WELCOME

1st LHC Machine-Experiments Joint Workshop on

Luminosity Measurements at the LHC

Luminosity monitoring at the LHC

• Luminosity L is defined by: $N_{int} = L.\sigma$

Where N_{int} is the Interaction rate for the process with cross-section σ

(Counting rate in a monitor is N_{int}.acceptance)

Luminosity in terms of machine parameters

$$L = \frac{N^2 \cdot k_{b} \cdot f \cdot \gamma}{4 \cdot \pi \cdot \varepsilon_{n} \cdot \beta^{*}} F$$

- N = number of protons per bunch
- k_{b} = circulating bunches
- f = revolution frequency,
- β^* is the betatron function at the collision point,
- ϵ_n the normalised emittance
- γ the Lorentz factor E/m₀c²
- F a reduction factor for crossing angle

LHC has two magnetic rings

Two differing beams which do not collide

Luminosity proportional to $I^2.1/x_{eff}.1/y_{eff}$

Where $1/x_{eff}$ and $1/y_{eff}$ include not only the beam transverse sizes but also the overlap functions of the two beams.

Bringing the beams into collision

- The BPMS will not be sufficiently accurate
- A systematic scan in both transverse dimensions will be needed to maximise the collision rate

Primary use of the LHC luminometer

Keeping the beams in collision

- With $\beta^* = 0.5 \text{ m} \sigma = 15 \mu \text{m}$
- Orbit drifts during a run may reduce the integrated luminosity and need correcting
- Note that a 5 µm shift of Q1 relative to Q3 drops the collision rate by 20%

Rapid and background free

- In order to be able to bring beams into collision rapidly a high rate monitor is needed.
- which must be background free under a wide range of conditions.
- Bunch to bunch luminosity is needed to control 'pacman' bunches.
- A dynamic range of 1 to 25 interactions per bunch crossing (40 MHz) is required.

Experiments require absolute luminosity cm⁻².s⁻¹

Use a calculable and identifiable process ?

TOTEM will measure the total cross-section with the luminosity independent method and hence can calibrate interaction rate monitors in IR5 at L =10²⁸.cm⁻².s⁻¹.

What application to other experiments?

Use the Van der Meer method ?

The Van der Meer method

Interaction rate as a function of beam separation

- At the ISR a single scan determined the absolute luminosity to 1%
- The LHC needs two orthogonal scans (X_{eff}, Y_{eff})
- What precision is possible under what conditions?

Conclusion

- The best interaction rate monitor for efficient machine operation is unlikely to provide the best absolute luminosity monitor
- The machine and experiments need to work together

There is still plenty of work to do