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Short intro to EPPS16
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Define nPDFs in terms of

f
p/A
i

bound-proton PDF
(x,Q2) =

nuclear modification
RA

i (x,Q2) fpi
free-proton PDF

(x,Q2)

Parametrize the x and A dependence of
RA

i (x,Q
2
0) at Q

2
0 = m2

charm

PDFs of the full nucleus are then constructed
with

fAi (x,Q2) = Zf
p/A
i (x,Q2) +Nf

n/A
i (x,Q2),

where the neutron content is obtained via isospin
symmetry

Allow full flavour separation and include heavy-quark mass effects with a general-mass
variable flavour number scheme (GM-VFNS)

Most extensive data set to date, with νA DIS, πA DY, LHC pPb dijets and EW bosons
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LHC constraints in EPPS16
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No 5.02 TeV pp baseline was available at
this time, used forward-to-backward ratios

RFB =
dσ(η > 0)

dσ(η < 0)

Cancel part of the free-proton uncertainty,
but lose also some information

Main LHC constraints come from the
CMS dijet RFB data

I Better control over the gluon
antishadowing & EMC effect

Too low statistics for W & Z RFB to
make strong impact
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Since then. . .
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Plentiful of new measurements
5.02 TeV RpAs

I More direct probes of
the RA

i than RFB

8.16 TeV RFBs

[Phys.Lett.B 800 (2020) 135048]
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Fig. 3. Forward-backward ratios, N±
µ(+η

µ
CM)/N±

µ(−η
µ
CM), for the positively (left) and negatively (middle) charged muons, and the forward-backward ratio for muons of both 

signs, Nµ(+η
µ
CM)/Nµ(−η

µ
CM) (right), as a function of ηµ

CM. The small horizontal lines represent the statistical and systematic uncertainties summed in quadrature, whereas 
the error bars show the statistical uncertainties only. The NLO calculations with CT14 PDF, CT14+EPPS16 nPDF, and CT14+nCTEQ15 nPDF, are also displayed, including their 
68% confidence interval PDF uncertainty bands.

clear evidence of the nuclear modification of quark PDFs from the 
measurements of EW boson production in nuclear collisions. Bin-
to-bin correlations have been found to have a large impact on the 
obtained χ2 values, especially from nPDF uncertainties in the NLO 
calculations, which are strongly correlated inside each of the shad-
owing (positive ηµ

CM) and antishadowing (negative ηµ
CM) regions, 

and anticorrelated between these two regions.
Furthermore, the possible sources of differences between data 

and the (n)PDFs are investigated. In the Hessian representation, 
a central PDF is given along with error sets, each of which cor-
responds to an eigenvector of the covariance matrix in parameter 
space [56]. The values of χ2/dof corresponding to the compatibility 
between the cross section measurements and the calculations us-
ing each of the individual sets of CT14, nCTEQ15, and EPPS16 (57, 
33 and 41 error sets, respectively) have been determined. Fig. 6
shows the distribution of the χ2/dof values for the central and er-
ror sets. The χ2/dof values obtained are for individual sets, thus ig-
noring theoretical uncertainties and their correlations. While most 
of the EPPS16 individual sets lead to a good agreement with data 
(with χ2/dof around unity), only those nCTEQ15 sets that exhibit 
the smaller quark shadowing at small x are more compatible with 
the data, yet with χ2/dof ! 2. All CT14 PDF sets lead to a nar-
row distribution centred around χ2/dof ≃ 3, because of the strong 
constraints imposed by the large experimental data sets used to 
extract them. The current measurements of W± boson production 
in pPb collisions will permit further constraints on the quark and 
antiquark nPDFs and the amount of quark shadowing in the nuclei.

4. Summary

A study of W± boson production in pPb collisions at a nucleon-
nucleon centre-of-mass energy of 

√
sNN = 8.16 TeV is reported, 

using the muon decay channel for muons with transverse mo-
menta greater than 25 GeV/c and for absolute values of the pseu-
dorapidity in the laboratory frame |ηµ

lab| < 2.4. The differential 
production cross sections for positively and negatively charged 
W → µνµ decays, the muon charge asymmetry, and the muon 
forward-backward ratios, are measured as functions of the muon 
pseudorapidity in the centre-of-mass frame, in the range −2.86 <
ηµ

CM < 1.93.
The measurements are compared to theoretical predictions 

from both proton parton distribution functions (PDFs) (CT14) and 
nuclear PDF (CT14+EPPS16 , CT14+nCTEQ15) sets. The cross sec-
tions and the forward-backward asymmetries exhibit significant 
deviations from the CT14 prediction, revealing nuclear modifica-
tions of the PDFs unambiguously for the first time in the pro-
duction of electroweak bosons in nuclear collisions. Both the 

Fig. 4. Muon charge asymmetry, (N+
µ − N−

µ)/(N+
µ + N−

µ), as a function of the muon 
pseudorapidity in the centre-of-mass frame. The small horizontal lines represent the 
statistical and systematic uncertainties summed in quadrature, whereas the error 
bars show the statistical uncertainties only. The NLO calculations with CT14 PDF, 
CT14+EPPS16 nPDF, and CT14+nCTEQ15 nPDF, are also displayed, including their 
68% confidence interval PDF uncertainty bands.

CT14+EPPS16, and the CT14+nCTEQ15 calculations show a good 
overall agreement with the data, with the measurements favour-
ing the former nPDF set. In the latter case, only the individual sets 
that exhibit the smallest nuclear PDF modifications at small val-
ues of x (in the shadowing region) turn out to be compatible with 
experimental measurements. The small experimental uncertainties 
allow for a significant reduction in the current uncertainties on the 
quark and antiquark nuclear PDFs in the range 10−3 " x " 10−1.
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[Phys.Rev.Lett. 121 (2018) 062002]

and the corresponding pPb results, are available in the
Supplemental Material [57], which includes Refs. [14,15,
18,58,59]. In order to construct an observable that is
relatively insensitive to the pp PDF calculation [41], the
ratios of the pPb and pp reference distributions, individu-
ally normalized to one, are chosen. This assumption was
tested by comparing the NLO spectra ratio in pQCD
calculations with CT14 and MMHT14 PDFs [60]. The
shape of the ratios of the pPb and pp distributions in data
are compared with NLO pQCD calculations based on the
EPS09 and DSSZ nPDFs in Fig. 2. In addition, in Fig. 3,
the ratio of the pPb=pp ηdijet distributions in data is
compared also to that from calculations based on the
nCTEQ15 and EPPS16 nPDFs, for 115 < pave

T <
150 GeV. The ratios of pPb and pp data are seen to
deviate significantly from unity in the small (EMC) and
large (shadowing) ηdijet regions. In the interval ηdijet < −1,
which is sensitive to the gluon EMC effect, NLO pQCD
calculations with EPS09 nPDF match the data at the edge
of the theoretical uncertainty, while the calculations with
DSSZ nPDF, where no gluon EMC effect is present in the
global fit, overpredict the data.
The differences between data and the various NLO

pQCD calculations with nPDFs in the interval ηdijet<−1
are quantified by comparing the two distributions with a χ2

test, taking into account the point-to-point correlations
from the nPDFs. The uncertainties from data are taken to be
uncorrelated point to point. For 115 < pave

T < 150 GeV,
the p values from the test are 0.19, < 10−8, and < 10−8 for
the EPS09, DSSZ, and nCTEQ15 nPDFs, respectively.
Across the full pave

T range, the p values for EPS09 range
from 0.19 to 0.95, whereas the p values for the DSSZ and

nCTEQ15 nPDFs are never larger than 0.015. This shows
that, with a p-value cutoff of 0.05, the data are incompatible
with the DSSZ and nCTEQ15 nPDFs, but not incompatible
with EPS09. This supports the interpretation of the RHIC
pion data by the EPS09 nPDF, in which the modification
of the pion spectra gives rise to the gluon EMC effect.
The data also show smaller shadowing, antishadowing, and
EMC effects than what is implemented in the nCTEQ15
PDF set. The results are consistent with EPPS16 with
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the NLO pQCD calculations of DSSZ [18], EPS09 [14],
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Progress in EPPS analysis

5 / 7

We have performed Hessian PDF reweighting studies to
see the impact of dijets and D0s

Large reduction of EPPS16 gluon uncertainties

Support for mid-x antishadowing and rather deep
small-x gluon shadowing

D-meson RpPb sensitive to nPDFs down to x ∼ 10−5

Constraints from dijet and D-meson data mutually
consistent!

Work in progress: Include these and the 8.16 TeV CMS
W bosons into a global analysis

Studies in more relaxed parametrization ongoing

“Final call” for new observables

[Eur.Phys.J. C79 (2019) 511]
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nPDFs reweighted with LHCb D-meson RpPb at 5.02 TeV
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[arXiv:1906.02512]
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Correlations are important!

6 / 7

[Phys.Rev.D 100 (2019) 014004]

We have studied the
prospects of using future
sPHENIX Drell–Yan data
for nPDF constraints

If we include the
Drell–Yan data alone,
a large luminosity
uncertainty prevents
getting any meaningful
constraints

Since this uncertainty
is correlated across
observables, we can
use dijet measurement
to fix this problem, but
we need to know the
correlations to do so!
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Global analysis and data combination
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For k ∈ {1, . . . , N} separate data sets, we define the global χ2 figure of merit as

χ2
global =

∑

k

χ2
k

where (simplifying)

χ2
k = [Dk − Tk]T C−1k [Dk − Tk]

Now, if a combined data set (Dcomb, Ccomb) contains the same information as separate
data sets (D1, C1) and (D2, C2), i.e.

χ2
comb = χ2

1 + χ2
2

then it does not matter if we include the separate or combined data in our analysis

For a data combination to be useful to us, some uncertainty reduction beyond a simple
quadratic sum would be needed (requires understanding the inter-detector correlations)

I At HERA, they were able to “cross calibrate” the detectors [JHEP 01 (2010) 109]

Whether this can be done at the LHC is an experimental problem (I am all ears!)

please publish your correlations!
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CMS dijet Rnorm.
pPb – EPPS16 reweighted [Eur.Phys.J. C79 (2019) 511]
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I systematics of the measurement – would be helpful
to have correlations of uncertainties available to us
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EPPS16 reweighted with LHCb D-meson RpPb at 5.02 TeV [JHEP 05 (2020) 037]
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Good agreement with data below cut – no physics beyond collinear factorization needed



Heavy-flavour production mass schemes

FFNS
In fixed flavour number scheme, valid at small
pT, heavy quarks are produced only at the
matrix element level

Contains log(pT/m) and m/pT terms

DQ→h

ZM-VFNS
In zero-mass variable flavour number scheme,
valid at large pT, heavy quarks are treated as
massless particles produced also in ISR/FSR

Resums log(pT/m) but ignores m/pT terms

DQ→h

− subtraction term +

GM-VFNS
A general-mass variable flavour number scheme combines the two by supplementing subtraction
terms to prevent double counting of the resummed splittings, valid at all pT

Resums log(pT/m) and includes m/pT terms in the FFNS matrix elements

Important: includes also gluon-to-HF fragmentation – large contribution to the cross section!



PDF reweighting: different approximations [Eur.Phys.J. C79 (2019) 511]

The Hessian reweighting is a method to study the impact of a new set of data on the PDFs
without performing a full global fit

χ2
new(z) = χ2

old(z) +
∑

ij

(yi(z)− ydatai )C−1ij (yj(z)− ydataj )

Possible approximations:

zk

χ2 −χ2
0

∆ χ2

√
∆ χ2δ z−k δ z+k

zk

yi − yi[S0]

yi[S+k ]−yi[S−k ]

2

√
∆ χ2

yi[S−k ]− yi[S0]

yi[S+k ]− yi[S0]

δ z−k

δ z+k

quadratic–linear: χ2
old ≈ χ2

0 +
∑

k z
2
k, yi ≈ yi[S0] +

∑
k dikzk

quadratic–quadratic: χ2
old ≈ χ2

0 +
∑

k z
2
k, yi ≈ yi[S0] +

∑
k(dikzk + eikz

2
k)

cubic–quadratic: χ2
old ≈ χ2

0 +
∑

k(akz
2
k + bkz

3
k), yi ≈ yi[S0] +

∑
k(dikzk + eikz

2
k)
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