

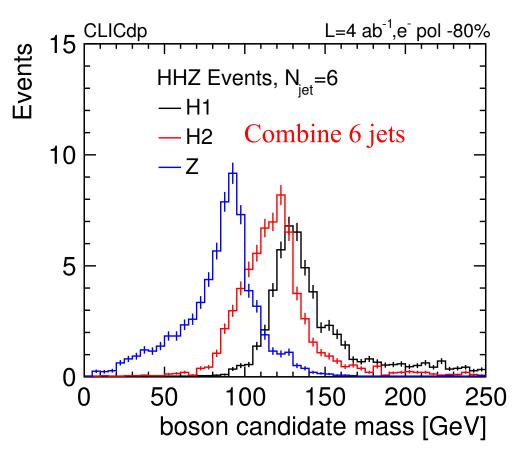
ZHH production at 3 TeV CLIC Matthias Weber (CERN)

1

HHZ at 3 TeV

At 3 TeV **WW fusion dominating production mode** of double H, ee→HHvv

- Information from 3 TeV HHZ production helpful in behaviour of EFT fits on double H events
- HHZ production at 3 TeV studied at CLIC in fast simulation samples so far, first study of this process using **full simulation** and **new detector model CLICdet**
- Concentrate on HH Z \rightarrow bb bb qq:


Signal sample: HH qq, concentrate on four b-state **HH qq\rightarrowbb bb qq** For -80 % polarisation: cross section: 4.18e-2 fb⁻¹

- \rightarrow 167 events in total
- \rightarrow 68 events in desired phase space of bb bb qq
- For +80 % polarisation: cross section: 2.30e-2 fb⁻¹
- \rightarrow 29 events in total
- \rightarrow 12 events in bb bb qq final state

Baseline: combine 6 jets

Use jets with VLC algorithm R=1.10, $\beta=\gamma=1.0$, run in exclusive mode with 6 jets Combine 6 jets into 3, minimizing sum= $(rj(x)-m_H)^2 + (rj(y)-m_H)^2 + (rj(z)-m_Z)^2$

Using 6 jets leads to 3 clear peaks with mass peaks close to Z and H masses. For jet with largest mass clear shift to higher values.

Background composition

Sample Pol (e ⁻) -80 %	Events	Cross-section [fb]	Produced Events
HHqq	167	4.18e-2	9600
HHqq → bbbbqq	68	1.70e-2	3948
Hqq	15320	3.83	115174
ee→qq	5.07 M	1269	1.56 M
ee→qqqq	3.61 M	902	1.9 M
ee→qqqqqq			2.41 M

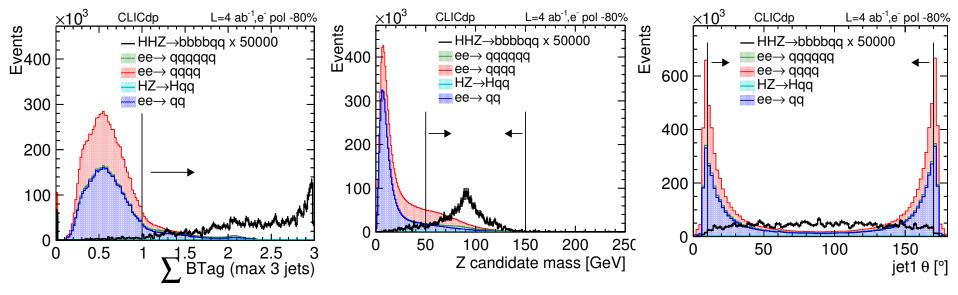
qqqqqq is mixture of several samples, containing tri-bosons as well as ttbar, but not ZZH and WWH

WWH: 4.116 fb →16464 evts ZZH: 1.394e-1 fb →558 evts

Sample Pol (e ⁻) +80 %	Events	Cross-section [fb]	Produced Events
HHqq	29	2.898e-2	9552
Hqq	2670	2.67	29034
ee→qq	786 000	786	388 190
ee→qqqq	120 000	120	478 995
ee→qqqqqq			589440

WWH: 4.176e-1 fb \rightarrow 418 evts ZZH: 7.1645e-2 fb \rightarrow 72 evts

Without Preselection BDT tuning in TMVA fails



Matthias Weber

CERN

Running BDT on full statistics using TMVA reaches a significance of below 1 σ \rightarrow try retuning after pre-selection

final state	Events	Evts after cut	Efficiency	Events	Evts after cut	Efficiency
	-80%	-80%	-80%, in [%]	+80%	+80%	+80% [in%]
HHq \overline{q} , both H \rightarrow b \overline{b}	69	54	78	12	9.4	78
$HHq\overline{q}$, all H decays	167	110	66	29	19	66
$Hq\overline{q}$, all H	15300	3370	22	2670	590	22
$q\overline{q}$	5 070 000	61 100	1.2	787 000	5820	0.74
$q\overline{q}q\overline{q}$	3 610 000	35 900	0.99	120 000	2180	1.8
$q\overline{q}q\overline{q}q\overline{q}$	311 000	124 000	40	23 900	12 500	52

CLICdp Analysis Meeting, June 9, 2020

Preselection efficiencies

Sample Pol (e ⁻) -80 %	Efficiency Jet E-cuts In %	Efficiency Jet E & θ cuts In %	Efficiency Jet E,θ & Btag cuts In %
HHqq→bbbbbqq	95.7	92.5	85.1
Нqq	74	70	56
ee→qq	16.4	14.9	6.9
ee→qqqq	38.2	25.6	1.1
ee→qqqqqq	92	78	60
WWH			29
ZZH			84

Previous Results, missing WWH and ZZH

final state	Events	Events	Events
	-80%	+80%	-80% and +80%
HHq \overline{q} , both H $\rightarrow b\overline{b}$	8.63 ± 0.19	2.27 ± 0.04	10.90 ± 0.20
$HHq\overline{q}$, all H decays	10.24 ± 0.21	2.81 ± 0.05	13.05 ± 0.22
$Hq\overline{q}$, all H	0.53 ± 0.27	0.83 ± 0.28	1.36 ± 0.39
$q\overline{q}$	0.00 ± 0.00	0.00 ± 0.00	0.00 ± 0.00
$q\overline{q}q\overline{q}$	1.88 ± 1.88	1.00 ± 0.50	2.89 ± 1.95
$q\overline{q}q\overline{q}q\overline{q}$	15.29 ± 1.44	3.60 ± 0.42	18.9 ± 1.5

Previous (incomplete) result was 2.30 σ , about 13 HHZ events left (11 for bbbb qq) \rightarrow Most relevant background are six quark events with about 19

Using the same BDT previously leads to a significantly worse result, retune BDT with new tightened preselection BTag-3 leading jets > 2.20 instead of 1.10

Sample Pol (e ⁻) -80 % and +80 %	BDT(-)>0.385 BDT(+)>0.325
HHqq → bbbbqq	11.4
HHqq all decays	13.6
Нqq	1.43
ee→qq	2.02
ee→qqqq	2.14
ee→qqqqqq	15.6
WWH→qqqqH	1.80
ZZH→qqqqH	5.83
Significance in σ: S/sqrt(S+B)	2.09

This pre-selection rejects substantially more six-quark events, works also on ZZH and WWH (think e.g. on ttbar, which has two bjets)

- Previous pre-selection leads
 to a tuning with a significane
 of about 1.7 σ
- Previous (incomplete) result was 2.30 σ, so even after addition of relevant triboson backgrounds decent result can be achieved (slightly larger efficiency on signal)

Beyond TMVA: XGBoost – technical details

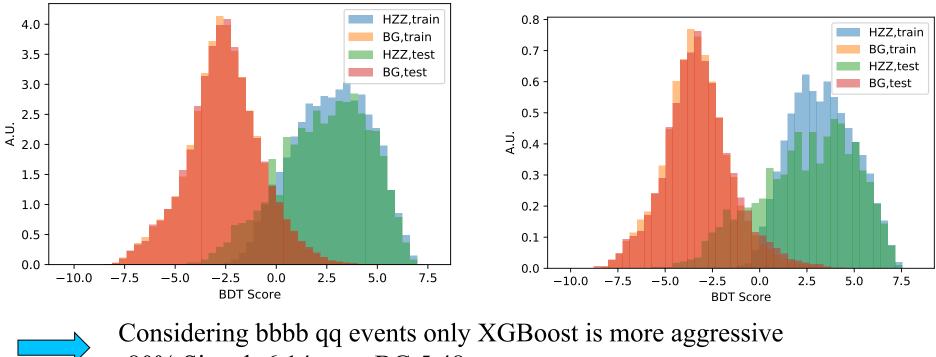
Industry tool for optimized distributed gradient boosting with C++ and python packages, offering more flexibility compared to TMVA boosting with more tunable parameters. So far I use it on my laptop, but it can also be run over distributed computing. More complex parameter sets run faster than in TMVA https://xgboost.readthedocs.io/en/latest/index.html

Lives outside of the ROOT environment, so ntuples have to be prepared differently:

- Use uproot tool, developed within the HEP community to transform e.g. root trees into pandas dataframes, then work from pandas dataframe to convert input into the needs of xgboost
- For python a standalone version of XGBoost exist and a version integrated into scikit-learn:
 - I cross-checked that results are indeed identical
 - Default in scikit-learn xgboost gives only classification of events (1 for signal like events, 0 otherwise), our way of selecting on the BDT score is also possible, but not set as default.
 - scikit-learn is most popular industry python machine-learning library → offers prebuilt parameter tuning functionality, validation of results

XGBoost: Training

Classification of HHZ vs all backgrounds, train on optimizing for area below ROC curve, split training vs test dataset 0.8:0.2 (tunable parameter), can stop creating additional trees, in case test dataset shows decreasing performance vs number of trees


- Parameter tuning using grid parameter search is slow, considers optimising performance on test data → result is best possible result, but per default without a cross-check if test vs training BDT scores agree (aka if data become more overtrained): after 2 days of tuning overtraining checks did show an issue for signal, background distribution very stable
- \rightarrow Used default setting for now, training parameters without comparing test vs training separately might need more conservative split of train vs test dataset

Compare BDT scores for training and testing: good agreement for backgrounds, more overtrained for Signal, particularly for positive polarisation

Positive polarisation

Negative polarisation

- -80% Signal: 6.14 evts, BG 5.48
- +80 % Signal: 2.21, BG 1.95
- \rightarrow Just by summing these numbers we get 2.18 σ

Not a boosted analysis, need to combine six individual jets

• Combining 6 jets into 3 jets, use refined VLC jets, R=1.1

Add relevant new backgrounds from WWH and ZZH \rightarrow with new tighter preselection and new BDT achieve significance of 2.09 σ compared to 2.30 σ previously, signal count above 10

No sign of overtraining in BDT in TMVA

Investigate alternative BDT to check if it performs well without tight pre-selection cutoffs

- \rightarrow For this preselection TMVA produced results of around 1 σ
- \rightarrow Parameter set in use right now a bit overtrained for positive polarised data
- \rightarrow Even for loose previous pre-selections results better