Status of EPPS nPDF global analysis and connection with the LHC HI data combination work

Petja Paakkinen

IGFAE – Universidade de Santiago de Compostela

HonexComb meeting 26 May 2020

Short intro to EPPS16

[Eur.Phys.J. C77 (2017) 163]

 10^{-1}

1.4 Define nPDFs in terms of EPPS₁₆ 1.3 $R_{i}^{A}(x, Q_{0}^{2})$ 1.2 antishadowing maximum nuclear modification $f_i^{p/A}(x,Q^2) = R_i^A(x,Q^2) f_i^p(x,Q^2)$ 1.1 bound-proton PDF free-proton PDF 1.00.9 Parametrize the x and A dependence of 0.8 - small-x shadowing $R_{i}^{A}(x,Q_{0}^{2})$ at $Q_{0}^{2}=m_{charm}^{2}$ 0.7 EMC minimum 0.6 PDFs of the full nucleus are then constructed 0.5 with 0.410⁻³ 10^{-2} r

$$f_i^A(x,Q^2) = Z f_i^{p/A}(x,Q^2) + N f_i^{n/A}(x,Q^2),$$

where the neutron content is obtained via isospin symmetry

Allow full flavour separation and include heavy-quark mass effects with a general-mass variable flavour number scheme (GM-VFNS)

 10^{-4}

• Most extensive data set to date, with νA DIS, πA DY, LHC pPb dijets and EW bosons

 y_a

 y_e

LHC constraints in EPPS16

No 5.02 TeV pp baseline was available at this time, used forward-to-backward ratios

$$R_{\rm FB} = \frac{\mathrm{d}\sigma(\eta > 0)}{\mathrm{d}\sigma(\eta < 0)}$$

Cancel part of the free-proton uncertainty, but lose also some information

- Main LHC constraints come from the CMS dijet $R_{\rm FB}$ data
 - Better control over the gluon antishadowing & EMC effect
- Too low statistics for W & Z $R_{\rm FB}$ to make strong impact

nu

$$R_i^A(x,Q^2) = f_i^{p/A}(x,Q^2) / f_i^p(x,Q^2)$$

22

Since then...

Progress in EPPS analysis

We have performed Hessian PDF reweighting studies to see the impact of dijets and $\mathsf{D}^0\mathsf{s}$

- Large reduction of EPPS16 gluon uncertainties
- Support for mid-x antishadowing and rather deep small-x gluon shadowing
- \blacksquare D-meson $R_{\rm pPb}$ sensitive to nPDFs down to $x\sim 10^{-5}$
- Constraints from dijet and D-meson data mutually consistent!

Work in progress: Include these and the 8.16 TeV CMS W bosons into a global analysis

- Studies in more relaxed parametrization ongoing
- "Final call" for new observables

Correlations are important!

We have studied the prospects of using future sPHENIX Drell-Yan data for nPDF constraints

- If we include the Drell-Yan data alone, a large luminosity uncertainty prevents getting any meaningful constraints
- Since this uncertainty is correlated across observables, we can use dijet measurement to fix this problem, but we need to know the correlations to do so!

[Phys.Rev.D 100 (2019) 014004]

Global analysis and data combination

• For $k \in \{1, \ldots, N\}$ separate data sets, we define the global χ^2 figure of merit as

$$\chi^2_{\text{global}} = \sum_k \chi^2_k$$

..... please publish your correlations!

where (simplifying)

$$\chi_k^2 = [D_k - T_k]^T C_k^{-1} [D_k - T_k]$$

■ Now, if a combined data set (D_{comb}, C_{comb}) contains the same information as separate data sets (D₁, C₁) and (D₂, C₂), i.e.

$$\chi^2_{\rm comb} = \chi^2_1 + \chi^2_2$$

then it does not matter if we include the separate or combined data in our analysis

 For a data combination to be useful to us, some uncertainty reduction beyond a simple quadratic sum would be needed (requires understanding the inter-detector correlations)

► At HERA, they were able to "cross calibrate" the detectors [JHEP 01 (2010) 109] Whether this can be done at the LHC is an experimental problem (I am all ears!)

Backup

CMS dijet $R_{pPb}^{norm.}$ – EPPS16 reweighted

- Drastic reduction in EPPS16 uncertainties!
- Downward pull in the forward region
- The most forward data points lie systematically below the reweighted uncertainty band could be due to
 - inflexibility in EPPS16 parametrization at small x
 - systematics of the measurement would be helpful to have correlations of uncertainties available to us

EPPS16 reweighted with LHCb D-meson $R_{\rm pPb}$ at 5.02 TeV [JHEP 05 (2020) 037]

- Data well reproduced with the reweighted results
- Significant reduction in EPPS16 uncertainties especially in forward bins
- Good agreement with data below cut no physics beyond collinear factorization needed

Heavy-flavour production mass schemes

FFNS

In fixed flavour number scheme, valid at small $p_{\rm T},$ heavy quarks are produced only at the matrix element level

Contains $\log(p_{\rm T}/m)$ and $m/p_{\rm T}$ terms

ZM-VFNS

In zero-mass variable flavour number scheme, valid at large $p_{\rm T}$, heavy quarks are treated as massless particles produced also in ISR/FSR

Resums $\log(p_{\mathrm{T}}/m)$ but ignores m/p_{T} terms

GM-VFNS

A general-mass variable flavour number scheme combines the two by supplementing subtraction terms to prevent double counting of the resummed splittings, valid at all $p_{\rm T}$

Resums $\log(p_{\rm T}/m)$ and includes $m/p_{\rm T}$ terms in the FFNS matrix elements

Important: includes also gluon-to-HF fragmentation – large contribution to the cross section!

PDF reweighting: different approximations

The Hessian reweighting is a method to study the impact of a new set of data on the PDFs without performing a full global fit

