Mono Photon Searches at 3 TeV With Polarised Beams

Outline

- Introduction
- Background cross-section calculation and event simulation.
- Background cross-sections and Syst errors

1

- Background dN/dEγ distributions
- 95%CL cross-section calculation method
- 95%CL cross-section plots and results.

June®0Summary and outlook ising/IN2P3/LAPP

Introduction

For the CLICdp Yellow report and for the additional contributions prepared for Granada, the exclusion limits for Dark Matter models were computed using 95% upper limits, computed using backgrounds without polarisation. Right handed polarised e⁻ beams reduce the main SM background, v v y. The goal of this study is to estimate the increase in sensitivy taking into account the systematic errors.

June 2020

Background Cross-sections 3TeV

Background cross-section values calculated for: $10^{\circ} < \theta y < 170^{\circ}$ and Pty/ $\sqrt{s} > 0.02$, without and with ebeam polarisation.

- Cross-section calculation and event generation done using Whizard with beam spectrum, isr function and n(1...3) matrix element photons.
- Events with Isr y's overlapping ME y's were rejected (Note: CLICdp-2020-004, Filip, Pawel ...).
- Fast simulation used to take into acount y energy resolution and efficiency and $e^+ e^- \gamma$ veto efficiency. ^{June, 2020} JeV fast simulation based on extrapolation of full simulation.³

Background Cross-sections 3TeV

	Polarisation		
	No	Pe-:-80%	Pe-:+80%
Process	σ[fb]	σ[fb]	σ[fb]
$e^{+} e^{-} \rightarrow v \overline{v} \gamma + v \overline{v} \gamma \gamma + v \overline{v} \gamma \gamma \gamma \gamma (\gamma)$	1058	1880	235
$e^{+} e^{-} \rightarrow e^{+} e^{-} \gamma + e^{+} e^{-} \gamma \gamma + e^{+} e^{-} \gamma \gamma \gamma (\gamma)$	1925	1960	1890

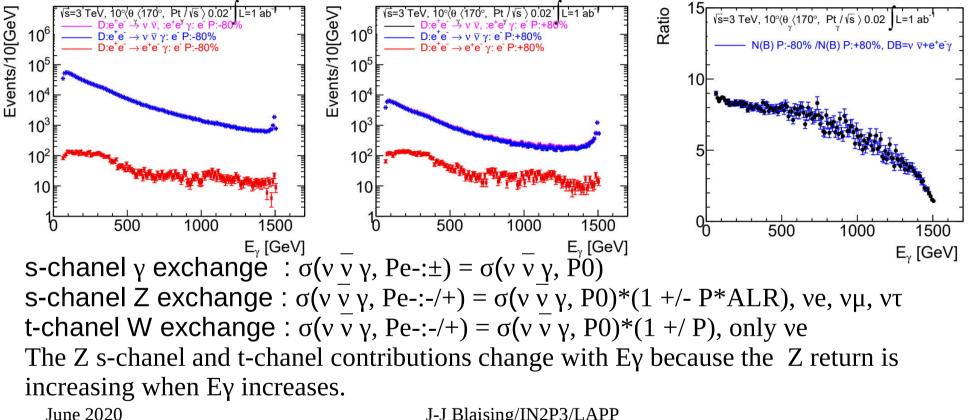
Background cross-section values for: $10^{\circ} < \theta \gamma < 170^{\circ}$ and Pty/ $\sqrt{s} > 0.02$. $\sigma(\nu \nu \gamma)$ for Pe-:+80%, σ reduced by a factor 4.5 w.r.t. no polarisation and a factor 8, w.r.t. Pe-:-80% June 2020 J-J Blaising/IN2P3/LAPP

Systematic errors

Systematic error	Value
Event selection $v \overline{v} \gamma$	0.002
Event selection $e^+ e^- \gamma$	0.01 *
Luminosity	0.002
Polarisation	0.0025 **

The values are those used in the ILC paper arXiv:2001.03011v1. * ILC does not assign a systematic error on the e⁺ e⁻ y veto. **The sign of polarisation can be reversed at each bunch train, => experimental uncertainties will be strongly correlated.

June 2020


Background dN/dE_Y JL=1ab⁻¹

Left : dN/dEy (Pe-:- 80%) $v \bar{v} \gamma$, e⁺ e⁻ γ events and sum: N(e⁺ e⁻ γ)/N($v \bar{v} \gamma$)=0.005 Midle: dN/dEy (Pe-:+80%) $v \bar{v} \gamma$, e⁺ e⁻ γ events and sum: N(e⁺ e⁻ γ)/N($v \bar{v} \gamma$)=0.04 Right :dN/dEy(Bsum) (Pe-:-80%) / dN/dEy B(sum) (Pe-:+80%) The shape of dR/dE γ is due to the $v \bar{v} \gamma$ s and t-channel contributions changing with $E \bar{\gamma}^{020}$ J-J Blaising/IN2P3/LAPP

6

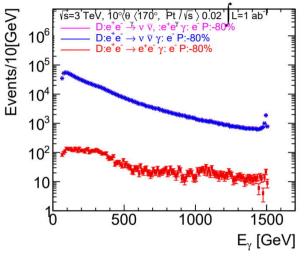
Background dN/dEy (L=1ab⁻¹

95% Upper Limit Calculation

Definitions (Reminder)

To compute the 95% CL upper limit the likelihood ratio test statistic p=p(s+b)/p(b) (F1) is used:

Nobs=number of observed events, b=number of background events b+s = number of background + signal events.

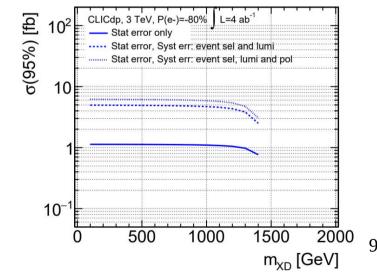

p=probability, CL=Confidence Level, CL=1-p

A 1 sided 95% CL upper limit corresponds to $p \ge 0.025$ and $z \le 2$

$$p = \frac{\sum_{n=0}^{Nobs} (b+s)^n \frac{e^{-(b+s)}}{n!}}{\sum_{n=0}^{Nobs} (b)^n \frac{e^{-b}}{n!}}$$
(F1)

June 2020

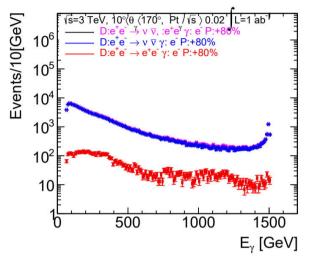
σ(95%) for Pe-:-80%



-dN/dEy for $v \bar{v} v$ and $e^+ e^- v$ events and sum for Pe-:-80%. For a DM mass mXD, Eymax= $\sqrt{s/2-2*mXD^2}/\sqrt{s}$. The background b is computed for 50 GeV < Ey < Eymax using F1. The s excluded at 95%CL is computed using F2. $\sigma(95\%) = s/Lumi. \sigma(95\%)$ is computed for 200 GeV < mXD < 1400 GeV without and with systematic errors.

With systematic errors : $\sigma(95\%)=6$ fb.

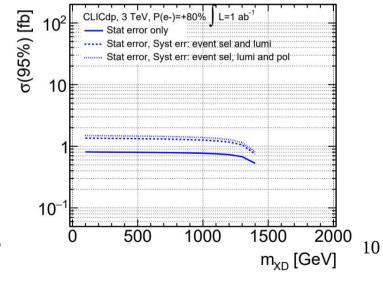
$$b = \int_{E_{\gamma_{min}}}^{E_{\gamma_{max}}} dN / dE_{\gamma}$$
 (F1)


$$\frac{\sum_{n=0}^{Nobs} (b+s)^n \frac{e^{-(b+s)}}{n!}}{\sum_{n=0}^{Nobs} (b)^n \frac{e^{-b}}{n!}} \ge 0.025 \text{ (F2)}$$

June 2020

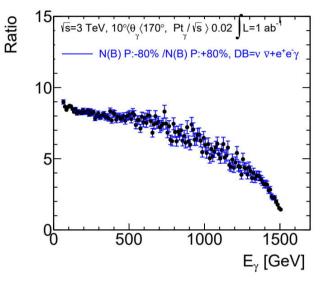
J-J Blaising/IN2P3/LAPP

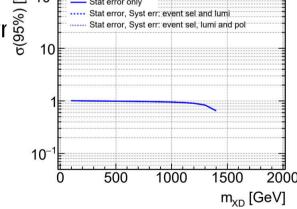
σ(95%) for Pe-:+80%



-dN/dEy for $v \bar{v} v$ and $e^+ e^- v$ events and sum for Pe-:-80%. For a DM mass mXD, Eymax= $\sqrt{s/2-2*mXD^2}/\sqrt{s}$. The background b is computed for 50 GeV < Ey < Eymax using F1. The s excluded at 95%CL is computed using F2. $\sigma(95\%) = s/Lumi. \sigma(95\%)$ is computed for 200 GeV < mXD < 1400 GeV without and with systematic errors.

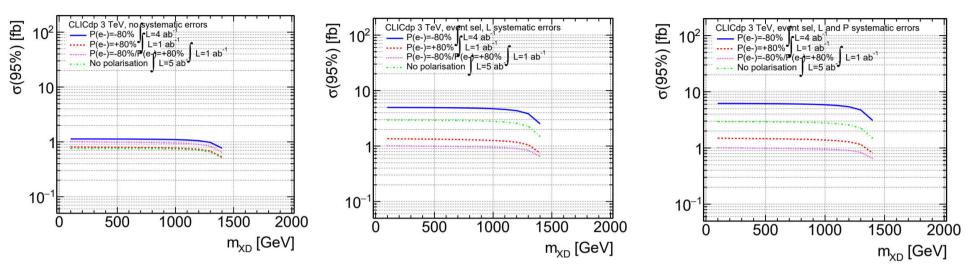
With systematic errors : $\sigma(95\%)=1.4$ fb.


$$\frac{\sum_{n=0}^{Nobs} (b+s)^n \frac{e^{-(b+s)}}{n!}}{\sum_{n=0}^{Nobs} (b)^n \frac{e^{-b}}{n!}} \ge 0.025 \text{ (F2)}$$


June 2020

J-J Blaising/IN2P3/LAPP

σ(95%) for Pe-:-80%/Pe-:+80%


Plot: dRB/dEy: RB=NB(Pe-:-80%)/NB(Pe-:+80%) (B only) RB and Δ RB computed for 50 GeV < Ey < Eymax In presence of signal: RBPS=(NB:-80%+NS)/(NB:+80%+NS) Compute NS to get RBPS=RB-2* Δ RB. σ (95%,RB)=NS/Lumi Compute σ (95%,RB) for 200 GeV < mXD < 1400 GeV without and with systematic errors. With systematic errors: $\sigma(95\%, RB)=1$ fb. It increases by 2% w.r.t No Syst Err 3 TeV, P(e-)=-80% and P(e-)=+80% Stat error only Stat error, Syst err: event sel and lum

June 2020

J-J Blaising/IN2P3/LAPP

95% CL cross-section values

95% upper limit σ , for different polarisation conditions: L, R, L/R, No. Left : without systematic errors Middle: with systematic errors: event selection and luminosity Right : with systematic errors: event selection, luminosity and polarisation W.r.t no polarisation, P(e-)=+80% is decrasing the σ (95%) by 2 and RP by 3. June 2020

Summary

Right handed e⁻ polarised beams reduce the main SM background, v v γ , increasing significantly the sensitivy. Taking into account the systematic errors: $\sigma(95\%, \text{Pe-:-}80\%, \text{L}=1ab^{-1}) = 1.4$ fb for MXD=1 TeV $=\sigma(95\%, \text{Pe-:}0, \text{L}=5ab^{-1})/2$ $\sigma(95\%, \text{RP}, \text{L}=1ab^{-1}) = 0.95$ fb for MXD=1 TeV $=\sigma(95\%, \text{Pe-:}0, \text{L}=5ab^{-1})/3$

Outlook

Using axial, axial-vector and scalor simplified DM models, study:

- Mass determination and cross-section measurement.
- Chiral properties: couplings identification

Additional slides

June 2020

J-J Blaising/IN2P3/LAPP

15

Radiative Neutrinos Diagrams

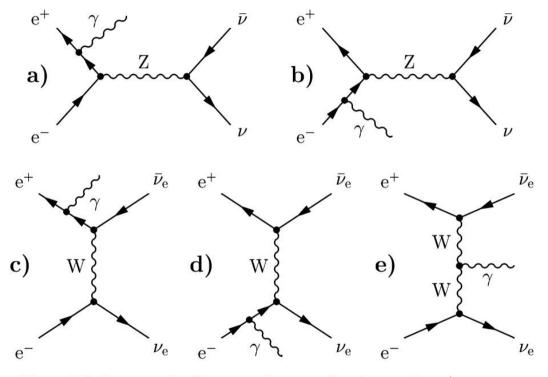
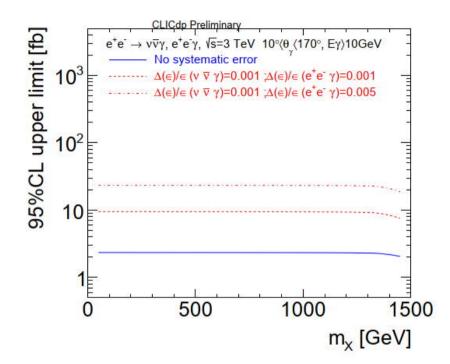



Figure 2.6: Lowest-order Feynman diagrams for the reaction $e^+e^- \rightarrow \nu \bar{\nu} \gamma$.

J-J Blaising/IN2P3/LAPP

June 2020

2019 σ(95%CL)

σ(95%CL) values used by Ulrike to compute the DM exclusion limits for Granada.

June 2020

J-J Blaising/IN2P3/LAPP

17