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Overview

● LHC experimental conditions
– ALICE running strategy
– Luminosity requirements 
– Background conditions

● Luminosity determination
– Heavy ion collisions
– pp Collisions

● Beam instrumentation issues
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ALICE Running Strategy
● Regular pp runs at √s = 14 TeV
● Initial heavy ion program

– Pb-Pb physics pilot run
– 1-2 years Pb-Pb
– 1 year pPb like collisions (pPb, dPb or αPb) 
– 1-2 years Ar-Ar



ALICE Running Strategy

● Later options some of the depending on the 
outcome of the initial data analysis
– Dedicated pp or pp-like (dd or αα) collisions at 

√sNN = 5.5 TeV
– Possibly another intermediate mass A-A system

(N-N, O-O, Kr-Kr or Sn-Sn)
– Possibly another pA (dA, αA) system 
– Possible lower energy Pb-Pb runs
– Further high energy Pb-Pb runs



Luminosity Requirements

● Heavy ions (limited by LHC)
– Pb-Pb 1 x 1027 cm-2 s-1 

– Ar-Ar 1 x 1029 cm-2 s-1

– O-O 2 x 1029 cm-2 s-1

● pA (200 kHz rate limit)
– pPb 1.1 x 1029 cm-2 s-1

– pAr 3.0 x 1029 cm-2 s-1

● pp (200 kHz rate limit)
– (1029- 3 x 1030)  cm-2 s-1



Running Conditions Critical for 
Luminosity Monitoring

● Short luminosity half-life in Pb-Pb Collisions
● Background conditions in pp Runs



Luminosity Lifetime
● Lifetime in PbPb 

– Limited by electromagnetic processes (≈ 500 barn)
– Half-life (mean luminosity)

● 1 Experiment 6.7 h (0.44 L0)
● 2 Experiments 3.1 h (0.35 L0 )
● 3 Experiments 2.7 h (0.29 L0)



Luminosity Lifetime
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ALICE prefers β* tuning 
Keep luminosity constant reducing β* 

during the run
Also useful for L0 < 1027 cm-2s-1

Same average luminosity as for L0
= 1027 cm-2s-1

Avoids quench problem 
ALICE INT-2002-32



Background Conditions in pp 
Runs

● Runs at reduced luminosity (/104) and full 
current
– Hence, S/B by factor 104 worse

● Dynamic vacuum in interaction region factors  
100-1000 higher than the static vacuum ?

● Beam gas interaction rate in IP±20 m ≈500 
kHz to be compared to 200 kHz of planned 
collisions (L = 3x1030 cm-2s-1).

● Studies are ongoing.



IR2 Beam Parameters
pp PbPb

Ene r gy pe r  nuc l e on [ Te V] 7 2. 76
β a t  t he  I P ( c ol l i s i ons )  [ m] 10- ( 100 ? )0. 5- ( 2)
r . m. s .  be a m r a di us  a t  I P [ µm] 71- ( 226 ? )16- ( 64)
r . m. s .  bunc h l e ngt h [ c m] 7. 5 7. 5
r . m. s .  ve r t e x s pr e a d [ c m] 5. 3 5
Cr os s i ng ha l f  a ngl e  ( ve r t i c a l )  [ µr a d] 100 75
Numbe r  of  bunc he s 2808 592
Bunc h s pa c i ng [ ns ] 25 100
Numbe r  of  pa r t i c l e s  pe r  bunc h 1. 10E+11 6. 80E+07
Lumi nos i t y [ c m̂ - 2 s ^ - 1] < 3 E30 1. 00E+27



ALICE Luminosity Meaurements

● Both absolute and relative measurements 
needed
– Absolute: For example for unique charm cross 

section measurement  in pp down to pT=0. 
– Relative: Some signals are expressed as double 

ratios.
● Example (Rψ/Rcont)PbPb/(Rψ/Rcont)pp



Luminosity Determination

● Heavy Ion Collisions
– Total inelastic (hadronic) cross-section
– Mutual electromagnetic dissociation

● pp
– Rate of inelastic interactions



Total inelastic cross-section
● Heavy ion cross section mainly given by 

geometry of Pb nucleus
– Small dependence on nucleon-nucleon cross-

section
– 5% error from geometry parameter uncertainty

● See talk by S. White, BNL
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Mutual Electromagnetic 
Dissociation 
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Signal: 
Correlated very Forward/Backward neutron production.



Event Geometry: ALICE ZDC  Calorimeters

ZN

ZP

Aim: determination of the impact parameter of the collision by measuring the 
energy carried by the spectator nucleons
Where: hadronic calorimeters at ~ 116 m from IP

e.m. calorimeter at ~ 8 m from IP

Central events selected with both:
-Energy in hadronic calorimeters  < E0
-Energy in e.m. calorimeter >E1

Proton 
ZDC (ZP)

Neutron
ZDC (ZN)

EM
ZDC

Dimensions
(cm3) 12x21x150 7x7x100 7x7x21

Absorber brass W-alloy lead
Fibre angle 

wrt LHC axis 0O 0O 45O

Fibre ∅ (µm) 550 365 550

E0

E1

Ehad vs Ee.m.



ZDC as a luminosity monitor

● Experimental considerations
– Transverse momentum of n < 250 MeV

● Emission angle < 0.1 mrad corresponding to 1 cm 
radius spot on ZDC front surface

– Energy range 2.1 – 3.4 TeV
● Clear separation between single and multi-neutron 

de-excitation
– Both single and multi-neutron signals can be 

measured
● Good background rejection (beam-gas)



Expected energy distribution of 
neutrons from e.m. excitation

1n

2n

3n

ZDC resolution (10%) included
(compare RHIC: 20%)

Pb-Pb @ 5.5 TeV
ALICE



ZDC as a luminosity monitor

● Theoretical considerations 
(I.A. Pshenichnov et. al.)

– Mutual electromagnetic dissociation cross-
sections can be calculated with good accuracy

– Model (parameter) variation of cross-sections
● 10% for the 1n-1n correlated emission cross-section
● 2% for the sum of one and two neutron emission 

channels “LMN” (1n-1n)+(1n-2n)+(2n-1n)+(2n-2n)
● Expected cross-section: 1.38 barn

– LMN proposed for luminosity measurement



Model (parameter)  dependence of  mutual 
electromagnetic dissociation cross-section 



Distribution of the total forward-backward energy of neutrons 
emitted in mutual electromagnetic dissociation in PbPb 

collisions at the LHC



Luminosity determination in pp 
collisions

● TOTEM experiment measures total cross-
section σtot.
– ALICE will measure a fraction Acc x Rtot of the 

rate of inelastic interactions
– Using V0 we can trigger on 86% of the total 

inelastic cross-section
● 95% of the non-diffractive interactions
● 45% of diffractive interactions

– Experience from Tevatron shows 
● Error on acceptance can be reduced to few percent
● Error dominated by uncertainty on total cross-section 

(5%)



Forward 
detectors

T0R 2.6 < |η| < 3.3                 
T0 for the TOF (~ 50 ps time 
res.) Two arrays of 12 quartz 
counters. Also backup to V0

FMD Measure Multiplicity and η
dist. over 1.6 < η < 3, -5.4 < η < -1.6 
Silicon pad detector disks (slow readout) with 
12k analog channels (occ.>1)

V0 1.6 < |η| < 3.9 Interaction 
trigger, centrality trigger and beam-
gas rejection. Two arrays of 72
scintillator tiles readout via fibers

T0L



Acceptance and Multiplicity
V0 T0

non-diffractive

diffractive

ITS



Beam Instrumentation Issues

● Instrumentation Group intents to put luminometer in 
front of ZDC

● First results show that ZDC energy resolution is not 
affected
– Luminometer has been modeled by 3 cm thick Cu -box.

● Mechanical integration to be studied.
● Can ZDC and Luminometer be combined ?



Conclusions
● Both absolute and relative measurements needed

– Absolute: For example for unique charm cross section measurement  
in pp down to pT=0. 

– Relative: Some signals are expressed as double ratios.

● ALICE can measure absolute Pb-Pb cross-section with good 
precission (5%)

– Total inelastic (geometric) cross-section
– Correlated neutrons from electromagnetic dissociation

● Importance of PbPb luminosity measurement for pp-luminosity 
from machine (see talk by S. White) ?

● Relative measurement for pp, for absolute cross-section we 
need

– Luminosity from machine or
– Total cross-section from TOTEM
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