5	Other Files (0 Files)
3.5x7.3	

SOM carrier board

Base Board for Mercury/Mercury+ FPGA Modules

Board Architecture

Show board variant: PE1-200 - PE1-300 - PE1-400

A commercial FPGA SOC SOM with FMC connectors (I)

Arria 10 SoC SoM

System-on-Module featuring

- Highly integrated Altera Arria10 SoC Module
- 270 or 660 KLE, Commercial or Industrial Temp grade
 Dual mode as a System-on-module or FMC carrier
 board
- 2x Gbit Ethernet HPS, USB 2.0 OTG, USB 3.0
- DDR4 HPS and FPGA
- eMMC Flash Memory
- PCIe Gen3 x8
- Dual FMC Capability

Prezzi (EUR)

Qtà	Prezzo Unitario	Prezzo esteso
1	837,72€	837,72€
1	1.680,12 €	1.680,12€

A commercial FPGA SOC SOM with FMC connectors (II)

ADRV9009-ZU11EG RF System-on-Module

Production Ready Hardware for Prototyping and Systems Development With open source software for industry standard development platforms

The ADRV9009-ZU11EG is highly customisable and offers wide bandwidth and tuning range for a broad range of applications. It contains 2x Wideband ADRV9009 Dual Transceivers and Quad-core ARM® Cortex[™]-A53 MPCore[™]. 4GB of DDR4 (with ECC) is dedicated to the Programming System and 2x2GB Banks are dedicated for Programmable Logic giving much flexibility for developing custom applications. 1Gb of flash is provided for image storage, with an additional option to boot over USB or from a removable SD-Card.

- Platform development environment support includes Industry standard Linux Industrial I/O Applications, MATLAB®, Simulink®, and GNU Radio, and streaming interfaces for custom C, C++, python, and C# applications
- HDL reference designs and drivers to allow zero day development

- ► Wide tuning range 75MHz to 6GHz
- Max receiver BW 200MHz
- Max transmitter synthesis BW 450MHz
- Max observation receiver BW 450MHz
- Integrated LO and Phase synch between all channels

A modular approach for an FPGA–PC Communication System

https://www.enclustra.com/en/products/fpga-manager/fpga-manager-ethernet/ https://www.enclustra.com/en/products/fpga-manager/fpga-manager-usb3/

So far no standard sockets for SOM based on FPGA-SOC

What it should be in the SOM and the carrier? (example I)

What it should be in the module? (example II)

VITA 57.4 FMC+ is the latest Standard in the popular VITA FMC family. This specification increases the performance of VITA 57.1 FMC Standard by extending the total number of Gigabit Transceivers to 32 and increasing the maximum data rate to 28 Gbps. Both are important developments for embedded computing designs using FPGAs and high-speed I/O. In addition, backward compatibility was achieved by using new connectors that allow FMC+ carriers to accept original FMC mezzanines.

What it should be in the module? (example III)

Arria 10 SOC FPGA System On Module (SOM) Highlights:

•Arria10 SX SOC & GX FPGA compatibility

- SX270, SX320, SX480, SX570, SX660
- GX270, GX320, GX480, GX570, GX660
- •24 high speed transceivers @ 17.4Gbps
- •Up to 76LVDS/152SE FPGA IOs
- •64-Bit DDR4 support for FPGA
- •Variable IO voltage support
- •Industrial Grade operation

The specifications of Arria 10 SOC FPGA System On Module (SOM) : •SoC:Arria10 SoC

- Dual Core, ARM Cortex A9 CPU @ 1.5GHz
- SX270 (10AS027) FPGA Fabric
- 35mm x 35mm F34 Package

•Memory:

- 1GB DDR4 with optional ECC for HPS
- 1GB SLC NAND Flash for HPS
- Optional 64-bit DDR4 for FPGA*
- QSPI Flash for FPGA (Optional)

•Communication:

• 10/100/100 Ethernet PHY For HPS

•Arria10 SoC FPGA IO interfaces:

- 24 high-speed transceivers
- 76LVDS/152SE FPGA
- 8LVDS/8SE General purpose clock outputs
- 7LVDS/7SE General purpose clock inputs

•Headers:

• HPS/FPGA JTAG, FPGA AS headers

•240 Pin Board to Board Connector:

•Arria10 SoC HPS IO interfaces:

- Gigabit Ethernet x 1 Port
- USB 2.0 OTG x 1 Port
- SD (4bit) x 1 Port
- SPI x 1 Port, I2C x 1 Port
- Full Function UART x 1 Port
- Console UART, GPIOs 4 Nos

System on Module based on Arria 10 SoC

Example of Pin Compatibility for Upgradeability

Note: To verify the pin migration compatibility, use the **Pin Migration View** window in the Intel[®] Quartus[®] Prime software Pin Planner.

	Design time & complexity	Debugging	Prototyping cost	Small volume production cost	Mass production cost	Software Support	Expandability and Versatility	Obsolescence and Maintenance	Total score
Complete Single Board	1	2	2	1	5	2	2	1	16
Commercial SOM & Custom Carrier	5	5	4	4	3	5	3	4	33
Custom SOM & Custom Carrier	1	3	1	3	4	2	5	5	24

00

Scores: 1 very negative, 2 negative, 3 neutral, 4 positive, and 5 very positive. Assign 3 if dubious.

60

00

The FMC+ Connector Pinout (an interesting standard connector)

14 x 40	M	L	K	J	Н	G	F	E	D	С	B A		Z	Z Y	
1	GND	RES1	VREF D_M2C	GND	VREF_A_M2C	GND	PG_M2C	GND	PO_C2M	GND	CLK_DIR	GND	HSPC_PRSNT_M2C_L	CND	
2 DP2	23_M2C_P	GND	GND	CLK3_BIDIR_F	PRSNT_M2C_L	CLK1_M2C_P	GND	HA01_P_CC	GND	DP0_C2M_P	GND	DP1_M2C_P	GND	DP23_C2M_P	
3 DP2	23_M2C_N	GND	GND	CLK3_BIDIR_N	GND	CLK1_M2C_N	GND	HA01_N_CC	GND	DP0_C2M_N	GND	DP1 M2C N	GND	DP23_C2M_N	
4	GND	GBTCLK4 M2C	CLK2 BIDIR P	GND	CLK0 M2C P	GND	HA00 P CC	GND	BTCLK0_M2C_P	GND	DP9_M2C_P	GND	DP22_C2M_P	GND	
5	GND	GBTCLK4 M2C	CLK2 BIDIR N	GND	CLK0 M2C N	GND	HA00 N CC	GND	BTCLK0 M2C N	GND	DP9 M2C N	GND	DP22 C2M N	GND	
6 DP2	22_M2C_P	GND	GND	HA03_P	GND	LA00_P_CC	GND	HA05_P	GND	DP0_M2C_P	GND	DP2 M2C P	GND	DP21_C2M_P	
7 DP2	22_M2C_N	GND	HA02_P	HA03_N	LA02_P	LA00_N_CC	HA04_P	HA05_N	GND	DP0 M2C N	GND	DP2_M2C_N	GND	DP21_C2M_N	
8	GND	GBTCLK3 M2C	HA02 N	GND	LA02 N	GND	HA04 N	GND	LA01 P CC	GND	DP8 M2C P	GND	DP20 C2M P	GND	
9	GND	GBTCLK3_M2C_	GND	HA07_P	GND	LA03_P	GND	HA09_P	LA01_N_CC	GND	DP8_M2C_N	GND	DP20_C2M_N	GND	
10 DP2	21_M2C_P	GND	HA06_P	HA07_N	LA04_P	LA03_N	HA08_P	HA09_N	GND	LA06_P	GND	DP3_M2C_P	GND	DP10_M2C_P	
11 DP2	21_M2C_N	GND	HA06_N	GND	LA04_N	GND	HA08_N	GND	LA05_P	LA06_N	GND	DP3_M2C_N	GND	DP10_M2C_N	
12	GND	GBTCLK2 M2C	GND	HA11 P	GND	LAD8 P	GND	HA13 P	LA05 N	GND	DF7 M2C P	GND	DP11 M2C P	GND	
13	GND	GBTCLK2 M2C	HA10_P	HA11_N	LA07_P	LA08_N	HA12_P	HA13_N	GND	GND	DP7_M2C_N	GND	DP11_M2C_N	GND	
14 DP2	20 M2C P	GND	HA10_N	GND	LA07_N	GND	HA12_N	GND	LA09_P	LA10_P	GND	DP4 M2C P	GND	DP12_M2C_P	
15 DP2	20 M2C N	GND	GND	HA14_P	GND	LA12_P	GND	HA16_P	LA09_N	LA10_N	GND	DP4_M2C_N	GND	DP12_M2C_N	
16	GND	SYNC C2M P	HA17 P CC	HA14 N	LA11 P	LA12 N	HA15 P	HA16 N	GND	GND	DP6 M2C P	GND	DP13 M2C P	GND	
17	GND	SYNC_C2M_N	HA17_N_CC	GND	LA11_N	GND	HA15_N	GND	LA13_P	GND	DP6_M2C_N	GND	DP13 M2C N	GND	
18 DP1	14 C2M_P	GND	GND	HA18_P	GND	LA16_P	GND	HA20_P	LA13_N	LA14_P	GND	DP5 M2C P	GND	DP14_M2C_P	
19 DP1	14_C2M_N	GND	HA21_P	HA18_N	LA15_P	LA16_N	HA19_P	HA20_N	GND	LA14_N	GND	DP5_M2C_N	GND	DP14_M2C_N	
20	GND	REFCLK C2M I	HA21 N	GND	LA15 N	GND	HA19 N	GND	LA17 P CC	GND	GBTCLK1 M2C P	GND	GBTCLK5 M2C P	GND	
21	GND	REFCLK_C2M_I	GND	HA22_P	GND	LA20_P	GND	HB03_P	LA17_N_CC	GND	GBTCLK1_M2C_N	GND	GBTCLK5_M2C_N	GND	
22 DP1	15_C2M_P	GND	HA23_P	HA22_N	LA19_P	LA20_N	HB02_P	HB03_N	GND	LA18_P_CC	GND	DP1_C2M_P	GND	DP15_M2C_P	
23 DP1	15_C2M_N	GND	HA23_N	GND	LA19_N	GND	HB02_N	GND	LA23_P	LA18_N_CC	GND	DP1_C2M_N	GND	DP15_M2C_N	
24	GND	REFCLK_M2C_I	GND	HB01_P	GND	LA22_P	GND	HB05_P	LA23_N	GND	DP9_C2M_P	GND	DP10_C2M_P	GND	
25	GND	REFCLK_M2C_I	HB00_P_CC	HB01_N	LA21_P	LA22_N	HB04_P	HB05_N	GND	GND	DP9_C2M_N	GND	DP10_C2M_N	GND	
26 DP1	16_C2M_P	GND	HB00_N_CC	GND	LA21_N	GND	HB04_N	GND	LA26_P	LA27_P	GND	DP2_C2M_P	GND	DP11_C2M_P	
27 DP1	16 C2M N	GND	GND	HB07 P	GND	LA25 P	GND	HB09 P	LA26 N	LA27 N	GND	DP2 C2M N	GND	DP11 C2M N	
28	GND	SYNC_M2C_P	HB06_P_CC	HB07_N	LA24_P	LA25_N	HB08_P	HB09_N	GND	GND	DP8_C2M_P	GND	DP12_C2M_P	GND	
29	GND	SYNC_M2C_N	HB06_N_CC	GND	LA24_N	GND	HB08_N	GND	TCK	GND	DP8_C2M_N	GND	DP12_C2M_N	GND	
30 DP1	17_C2M_P	GND	GND	HB11_P	GND	LA29_P	GND	HB13_P	TDI	SCL	GND	DP3_C2M_P	GND	DP13_C2M_P	
31 DP1	17. C2M N	GND	HB10 P	HB11 N	LA28 P	LA29 N	HB12 P	HB13 N	TDO	SDA	GND	DP3 C2M N	GND	DP13 C2M N	
32	GND	RES2	HB10_N	GND	LA28_N	GND	HB12_N	GND	3P3VAUX	GND	DP7 C2M P	GND	DP16_M2C_P	GND	
33	GND	RES3	GND	HB15_P	GND	LA31_P	GND	HB19_P	TMS	GND	DP7_C2M_N	GND	DP16_M2C_N	GND	
34 DP1	18_C2M_P	GND	HB14_P	HB15_N	LA30_P	LA31_N	HB16_P	HB19_N	TRST_L	GA0	GND	DP4_C2M_P	GND	DP17_M2C_P	
35 DP1	18 C2M N	GND	HB14 N	GND	LA30 N	GND	HB16 N	GND	GA1	12P0V	GND	DP4 C2M N	GND	DP17 M2C N	
36	GND	12P0V	GND	HB18_P	GND	LA33_P	GND	HB21_P	3P3V	GND	DP6_C2M_P	GND	DP18_M2C_P	GND	
37	GND	12P0V	HB17_P_CC	HB18_N	LA32_P	LA33_N	HB20_P	HB21_N	GND	12P0V	DP6_C2M_N	GND	DP18_M2C_N	GND	
38 DP1	19 C2M P	GND	HB17_N_CC	GND	LA32_N	GND	HB20_N	GND	3P3V	GND	GND	DP5_C2M_P	GND	DP19_M2C_P	
39 DP1	19 C2M N	GND	GND	VIO_B_M2C	GND	VADJ	GND	VADJ	GND	3P3V	GND	DP5 C2M N	GND	DP19 M2C N	
40	GND	12P0V	VIO_B_M2C	GND	VAÐJ	GND	VADJ	GND	3P3V	GND	RES0	GND	3P3V	GND	