Luminosity Determination in ALICE

Andreas Morsch CERN EP/AIP

1st LHC Machine-Experiment Joint Workshop on Luminosity Measurements at the LHC

CERN, Geneva, Switzerland 9/12/2002

Overview

- LHC experimental conditions
 - ALICE running strategy
 - Luminosity requirements
 - Background conditions
- Luminosity determination
 - Heavy ion collisions
 - pp Collisions
- Beam instrumentation issues

ALICE Running Strategy

- Regular pp runs at $\sqrt{s} = 14 \text{ TeV}$
- Initial heavy ion program
 - Pb-Pb physics pilot run
 - 1-2 years Pb-Pb
 - 1 year pPb like collisions (pPb. dPb or α Pb)
 - 1-2 years Ar-Ar

ALICE Running Strategy

- Later options some of the depending on the outcome of the initial data analysis
 - Dedicated pp or pp-like (dd or $\alpha\alpha$) collisions at $\sqrt{s_{NN}}$ = 5.5 TeV
 - Possibly another intermediate mass A-A system (N-N, O-O, Kr-Kr or Sn-Sn)
 - Possibly another pA (dA, αA) system
 - Possible lower energy Pb-Pb runs
 - Further high energy Pb-Pb runs

Luminosity Requirements

Heavy ions (limited by LHC)

```
- Pb-Pb 1 \times 10^{27} \text{ cm}^{-2} \text{ s}^{-1}
```

$$- Ar-Ar 1 x 10^{29} cm^{-2} s^{-1}$$

$$- O-O 2 x 10^{29} cm^{-2} s^{-1}$$

pA (200 kHz rate limit)

```
- pPb 	 1.1 \times 10^{29} cm^{-2} s^{-1}
```

$$- pAr = 3.0 \times 10^{29} cm^{-2} s^{-1}$$

pp (200 kHz rate limit)

$$-(10^{29}-3 \times 10^{30}) \text{ cm}^{-2} \text{ s}^{-1}$$

Running Conditions Critical for Luminosity Monitoring

- Short luminosity half-life in Pb-Pb Collisions
- Background conditions in pp Runs

Luminosity Lifetime

Lifetime in PbPb

- Limited by electromagnetic processes (≈ 500 barn)
- Half-life (mean luminosity)

```
• 1 Experiment 6.7 \text{ h} (0.44 \text{ L}_0)
```

- 2 Experiments $3.1 \text{ h} (0.35 \text{ L}_0)$
- 3 Experiments $2.7 \text{ h} (0.29 \text{ L}_0)$

Luminosity Lifetime

ALICE prefers β* tuning

- Keep luminosity constant reducing β^* during the run
- Also useful for $L_0 < 10^{27}$ cm⁻²s⁻¹
 - •Same average luminosity as for L_0 = 10^{27} cm⁻²s⁻¹
- Avoids quench problem
- •ALICE INT-2002-32

Background Conditions in pp Runs

- Runs at reduced luminosity (/10⁴) and full current
 - Hence, S/B by factor 10⁴ worse
- Dynamic vacuum in interaction region factors 100-1000 higher than the static vacuum?
- Beam gas interaction rate in IP±20 m ≈500 kHz to be compared to 200 kHz of planned collisions (L = 3x10³⁰ cm⁻²s⁻¹).
- Studies are ongoing.

IR2 Beam Parameters

pp	PbPb
7	2.76
10-(100 ?)	0.5-(2)
71-(226 ?)	16-(64)
7.5	7.5
5.3	5
100	75
2808	592
25	100
1.10E+11	6.80E+07
< 3 E30	1.00E+27
	7 10-(100 ?) 71-(226 ?) 7.5 5.3 100 2808 25

ALICE Luminosity Meaurements

- Both absolute and relative measurements needed
 - Absolute: For example for unique charm cross section measurement in pp down to $p_T=0$.
 - Relative: Some signals are expressed as double ratios.
 - Example $(R_{\psi}/R_{cont})_{PbPb}/(R_{\psi}/R_{cont})_{pp}$

Luminosity Determination

- Heavy Ion Collisions
 - Total inelastic (hadronic) cross-section
 - Mutual electromagnetic dissociation
- pp
 - Rate of inelastic interactions

Total inelastic cross-section

- Heavy ion cross section mainly given by geometry of Pb nucleus
 - Small dependence on nucleon-nucleon crosssection
 - 5% error from geometry parameter uncertainty
 - See talk by S. White, BNL

Mutual Electromagnetic Dissociation

Signal:

Correlated very Forward/Backward neutron production.

Event Geometry: ALICE ZDC Calorimeters

Aim: determination of the impact parameter of the collision by measuring the energy carried by the spectator nucleons

Where: hadronic calorimeters at ~ 116 m from IP e.m. calorimeter at ~ 8 m from IP

Central events selected with **both**:

- -Energy in hadronic calorimeters < E_0
- -Energy in e.m. calorimeter $\geq E_1$

	Proton Neutron		EM
	ZDC (ZP)	ZDC (ZN)	ZDC
Dimensions (cm³)	12x21x150	7x7x100	7x7x21
Absorber	brass	W-alloy	lead
Fibre angle wrt LHC axis	00	00	450
Fibre Ø (μm)	550	365	550

ZDC as a luminosity monitor

- Experimental considerations
 - Transverse momentum of n < 250 MeV
 - Emission angle < 0.1 mrad corresponding to 1 cm radius spot on ZDC front surface
 - Energy range 2.1 3.4 TeV
 - Clear separation between single and multi-neutron de-excitation
 - Both single and multi-neutron signals can be measured
 - Good background rejection (beam-gas)

Expected energy distribution of neutrons from e.m. excitation

ZDC resolution (10%) included (compare RHIC: 20%)

ZDC as a luminosity monitor

Theoretical considerations

(I.A. Pshenichnov et. al.)

- Mutual electromagnetic dissociation crosssections can be calculated with good accuracy
- Model (parameter) variation of cross-sections
 - 10% for the 1n-1n correlated emission cross-section
 - 2% for the sum of one and two neutron emission channels "LMN" (1n-1n)+(1n-2n)+(2n-1n)+(2n-2n)
 - Expected cross-section: 1.38 barn
- LMN proposed for luminosity measurement

Model (parameter) dependence of mutual electromagnetic dissociation cross-section

	$E_{\gamma} \leq 24~{ m MeV}$ LO	$E_{\gamma} \leq 140~{ m MeV}$ LO		Full range of <i>E</i> _γ LO+NLO	
Cross section (mb)	RELDIS $P_{11}^{\text{dir}} = 0$	GNASH	RELDIS $P_{\rm n}^{\rm dir} = 0$	RELDIS $P_{\mathbf{n}}^{\mathrm{dir}} = 0$	RELDIS $P_{\rm fl}^{\rm dir} = 0.26$
σ ^{ED} (lnX lnY)	519 533 [18]	488	544	727	805
$\begin{array}{c} \sigma_m^{ED}(\ln \! X \mid 2nY) + \\ \sigma_m^{ED}(2nX \mid 1nY) \end{array}$	154	220	217	525	496
σ _m ED(2nX 2nY)	11	24	22	96	77
$\sigma_m^{ED}(LMN)$	684	732	783	1348	1378

Distribution of the total forward-backward energy of neutrons emitted in mutual electromagnetic dissociation in PbPb collisions at the LHC

Luminosity determination in pp collisions

- . TOTEM experiment measures total cross-section σ_{tot} .
 - ALICE will measure a fraction Acc x R_{tot} of the rate of inelastic interactions
 - Using V0 we can trigger on 86% of the total inelastic cross-section
 - 95% of the non-diffractive interactions
 - 45% of diffractive interactions
 - Experience from Tevatron shows
 - Error on acceptance can be reduced to few percent
 - Error dominated by uncertainty on total cross-section (5%)

Forward detectors

V0 1.6 < $|\eta|$ < 3.9 Interaction trigger, centrality trigger and beamgas rejection. Two arrays of 72 scintillator tiles readout via fibers

FMD Measure Multiplicity and η dist. over $1.6 < \eta < 3$, $-5.4 < \eta < -1.6$ Silicon pad detector disks (slow readout) with 12k analog channels (occ.>1)

T0_R $2.6 < |\eta| < 3.3$ T₀ for the TOF (~ 50 ps time res.) Two arrays of 12 quartz counters. Also backup to V0

Acceptance and Multiplicity

Beam Instrumentation Issues

- Instrumentation Group intents to put luminometer in front of ZDC
- First results show that ZDC energy resolution is not affected
 - Luminometer has been modeled by 3 cm thick Cu -box.
- Mechanical integration to be studied.
- Can ZDC and Luminometer be combined?

Conclusions

- Both absolute and relative measurements needed
 - Absolute: For example for unique charm cross section measurement in pp down to p_T =0.
 - Relative: Some signals are expressed as double ratios.
- ALICE can measure absolute Pb-Pb cross-section with good precission (5%)
 - Total inelastic (geometric) cross-section
 - Correlated neutrons from electromagnetic dissociation
- Importance of PbPb luminosity measurement for pp-luminosity from machine (see talk by S. White)?
- Relative measurement for pp, for absolute cross-section we need
 - Luminosity from machine or
 - Total cross-section from TOTEM