

ACTS Project Status

Xiaocong Ai for the ACTS developers

ACTS Workshop 2020, May 25, 2020

The tracking challenge

- Much increased combinatorics with high pileup at future hadron colliders
 - Great strain on CPU
 - Increased track reconstruction time
- Accurate, efficient and fast tracking software is needed to achieve physics goals
 - How to exploit fast tracking techniques, parallelism and acceleration?

ACTS goals

- Prepare an experiment-independent tracking toolkit for future detectors, e.g. ATLAS at HL-LHC, based on ATLAS tracking experience
 - ATLAS tracking software is well tested but thread-unsafe and difficult to maintenable
- Provide an open-source R&D platform:
 - New tracking algorithms (see M. Kiehn's talk)
 - Hardware architectures (see G. Mania's talk)

Migration to github last month allowing contribution from people without CERN account

Nov 8, 2015 – May 25, 2020

Contributions: Commits ▼

ACTS design

- Modern C++ 17 concepts
- Highly-templated design to avoid virtual lookup
 - Detector and magnetic field agnostic
- Strict thread-safety to facilitate concurrency
 - Const-correctness, stateless tools
- Efficient memory allocation and access
 - Eigen-based Event Data Model (EDM)
- Supports for contextual condition data
 - Geometry/Calibration/Magnetic field
- Rigorous unit tests
- Highly configurable for usability
- Minimal dependencies
- Well-documented

https://acts.readthedocs.io/en/latest/

ACTS components and functionalities

Infrastructure consolidation and new features since last ACTS workshop

- A light-weight Gaudi style test framework for event processing, integration and concurrency test
- Integration into acts-core to ease maintenance and performance monitoring

Geometry

- To reduce CPU consumption and navigation speed-up, tracking geometry (i.e. geometry used for track reconstruction) is simplified from full simulation geometry
 - Binding via Acts::DetectorElementBase which can be converted from other detector element representation via geometry plugins:
 - DD4hep, TGeo, GeoModel Plugin
- Implemented HEP detector geometry
 - Silicon, Calorimeter, MuonSpectrometer

The Surface class

- Acts::Surface is the key component of tracking geometry
 - Largely transcribed from ATLAS SW
- All surface types have a polygonal representation allowing for triangular mesh of all surfaces (could further speed up navigation)

ACTS Surface bound examples

Material description

- Material effects need to be considered in tracking
- Material mapping tools (see C. Allaire's <u>slides</u>) are available to map Gean4-based full detector material (recorded using Geantino scan) onto surfaces or volumes:
 - Discrete binned surfaces (for e.g. Silicon detector)
 - 3D volume grid points (for e.g. Calorimeter)

Surface Material Mapping

X0 ratio Validation/Geantino vs η for ITk

X0 ratio Validation/Geantino vs h for a dummy Calorimeter

Propagator interface

Integrating particle transport and geometry navigation
Highly-templated design emphasizing on speed and customizability

Track parameter propagation

- EigenStepper as the primary integrator: ATLAS <u>adaptive Runge-Kutta stepper</u> rewritten using Eigen
- Dense Environment Extension for transport in dense volumes, e.g. calorimeter
- Timing information is included in integration (x, y, z, t, T_x, T_y, T_z, q/p) to allow for time measurement
- Supports free parameters and covariance representation without binding to surface

Track Parameter and Measurement EDM

 Coefficients and covariance are described using fixed-size Eigen::Matrix

TrackParameters: $(l_0, l_1, \phi, \theta, q/p, t)$

 → l₀, l₁: Coordinate in local surface frame (Bound Parameters) or curvilinear frame (Curvilinear Parameters)

 $\rightarrow p, \phi, \theta$: Momentum and direction

→ q: Charge

→ t: Per-track timing info

Supports multi-component track parameters representation

e.g. perigee track parameters at perigee surface $l_o = d_o$, $l_1 = z_o$

Measurement:

- Contains a SourceLink to original detector measurement
- Uses std::variant to as a wrapper of heterogeneous measurement (1D, 2D, ...)

Track State EDM

- TrackState EDM is designed based on concept of KalmanFilter
 - Includes parametric and measured part

```
/// The parameter part
/// This is all the information that concerns the
/// the track parameterisation and the jacobian
/// It is enough to to run the track smoothing
struct {
  /// The predicted state
  std::optional<Parameters> predicted{std::nullopt};
  /// The filtered state
  std::optional<Parameters> filtered{std::nullopt};
  /// The smoothed state
  std::optional<Parameters> smoothed{std::nullopt};
  /// The transport jacobian matrix
  std::optional<Jacobian> jacobian{std::nullopt};
  /// The path length along the track - will help sorting
  double pathLength = 0.;
  /// chisquare
  double chi2 = 0;
} parameter;
```



```
/// @brief Nested measurement part
/// This is the uncalibrated and calibrated measurement
/// (in case the latter is different)
struct {
    /// The optional (uncalibrated) measurement
    std::optional<SourceLink> uncalibrated{std::nullopt};
    /// The optional calibrabed measurement
    std::optional<FittableMeasurement</pre>
std::optional<FittableMeasurement</pre>
```

Via Calibrator during fitting

Track EDM

- Eigen::Array based track EDM (Acts::MultiTrajectory), i.e. container of track states on trajectories
 - Provides read-write views into separate storage of parameter coefficients and covariance

```
using Coefficients = Eigen::Matrix<Scalar, Size, 1, Flags>;
using Covariance = Eigen::Matrix<Scalar, Size, Size, Flags>;
using CoefficientsMap = Eigen::Map<ConstIf<Coefficients, ReadOnlyMaps>>;
using CovarianceMap = Eigen::Map<ConstIf<Covariance, ReadOnlyMaps>>;
```

- Keeps track of storage index
 - Allows for branching of tracks (multitrajectories case) via parent relationship
 - Avoids storage duplication for shared measurements and parameters

```
struct IndexData {
 using IndexType = uint16 t;
  static constexpr IndexType kInvalid = UINT16 MAX;
 IndexType irefsurface = kInvalid;
 IndexType iprevious = kInvalid;
 IndexType ipredicted = kInvalid;
 IndexType ifiltered = kInvalid;
 IndexType ismoothed = kInvalid;
 IndexType ijacobian = kInvalid;
 IndexType iprojector = kInvalid;
  double chi2:
 double pathLength;
 TrackStateType typeFlags;
 IndexType iuncalibrated = kInvalid;
 IndexType icalibrated = kInvalid;
 IndexType icalibratedsourcelink = kInvalid;
 IndexType measdim = 0;
};
```

Track fitting

- KalmanFilter (KF) is used as an Actor in propagator
- Supports hole search and outlier rejection during the fitting
- Supports two different approaches for smoothing
 - Using 'smoothing-matrix' formalism based on Jacobians in forward filtering
 - Run an additional Kalman filtering in backward direction
- Gaussian Sum Filter as non-gaussian extension of KF is available

Perigee track parameter resolution validation TrackML detector, ATLAS B field

Little material for TrackML detector, hence no great justification for gaussian pulls

KalmanFitter performance

- Validated with p_⊤ down to 100 MeV
- 100% fitting efficiency
 - Defined as $\frac{N_{fit \, succeeds}}{N_{truth}}$

Single track fitting time vs. pT

Fitting efficiency vs. η

Fitting efficiency vs. pT

Track finding

- A combinatorial seed finder for track seeding
 - Fine-grained parallelism (independent search of Top and Bottom SpacePoint for Middle SP)

- The Combinatorial Kalman Filter (CKF) for track following
 - Simultaneous tracking fitting and finding (no refitting is needed)
 - Allows track branching if more than one compatible measurement found on a surface
 - Supports user-defined measurement search and branching strategy
 - Default selection criteria is based on Kalman filtering χ^2
 - Allows stopping of bad quality branch

CKF results for ttbar events with μ = 200 (~7k particles, ~80k hits)

CKF performance

• All hits from truth particles with $p_T>100 \text{ MeV}$ are considered

• Track finding efficiency: $\frac{N_{\it reco}(\it selected\,,\it matched)}{N_{\it truth}(\it selected)}$

• Fake rate: $\frac{N_{reco}(selected, unmatched)}{N_{reco}(selected)}$

• Duplication rate: $\frac{N_{reco}(selected, matched, duplicated)}{N_{reco}(selected, matched)}$

→ Reco-truth matching: $\frac{N_{hits}(Majority)}{N_{hits}(Total)}$ >0.5

→ Simple track selection: n_{Hits}>=9

Fake rate vs. n

Efficiency vs. η

Duplication rate vs. η

Vertex finding/fitting

- Various vertexing tools have been transcribed from ATLAS vertexing algorithms with performance well validated against ATLAS SW
 - It might be interesting to explore new techniques
- Two approaches:
 - Iterative fitting-after-finding
 - Iterative Vertex Finder (IVF) (used at ATLAS Run-2)
 - Finding-through-fitting
 - Adaptive Multi-Vertex Finder (AMVF) (to be used at ATLAS Run-3)

Portable tools used in IVF and AMVF

- Seed finder:
 - Z-Scan Seed Finder
 - Gaussian Track Density Vertex Finder
 - Gaussian Grid Track Density Vertex Finder

- Vertex fitter
 - Full-Billoir Vertex Fitter
 - Adaptive Multi-Vertex Fitter

• Utilities: track selection, track linearizer, impact point estimator, deterministic annealing tool etc.

Iterative Vertex Finder (IVF)

(see B.Schlag's slides)

ZScanSeedFinder:

- find mode value of all z₀ values
- vertex candidate at position (z₀, 0, 0)

Iterative fitting-after-finding approach:

- iteratively find vertex and fit with compatible tracks
- single track always associated to at most one vertex
- · tracks removed from pool after fitting

Gaussian Grid Track Density Vertex Seed Finder:

- Model track as 2-dim Gaussian density grid in d₀-z₀-plane
- Interested only in density distribution along beam axis:
 - → calculate only track contribution along beam axis (red)
- Superimpose all tracks and find maximum along beam axis

Gaussian Track Density Seed Finder:

- model each track as 2-dim Gaussian distribution in d_0 - z_0 -plane around (d_0, z_0)
- find z value of highest track density along z-axis

Adaptive Multi-Vertex Fit:

- weighted adaptive Kalman filter using deterministic annealing scheme
- subject to beamspot and seed constraint
- Simultaneous refit of all vertices connected through a chain of vertices and tracks, with weights:

$$\omega_{i}(\chi_{i}^{2},T) = \frac{e^{-\frac{1}{2}\chi_{i}^{2}/T}}{\sum_{j} e^{-\frac{1}{2}\chi_{j}^{2}/T} + e^{-\frac{1}{2}\chi_{0}^{2}/T}}$$
tracks can have weights to multiple vertices

Finding-through-fitting approach

Finding-through-fitting approach

Example: Track density representations of 3 single tracks

Vertexing performance

- Vertex position resolution agrees with ATLAS results on mircometer level
- Significant speed-up w.r.t. to ATLAS algorithm

(see B.Schlag's slides)

AMVF Vertex z positon resolution

Gaussian Grid Track Density Vertex Finder timing performance

AMVF timing performance

Application to (experiment) detectors

- Detector geometry implemented:
 - TrackML Detector
 - Open Data Detector
 - ATLAS ID+Calo, ATLAS ITK (see C. Allaire's talk)
 - FASER Silicon (see K. Li's talk)
 - CEPC Silicon+TPC (see J. Zhang's talk)
 - sPHENIX Silicon + TPC (see J. Osborn's talk)
 - Belle-II Silicon (see R. Farkas's talk)
- On-going/planned implementation:
 - ATLAS Muon System

FCC-hh

- Belle-II Drift Chamber

ATLAS ITK

CEPC VTX

R&D

- Provides support for new tracking techniques R&D (see M. Kiehn's talk)
 - Similarity Hashing and learning
 - Hep.TrkX & Exa.TrkX project
- Parallelism and acceleration facilitated by hardware architecture
 - Intra-event parallelism

GPUs-accelerated tracking

ACTS seedfinder with CUDA (@NVIDIA GTX 1070)

(see G. Mania's talk)

Summary

- ACTS has matured a lot as a <u>tracking toolkit</u> over the past year
 - Consolidation of tracking infrastructure, e.g. geometry, propagator, EDM
 - Implementation of new tracking features, e.g. KalmanFilter, CKF, IVF, AMVF
- ACTS is an active <u>R&D platform</u> for new tracking techniques (ML) and hardware architectures
- Growing interest in experiment application& contribution
 - ATLAS ID+Calo, ATLAS ITK, FASER, CEPC, sPHENIX, BELLE-II
- Project mission:
 - Facilitate detector application& software integration, e.g. ATLAS at LHC Run3
 - Provide full tracking solution for future detectors, e.g. ATLAS at LHC Run4

ACTS members have grown from ~27 to 50 in ~ 1 year !

Europe North America → UC Berkeley (*) → CERN (*) → LBNL (*, *) → Université de Genève (*) → Stanford University (*) → BNL (*) → JGU Mainz (*) → University of Washington (*) → Universität Bonn (*, *) Asia → Technische Universität München (*, *) → IHEP, CAS (*) → DESY (*) ATLAS LHCb CEPC BELLE-II → CNRS (*, *) SPHENIX EIC FASER

Welcome to the discussion sessions for mid/long-term Core and R&D development plans!

backup

ACTS members/developers

50 ACTS Members (~1 year ago: 27)

Experiments:

ATLAS

LHCb

CEPC

FASER

Belle-II

- Event Data Model
 - Concrete particle and hit type
 - Flat, sorted data container for particle and hit
- Event generator
 - Particle Gun and interface to Pythia8 and HepMC3
- Detector material effects modeling
 - Energy loss and multiple scattering are validated
 - Hadronic interaction is currently reparameterised
 - Foreseen use of Geant4 for particle decay
 - Photon Conversion and positron annihilation are missing
- Detector response emulation (i.e. digitization)
 - Including pseudo-realistic clustering model (without clustering merging yet)
- Work-in-progress to use Json-based geometry/segmentation/material information at fast simulation chain

ats KF fitting resolution

- Single muon, $0.1 < p_T < 100 \text{ GeV}$, $|\eta| < 2.4$
- · TrackML detector, ATLAS B field

CKF timing test

CKF time/event vs. $<\mu>$

TrackML detector, ATLAS B fileId

Each filtering step needs to loop over all the source links on the surface for the source link selection, Could be speed-up by fast source link selection

Magnetic field

- Simulation and reconstruction needs extensive lookup of magnetic field
- Cache of field value could make the access less expensive
 - Facilitate repetitive access to similar locations
- In ACTS, the cache is passed between magnetic field service and client via client function argument
 - Cache is thread-local thus thread-safe

ATLAS Magnetic field in ACTS

Field look up in Runge-Kutta integration

Contextual alignment and calibration

 An AlgorithmContext object is used to support on-the-fly eventdependent changes of alignment/ calibration/magnetic field

Concept of contextual alignment and calibration has been validated

Propagation tests with contextual alignment

(Different alignment every single event, $n_{threads} = 4$)

```
salzburg$ export ACTSFW_NUM_THREADS=1 salzburg$ export ACTSFW_NUM_THREADS=4 salzburg$ ./ACTFWAlignablePropagationExample -n10 --prop-ntests 1000 --bf-values 0 0 2 --output-root 1
   12:49:10
                Sequencer
                                           Added context decorator GeometryRotationDecorator
   12:49:10
                Sequencer
                                 INF<sub>0</sub>
                                           Added service RandomNumbersSvc
   12:49:10
                                 INF<sub>0</sub>
                                           Appended algorithm PropagationAlgorithm
                Sequencer
                Sequencer
                                           Added writer RootPropagationStepsWriter
   12:49:11
                Sequencer
                                 TNFO
                                           Starting event loop for
   12:49:11
                Sequencer
                                 INFO
                                             1 services
   12:49:11
                                 INFO
                Sequencer
                                             0 readers
                Sequencer
                                              1 writers
   12:49:11
                                 INF0
                Sequence
                                             1 algorithms
   12:49:11
                Sequencer
                                 TNFO
                                           Run the event loop
   12:49:11
                                 INF0
                Sequencer
                                           start event 0
   12:49:12
                                 INF0
                                                                 12:51:19
                                                                              Sequencer
                                                                                               INFO
INFO
                                                                                                         start event 5
                Sequencer
                                           event 0 done
   12:49:12
                                                                 12:51:19
                                                                                                         start event 8
                Sequencer
                                           start event 1
                                                                                                         start event 7
   12:49:13
                Sequencer
                                 TNFO
                                           event 1 done
                                                                 12:51:19
                                                                              Sequencer
                                 INFO
                                                                                                         event 7 done
   12:49:13
                Sequencer
                                           start event 2
   12:49:14
                Sequencer
                                           event 2 done
                                                                                                          start event 2
   12:49:14
                                 INF0
                                                                 12:51:21
                                                                              Sequencer
                                                                                                         event 8 done
                Sequence
                                           start event 3
   12:49:15
                Sequencer
                                 TNFO
                                           event 3 done
                                                                 12:51:21
                                                                              Sequencer
                                                                                                         start event 9
   12:49:15
                Sequencer
                                 INFO
                                           start event 4
   12:49:16
                                 INF0
                                                                 12:51:21
                                                                                                          start event 6
                Sequencer
                                           event 4 done
   12:49:16
                Sequencer
                                           start event 5
                                                                 12:51:21
                                                                              Sequencer
                                                                                                         event 0 done
                                                                                                         start event 1
   12:49:17
                                 INF0
                                           event 5 done
                                                                 12:51:21
                                                                              Sequencer
                Sequencer
                                                                                                         event 2 done
   12:49:17
                Sequencer
                                 TNFO
                                           start event 6
   12:49:19
                                                                                                          start event 3
                                           event 6 done
                Sequencer
   12:49:19
                Sequence
                                 INFO
                                                                 12:51:23
                                                                              Sequencer
                                                                                                          event 9 done
                                                                                               INFO
   12:49:19
                                                                                                         start event 4
                Sequencer
                                 INFO
                                           event 7 done
                                                                 12:51:23
                                                                              Sequencer
                                                                 12:51:23
                                                                              Sequencer
                                                                                                         event 6 done
   12:49:19
                Sequencer
                                 TNFO
                                           start event 8
   12:49:20
                                 INF0
                                                                                                         event 1 done
                Sequencer
                                           event 8 done
   12:49:20
                Sequencer
                                           start event 9
                                                                 12:51:23
                                                                 12:51:24
   12:49:22
                Sequencer
                                           event 9 done
                                                                              Sequencer
   12:49:22
                Sequencer
                                           Running end-of-run hooks of writers and services
12 seconds
                                                                                                                 5 seconds
```

Track fitting test with contextual calibration

(Different calibration every 10 events, n_{threads}=8)

The **detector**

Defined a Phase-2 like detector

- full silicon detector with realistic resolution, material budget, magnetic field
- composed as Pixel, short strip, long strip
- restricted to size of tracking volume to $\left|\eta\right|<3$

