2nd Lecture When (some) QCD matters

Flavor symmetries

 \Rightarrow Sebastien

Heavy quark symmetry

 \Rightarrow Sebastien

- Operator product expansion for inclusive decays Semileptonic b decays, $b \rightarrow s \gamma$, and friends
- Nonleptonic decays

B decays to charm, Λ_b decay charmless B decays, different approaches

Interplay of electroweak and strong interactions

- How to learn about high energy physics from low energy hadronic processes?
- QCD coupling is scale dependent, $\alpha_s(m_B) \sim 0.2$

$$\alpha_s(\mu) = \frac{\alpha_s(\Lambda)}{1 + \frac{\alpha_s}{2\pi} \beta_0 \ln \frac{\mu}{\Lambda}}, \qquad \beta_0 = 11 - \frac{2}{3} n_f > 0$$

$$\beta_0 = 11 - \frac{2}{3} n_f > 0$$

Nobel prize in 2004:

Politzer, Wilczek, Gross

Interplay of electroweak and strong interactions

- How to learn about high energy physics from low energy hadronic processes?
- QCD coupling is scale dependent, $\alpha_s(m_B) \sim 0.2$

$$\alpha_s(\mu) = \frac{\alpha_s(\Lambda)}{1 + \frac{\alpha_s}{2\pi} \beta_0 \ln \frac{\mu}{\Lambda}}, \qquad \beta_0 = 11 - \frac{2}{3} n_f > 0$$

High energy (short distance): perturbation theory is useful

Low energy (long distance): QCD becomes nonperturbative ⇒ It is usually very hard, if not impossible, to make precise calculations

- Solutions: New symmetries in some limits: effective theories (heavy quark, chiral)
 Certain processes are determined by short-distance physics
 Lattice QCD (bite the bullet limited cases)

 ⇒ Olivier
- Incalculable nonperturbative hadronic effects are often the limiting factor

Disentangling weak and strong interactions

- Want to learn about electroweak physics, but hadronic physics is nonperturbative
 Model independent continuum approaches:
- (1) Symmetries of QCD (exact or approximate)

E.g.: $\sin 2\beta$ from $B \to J/\psi K_S$: amplitude not calculable

Solution: CP symmetry of QCD ($\theta_{\rm QCD}$ can be neglected)

$$\langle \psi K_S | \mathcal{H} | B^0 \rangle = -\langle \psi K_S | \mathcal{H} | \overline{B}^0 \rangle \times [1 + \mathcal{O}(\alpha_s \lambda^2)]$$

(2) Effective field theories (separation of scales)

E.g.: $|V_{cb}|$ and $|V_{ub}|$ from semileptonic B decays

Solution: Heavy quark expansions

$$\Gamma = |V_{cb}|^2 \times (\text{known factors}) \times [1 + \mathcal{O}(\Lambda_{\text{QCD}}^2/m_b^2)]$$

Many relevant scales: $B o X_s \gamma$

• Separate physics at: $(m_{t,W} \sim 100 \, {\rm GeV}) \gg (m_b \sim 5 \, {\rm GeV}) \gg (\Lambda \sim 0.5 \, {\rm GeV})$

Inclusive decay:

$$X_s = K^*, \ K^{(*)}\pi, \ K^{(*)}\pi\pi$$
, etc.

Diagrams with many gluons are crucial, resumming certain subset of them affects rate at factor-of-two level

Rate calculated at <10% level, using several effective theories, renormalization group, operator product expansion... one of the most involved SM analyses

Solution: Short distance dominated; unknown corrections suppressed by

$$\Gamma(B \to X_s \gamma) = [\mathsf{known}] \times \left\{ 1 + \mathcal{O}\left(\alpha_s^3 \ln \frac{m_W}{m_b}, \frac{\Lambda_{\mathrm{QCD}}^2}{m_{b,c}^2}, \frac{\alpha_s \Delta m_c}{m_b}\right) \right\}$$

Some caveats

- Lot at stake: theoretical tools for semileptonic and rare decays are the same
 - Measurements of CKM elements
 - Better understanding of hadronic physics improves sensitivity to new physics
- For today's talk: [strong interaction] model independent
 - = theor. uncertainty suppressed by small parameters
 - ... so theorists argue about $\mathcal{O}(1)\times$ (small numbers) instead of $\mathcal{O}(1)$ effects
- Most of the progress have come from expanding in powers of Λ/m_Q , $\alpha_s(m_Q)$
 - ... a priori not known whether $\Lambda \sim 200\,{
 m MeV}$ or $\sim 2\,{
 m GeV}$ $(f_\pi, m_\rho, m_K^2/m_s)$
 - ... need experimental guidance to see how well the theory works

The name of the game

The SM shows impressive consistency — even by Stockholm standards

Only robust deviations from model independent theory are likely to be interesting

(2σ : 50 theory papers 3σ : 200 theory papers

 5σ : strong sign of effect)

Heavy quark symmetry

⇒ Sebastien

Heavy quark symmetry

- $Q \, \overline{Q}$: positronium-type bound state, perturbative in the $m_Q \gg \Lambda_{\rm QCD}$ limit
- $Q \overline{q}$: wave function of the light degrees of freedom ("brown muck") insensitive to spin and flavor of Q

B meson is a lot more complicated than just a $b \bar{q}$ pair

In the $m_Q\gg \Lambda_{\rm QCD}$ limit, the heavy quark acts as a static color source with fixed four-velocity v^μ

- Similar to atomic physics: $(m_e \ll m_N)$
 - 1. Flavor symmetry \sim isotopes have similar chemistry [Ψ_e independent of m_N]
 - 2. Spin symmetry \sim hyperfine levels almost degenerate $[\vec{s}_e \vec{s}_N \text{ interaction} \rightarrow 0]$

Spectroscopy of heavy-light mesons

• In $m_Q\gg \Lambda_{\rm QCD}$ limit, spin of the heavy quark is a good quantum number, and so is the spin of the light d.o.f., since $\vec{J}=\vec{s}_Q+\vec{s}_l$ and

angular momentum conservation:
$$[\vec{J},\mathcal{H}]=0$$
 heavy quark symmetry: $[\vec{s}_Q,\mathcal{H}]=0$ \Rightarrow $[\vec{s}_l,\mathcal{H}]=0$

For a given s_l , two degenerate states:

$$J_{\pm} = s_l \pm \frac{1}{2}$$

 $\Rightarrow \Delta_i = \mathcal{O}(\Lambda_{\mathrm{QCD}})$ — same in B and D sector

Doublets are split by order $\Lambda_{\rm QCD}^2/m_Q$, e.g.:

$$m_{D^*}-m_D\simeq 140\,{\rm MeV}$$

$$m_{B^*}-m_B\simeq 45\,{\rm MeV}$$

Aside: a puzzle

• Since vector–pseudoscalar mass splitting $\propto 1/m_Q$, expect: $m_V^2 - m_P^2 = {\sf const.}$

Experimentally:

$$m_{B^*}^2 - m_B^2 = 0.49 \,\text{GeV}^2$$

$$m_{B_s^*}^2 - m_{B_s}^2 = 0.50 \,\text{GeV}^2$$

$$m_{D^*}^2 - m_D^2 = 0.54 \,\text{GeV}^2$$

$$m_{D_s^*}^2 - m_{D_s}^2 = 0.58 \,\text{GeV}^2$$

Aside: a puzzle

• Since vector–pseudoscalar mass splitting $\propto 1/m_Q$, expect: $m_V^2 - m_P^2 = \text{const.}$

Experimentally:

$$m_{B^*}^2 - m_B^2 = 0.49 \,\text{GeV}^2$$

$$m_{B_s^*}^2 - m_{B_s}^2 = 0.50 \,\text{GeV}^2$$

$$m_{D^*}^2 - m_D^2 = 0.54 \,\text{GeV}^2$$

$$m_{D_s^*}^2 - m_{D_s}^2 = 0.58 \,\text{GeV}^2$$

$$m_{K^*}^2 - m_K^2 = 0.55 \,\text{GeV}^2$$

$$m_{\rho}^2 - m_{\pi}^2 = 0.57 \,\text{GeV}^2$$

- The HQS argument relies on $m_Q \gg \Lambda_{\rm QCD}$, so something more has to go on...
- It's not only important to test how a theory works, but also how it breaks down!

Successes in charm spectrum

- D_1 is narrow: S-wave D_1 \to MeV $D^*\pi$ amplitude allowed by angular momentum conservation, but forbidden in the $m_Q \to \infty$ limit by heavy quark spin symmetry
- Mass splittings of orbitally excited states is small:

$$m_{D_2^*} - m_{D_1} = 37 \, {
m MeV} \ll m_{D^*} - m_D$$
 vanishes in the quark model, since it arise from $\langle \vec{s}_Q \cdot \vec{s}_{\bar{q}} \, \delta^3(\vec{r}) \rangle$

Spectroscopy of D mesons

Aside: strong decays of D_1 and D_2^*

 The strong interaction Hamiltonian conserves the spin of the heavy quark and the light degrees of freedom separately

 $(D_1, D_2^*) \to (D, D^*)\pi$ — four amplitudes related by heavy quark spin symmetry

$$\Gamma(j \to j'\pi) \propto (2s_l + 1)(2j' + 1) \left| \begin{cases} L & s'_l & s_l \\ \frac{1}{2} & j & j' \end{cases} \right|^2$$

Multiplets have opposite parity $\Rightarrow \pi$ must be in L = 2 partial wave

$\Gamma(D_1 \to D\pi) : \Gamma(D_1 \to D^*\pi) : \Gamma(D_2^* \to D\pi) : \Gamma(D_2^* \to D^*\pi)$						
0	:	1	:	$\frac{2}{5}$:	$\frac{3}{5}$
0		1	:	2.3	•	0.92

• Last line includes large $|p_{\pi}|^5$ HQS violation from phase space, which changes $\Gamma(D_2^* \to D\pi)/\Gamma(D_2^* \to D^*\pi)$ from 2/3 to 2.5 (data: 2.3 ± 0.6)

[Note: prediction for ratio of D_1 and D_2^* total widths works less well]

Semileptonic and rare B decays

 $|V_{ub}|$ is the dominant uncertainty of the side of the UT opposite to β

 $|V_{ub}|$ is crucial for comparing treedominated and loop-mediated processes

Error of $|V_{cb}|$ is a large part of the uncertainty in the ϵ_K constraint, and in $K \to \pi \nu \bar{\nu}$ when it's measured

Rare $b \to s\gamma$, $s \ell^+\ell^-$, and $s \nu \bar{\nu}$ decays are sensitive probes of the Standard Model

Exclusive $B o D^{(*)} \ell ar{ u}$ decay

- In the $m_{b,c} \gg \Lambda_{\rm QCD}$ limit, configuration of brown muck only depends on the four-velocity of the heavy quark, but not on its mass and spin
- On a time scale $\ll \Lambda_{\rm QCD}^{-1}$ weak current changes $b \to c$ i.e.: $\vec{p}_b \to \vec{p}_c$ and possibly \vec{s}_Q flips

In $m_{b,c}\gg \Lambda_{\rm QCD}$ limit brown muck only feels $v_b\to v_c$

Form factors independent of Dirac structure of weak current \Rightarrow all form factors related to a single function of $w=v\cdot v'$, the Isgur-Wise function, $\xi(w)$

Contains all nonperturbative low-energy hadronic physics

• $\xi(1) = 1$, because at "zero recoil" configuration of brown muck not changed at all

$B o D^{(*)}\ellar u$ form factors

■ Lorentz invariance ⇒ 6 form factors

$$\begin{split} \langle D(v')|V_{\nu}|B(v)\rangle &= \sqrt{m_Bm_D} \left[h_+ \left(v+v'\right)_{\nu} + h_- \left(v-v'\right)_{\nu} \right] \\ \langle D^*(v')|V_{\nu}|B(v)\rangle &= i\sqrt{m_Bm_{D^*}} \, h_V \, \epsilon_{\nu\alpha\beta\gamma} \epsilon^{*\alpha} v'^{\beta} v^{\gamma} \\ \langle D(v')|A_{\nu}|B(v)\rangle &= 0 \\ \langle D^*(v')|A_{\nu}|B(v)\rangle &= \sqrt{m_Bm_{D^*}} \left[h_{A_1} \left(w+1\right) \epsilon_{\nu}^* - h_{A_2} \left(\epsilon^* \cdot v\right) v_{\nu} - h_{A_3} \left(\epsilon^* \cdot v\right) v'_{\nu} \right] \\ V_{\nu} &= \bar{c} \gamma_{\nu} b, \quad A_{\nu} = \bar{c} \gamma_{\nu} \gamma_5 b, \quad w \equiv v \cdot v' = \frac{m_B^2 + m_D^2 - q^2}{2m_Bm_D}, \quad \text{and} \, h_i = h_i(w,\mu) \end{split}$$

ullet In $m_Q\gg \Lambda_{
m QCD}$ limit, up to corrections suppressed by $lpha_s$ and $\Lambda_{
m QCD}/m_{c,b}$

$$h_{-} = h_{A_2} = 0$$
, $h_{+} = h_{V} = h_{A_1} = h_{A_3} = \xi(w)$

The α_s are corrections calculable

 $\Lambda_{\mathrm{QCD}}/m_{c,b}$ corrections is where model dependence enters

$|V_{cb}|$ from $B o D^{(*)}\ellar u$

Extract $|V_{cb}|$ from $w\equiv v\cdot v'=(m_B^2+m_D^2-q^2)/(2m_Bm_D)\to 1$ limit of the rate

$$\frac{\mathrm{d}\Gamma(B\to D^{(*)}\ell\bar{\nu})}{\mathrm{d}w} = (\dots) \, (w^2-1)^{3/2(1/2)} \, |V_{cb}|^2 \, \mathcal{F}_{(*)}^2(w)$$

$$w \equiv v \cdot v' \qquad \text{Isgur-Wise function} + \dots$$

$$\mathcal{F}(1) = \mathbf{1}_{\mathrm{Isgur-Wise}} + 0.02_{\alpha_s,\alpha_s^2} + \frac{(\mathrm{lattice\ or\ models})}{m_{c,b}} + \dots$$

$$\mathcal{F}_*(1) = \mathbf{1}_{\mathrm{Isgur-Wise}} - 0.04_{\alpha_s,\alpha_s^2} + \frac{0_{\mathrm{Luke}}}{m_{c,b}} + \frac{(\mathrm{lattice\ or\ models})}{m^2} + \dots$$

- Lattice QCD: $\mathcal{F}_*(1) = 0.921 \pm 0.024$, $\mathcal{F}(1) = 1.074 \pm 0.024$ [arXiv:0808.2519, hep-lat/0409116]
- Need constraints on shape to fit

[Boyd, Grinstein, Lebed; Caprini, Lellouch, Neubert]

- Need some understanding of decays to higher mass X_c states (backgrounds)
- Data: $|V_{cb}\,\mathcal{F}_*(1)| = (35.75\pm0.42)\times 10^{-3}, \ |V_{cb}\,\mathcal{F}(1)| = (42.3\pm1.5)\times 10^{-3}$ [HFAG] [note: $\chi^2/\text{dof} = 39.6/21\ (56.9/21),\ \text{CL} = 0.8\%\ (4\text{E}-5)$]

Heavy quark expansion

The multipole expansion

Physics at $r \sim L$ is complicated

Depends on the details of the charge distribution

The multipole expansion

Physics at $r \gg L$ is much simpler

Charge distribution characterized by total charge, q

Details suppressed by powers of L/r, and can be parameterized in terms of p_i, Q_{ij}, \ldots

Simplifications occur due to separating physics at different distance scales

 Complicated charge distribution can be replaced by a point source with additional interactions (multipoles) — underlying idea of effective theories

The multipole expansion (cont.)

Potential:

$$V(x) = \frac{q}{r} + p_i \frac{x_i}{r^3} + \frac{1}{2} Q_{ij} \frac{x_i x_j}{r^5} + \dots$$

Short distance quantities: $q = \int \rho(x) d^3x$, $p_i = \int x_i \rho(x) d^3x$, etc

Long distance quantities: $\left\langle \frac{1}{r} \right\rangle$, $\left\langle \frac{x_i}{r^3} \right\rangle$, $\left\langle \frac{x_i x_j}{r^5} \right\rangle$, etc.

- Higher multipoles: new interactions from "integrating out" short distance physics
- Useful tool independent of the fact whether we know the underlying theory or not
- ullet Any theory at momentum $p \ll M$ can be described by an effective Hamiltonian

$$H_{\mathrm{eff}} = H_0 + \sum_i \frac{C_i}{M^{n_i}} O_i$$
 $M o \infty$ limit + corrections with well-defined power counting H_0 may have more symmetries than full theory at nonzero p/M Can work to higher orders in p/M ; can sum logs of p/M

NP can modify C_i or give rise to new O_i 's — right coefficients? right operators?

Inclusive heavy hadron decays

 Sum over hadronic final states, subject to constraints determined by short distance physics

Decay: short distance (calculable)

Hadronization: long distance (nonperturbative),

but probability to hadronize is unity; sum over details

Optical theorem + operator product expansion (OPE) + heavy quark symmetry

Can think of the OPE as expansion of forward scattering amplitude in $k \sim \Lambda_{\rm QCD}$

Operator product expansion

• Consider semileptonic $b \to u$ decay: $O_{bu} = -\frac{4G_F}{\sqrt{2}} V_{ub} \underbrace{(\overline{u} \, \gamma^\mu P_L \, b)}_{J^\mu_{bu}} \underbrace{(\overline{\ell} \, \gamma_\mu P_L \, \nu)}_{J^\ell_{\ell\nu}}$

Decay rate:
$$\Gamma(B \to X_u \ell \bar{\nu}) \sim \sum_{X_c} \int d[PS] \left| \langle X_u \ell \bar{\nu} | O_{bu} | B \rangle \right|^2$$

Factor to: $B \to X_u W^*$ and $W^* \to \ell \bar{\nu}$, concentrate on hadronic part

$$W^{\mu\nu} \sim \sum_{X_c} \delta^4(p_B - q - p_X) \left| \langle B | J_{bu}^{\mu\dagger} | X_u \rangle \langle X_u | J_{bu}^{\nu} | B \rangle \right|^2 = \operatorname{Im} T^{\mu\nu}$$

(optical theorem)
$$T^{\mu\nu} = i \int dx \, e^{-iq \cdot x} \, \langle B | T \{ J_{bu}^{\mu\dagger}(x) \, J_{bu}^{\nu}(0) \} \, | B \rangle$$

ullet Operators: $ar{b}\,b o$ free quark decay, $\langle ar{b}D^2b
angle$, $\langle ar{b}\sigma_{\mu\nu}G^{\mu\nu}b
angle \sim m_{B^*}^2 - m_B^2$, etc.

$$d\Gamma = \begin{pmatrix} b \text{ quark} \\ \text{decay} \end{pmatrix} \times \left\{ 1 + \frac{0}{m_b} + \frac{f(\lambda_1, \lambda_2)}{m_b^2} + \ldots + \alpha_s(\ldots) + \alpha_s^2(\ldots) + \ldots \right\}$$

• As for $e^+e^- \to \text{hadrons}$, question is when perturbative calculation can be trusted

Analytic structure for semileptonic decays

• More complicated than $e^+e^- \rightarrow$ hadrons

For fixed q^2 , cuts of $T^{\mu\nu}$ in the complex q^0 plane:

$$q^{0} = q \cdot v < (m_{B}^{2} + q^{2} - m_{X_{q}^{\min}}^{2})/2m_{B}$$
$$q^{0} = q \cdot v > (m_{X_{\bar{q}bb}^{\min}}^{2} - m_{B}^{2} - q^{2})/2m_{B}$$

For $b\to c\ell\bar{\nu}$, two cuts are separated by $>4m_c$ For $b\to u\ell\bar{\nu}$ near $q_{\rm max}^2$ only by $\mathcal{O}(\Lambda_{\rm QCD})$ at)

- To calculate any observable, contour must approach the cut somewhere
 Integration over neutrino (or kinematic variables) "builds in" some smearing
- Tested in great detail in semileptonic $B \to X_c \ell \bar{\nu}$ decays
- Nonleptonic rates (lifetimes) have to use OPE in the physical region

Classic application: inclusive $\left|V_{cb}\right|$

• Want to determine $|V_{cb}|$ from $B \to X_c \ell \bar{\nu}$:

$$\Gamma(B \to X_c \ell \bar{\nu}) = \frac{G_F^2 |V_{cb}|^2}{192\pi^3} \left(4.7 \,\text{GeV} \right)^5 \left(0.534 \right) \times \\ \left[1 - 0.22 \left(\frac{\Lambda_{1S}}{500 \,\text{MeV}} \right) - 0.011 \left(\frac{\Lambda_{1S}}{500 \,\text{MeV}} \right)^2 - 0.052 \left(\frac{\lambda_1}{(500 \,\text{MeV})^2} \right) - 0.071 \left(\frac{\lambda_2}{(500 \,\text{MeV})^2} \right) \right. \\ \left. - 0.006 \left(\frac{\lambda_1 \Lambda_{1S}}{(500 \,\text{MeV})^3} \right) + 0.011 \left(\frac{\lambda_2 \Lambda_{1S}}{(500 \,\text{MeV})^3} \right) - 0.006 \left(\frac{\rho_1}{(500 \,\text{MeV})^3} \right) + 0.008 \left(\frac{\rho_2}{(500 \,\text{MeV})^3} \right) \right. \\ \left. + 0.011 \left(\frac{T_1}{(500 \,\text{MeV})^3} \right) + 0.002 \left(\frac{T_2}{(500 \,\text{MeV})^3} \right) - 0.017 \left(\frac{T_3}{(500 \,\text{MeV})^3} \right) - 0.008 \left(\frac{T_4}{(500 \,\text{MeV})^3} \right) \right. \\ \left. + 0.096\epsilon - 0.030\epsilon_{\text{BLM}}^2 + 0.015\epsilon \left(\frac{\Lambda_{1S}}{500 \,\text{MeV}} \right) + \dots \right]$$

Corrections: $\mathcal{O}(\Lambda/m)$: $\sim 20\%$, $\mathcal{O}(\Lambda^2/m^2)$: $\sim 5\%$, $\mathcal{O}(\Lambda^3/m^3)$: $\sim 1-2\%$, $\mathcal{O}(\alpha_s)$: $\sim 10\%$, Unknown terms: < few %

Matrix elements extracted from shape variables — good fit to lots of data

• Error of $|V_{cb}| \sim 2\%$ — a precision field; uncomfortable $\sim 2\sigma$ tension with exclusive

The challenge of inclusive $|V_{ub}|$ measurements

- Total rate predicted with $\sim 4\%$ accuracy, similar to $\mathcal{B}(B \to X_c \ell \bar{\nu})$
- To remove the huge charm background $(|V_{cb}/V_{ub}|^2 \sim 100)$, need phase space cuts Can enhance pert. and nonpert. corrections
- Instead of being constants, the hadronic parameters become functions (like PDFs)

Leading order: universal & related to $B \to X_s \gamma$; $\mathcal{O}(\Lambda_{\rm QCD}/m_b)$: several new unknown functions

Nonperturbative effects shift endpoint $\frac{1}{2}m_b \rightarrow \frac{1}{2}m_B$ & determine its shape

• Shape in the endpoint region is determined by b quark PDF in B — related to the $B \to X_s \gamma$ photon spectrum at lowest order [Bigi, Shifman, Uraltsev, Vainshtein; Neubert]

b quark decayspectrum

with a model for b quark PDF

b quark decay spectrum

$$-\frac{d}{dE_l}\frac{d\Gamma}{dE_l}$$

with a model for b quark PDF

b quark decay spectrum

$$-\frac{d}{dE_l}\frac{d\Gamma}{dE_l}$$

with a model for b quark PDF

difference:

b quark decay spectrum

 $-\frac{d}{dE_l}\frac{d\Gamma}{dE_l}$

with a model for b quark PDF

- ullet Both of these spectra determined at lowest order by the b quark PDF in B meson
- Lots of work toward extending beyond leading order; some open issues remain

Regions of $B o X_s \gamma$ phase space

- Important both for $|V_{ub}|$ and constraining NP
- $m_B 2E_{\gamma} \lesssim 2 \, \mathrm{GeV}$, and $< 1 \, \mathrm{GeV}$ at the peak

Three cases: 1) $\Lambda_{\rm QCD} \sim m_B - 2E_\gamma \ll m_B$

- 2) $\Lambda_{\rm QCD} \ll m_B 2E_{\gamma} \ll m_B$
- 3) $\Lambda_{\rm QCD} \ll m_B 2E_{\gamma} \sim m_B$

Neither 1) nor 2) is fully appropriate

[Sometimes called: 1) SCET and 2) MSOPE regions]

- ullet Not clear if reducing $E_{\gamma}^{
 m cut}$ to $\sim\!1.7\,{
 m GeV}$ is indeed optimal / practical
- $B \to X_u \ell \bar{\nu}$ is more complicated: hadronic physics depends not on one (E_{γ}) but two variables (best choice: $p_X^{\pm} = E_X \mp |\vec{p}_X|$ "jettyness" of hadronic final state)
- Existing approaches based on theory in one region, extrapolated / modeled to rest

Approaches to $|V_{ub}|$ — more to come

BLNP [Bosch et al.] — based on SCET region

- ⇒ Stephane
- factorization & resummation in shape function region treated correctly
- crossing into local OPE region not model independent
- tied to "shape function" scheme
- DGE [Andersen & Gardi] based on SCET region + perturbative model for the SF
 - SCET region treated correctly; motivated by renormalon resummation
- GGOU [Gambino et al.] based on local OPE region + SF smearing
 - no resummation in SCET region
 - tied to "kinetic" scheme
- BLL [Bauer, ZL, Luke] based on local OPE at large q^2 (but expansion scale is smaller)
 - combine q^2 and m_X cuts, such that SF effect is kept small
- Shape function independent relations [Leibovich, Low, Rothstein; Hoang, ZL, Luke; Lange, Neubert, Paz; Lange]
 - beautiful at leading order, less so when $\mathcal{O}(\Lambda_{\rm QCD}/m_b)$ included

If all else fails: "Grinstein-type double ratios"

- Continuum theory may be competitive using HQS + chiral symmetry suppression
- $\frac{f_B}{f_{B_s}} \times \frac{f_{D_s}}{f_D}$ lattice: double ratio = 1 within few %

[Grinstein '93]

 $\qquad \qquad \frac{f^{(B \to \rho \ell \bar{\nu})}}{f^{(B \to K^* \ell^+ \ell^-)}} \times \frac{f^{(D \to K^* \ell \bar{\nu})}}{f^{(D \to \rho \ell \bar{\nu})}} \ \, \text{or} \, \, q^2 \, \, \text{spectra} \, \, -\!\!\!\!\! - \text{accessible soon?}$

[ZL, Wise; Grinstein, Pirjol]

- $D \to \rho \ell \bar{\nu}$ data still consistent with no SU(3) breaking in form factors
- Could lattice QCD do more to pin down the corrections?

Worth looking at similar ratio with K, π — role of B^* pole...?

• $\frac{\mathcal{B}(B \to \ell \bar{\nu})}{\mathcal{B}(B_s \to \ell^+ \ell^-)} \times \frac{\mathcal{B}(D_s \to \ell \bar{\nu})}{\mathcal{B}(D \to \ell \bar{\nu})}$ — very clean... after 2015?

[Ringberg workshop, '03]

• $\frac{\mathcal{B}(B_u \to \ell \bar{\nu})}{\mathcal{B}(B_d \to \mu^+ \mu^-)}$ — even cleaner... around 2020?

[Grinstein, CKM'06]

For implications for probing SUSY models, ask Nazila

[Akeroyd, Mahmoudi, 1007.2757]

$B o X_s\gamma$ and $K^*\gamma$

 \Rightarrow Patrick

Inclusive $B o X_s \gamma$ calculations

- One (if not "the") most elaborate SM calculations
 Constrains many models: 2HDM, SUSY, LRSM, etc.
- NNLO practically completed [Misiak et al., hep-ph/0609232]
 4-loop running, 3-loop matching and matrix elements

Scale dependencies significantly reduced ⇒

• $\mathcal{B}(B \to X_s \gamma)|_{E_{\gamma} > 1.6 \text{GeV}} = (3.15 \pm 0.23) \times 10^{-4}$

measurement: $(3.52 \pm 0.25) \times 10^{-4}$

• $\mathcal{O}(10^4)$ diagrams, e.g.:

$B o X_s \gamma$ and neutralino dark matter

• Green: excluded by $B \to X_s \gamma$

Brown: excluded (charged LSP)

Magenta: favored by $g_{\mu}-2$

Blue: favored by $\Omega_{\chi}h^2$ from WMAP

Analyses assume constrained MSSM

If either $S_{\eta'K} \neq \sin 2\beta$ or $S_{K^*\gamma} \neq 0$, then has to be redone

Then $B \to X_s \ell^+ \ell^-$ and $B_s \to \mu \mu$ may give complementary constraints

[Ellis, Olive, Santoso, Spanos]

Photon polarization in $B o X_s \gamma$

• Is $B \to X_s \gamma$ due to $O_7 \sim \bar{s} \sigma_{\mu\nu} F^{\mu\nu} P_R b$ $(b \to s_L \gamma_L)$ or $O_7' \sim \bar{s} \sigma_{\mu\nu} F^{\mu\nu} P_L b$ $(b \to s_R \gamma_R)$?

In SM: $C_7'/C_7 = m_s/m_b$, so decays to γ_L dominate

Left- and right-handed photons do not interfere

Inclusive $B \to X_s \gamma$

Assumption: 2-body decay

Does not apply for $b \to s \gamma g$

Exclusive $B \to K^* \gamma$

In quark model (s_L implies $J_z^{K^*} = -1$)

Does not apply for higher K^* Fock states

• Had been expected to give $S_{K^*\gamma} = -2 (m_s/m_b) \sin 2\phi_1$

[Atwood, Gronau, Soni]

$$\frac{\Gamma[\overline{B}^{0}(t) \to K^{*}\gamma] - \Gamma[B^{0}(t) \to K^{*}\gamma]}{\Gamma[\overline{B}^{0}(t) \to K^{*}\gamma] + \Gamma[B^{0}(t) \to K^{*}\gamma]} = S_{K^{*}\gamma}\sin(\Delta m \, t) - C_{K^{*}\gamma}\cos(\Delta m \, t)$$

• Data: $S_{K^*\gamma} = -0.16 \pm 0.22$ — both the measurement and the theory can progress

Right-handed photons in the SM

• Dominant source of "wrong-helicity" photons in the SM is O_2

[Grinstein, Grossman, ZL, Pirjol]

Inclusively only rates are calculable: $\Gamma_{22}^{(brem)}/\Gamma_0 \simeq 0.025$

Suggests:
$$A(b \to s\gamma_R)/A(b \to s\gamma_L) \sim \sqrt{0.025/2} = 0.11$$

• $B \to K^* \gamma$: At leading order in $\Lambda_{\rm QCD}/m_b$, wrong helicity amplitude vanishes Subleading order: no longer vanishes

Order of magnitude:
$$\frac{A(\overline{B}^0 \to \overline{K}^{0*}\gamma_R)}{A(\overline{B}^0 \to \overline{K}^{0*}\gamma_L)} = \mathcal{O}\left(\frac{C_2}{3C_7}\frac{\Lambda_{\rm QCD}}{m_b}\right) \sim 0.1$$

Some additional suppression expected, but I don't find $\lesssim 0.02$ claims convincing

Consider pattern in several modes, hope to build a case

[Atwood, Gershon, Hazumi, Soni]

Even more observables

Direct CP asymmetry:

$$A_{B\to X_s\gamma} = -0.012 \pm 0.028$$

 $A_{B\to X_{d+s}\gamma} = -0.011 \pm 0.012$
 $A_{B\to K^*\gamma} = -0.010 \pm 0.028$

SM prediction < 0.01, except for $A_{B\to\rho\gamma}$ which is larger

- Isospin asymmetry: it seems to me that theoretical uncertainties would make it hard to argue for new physics
- ullet If these observables don't show NP, I doubt higher K states could be convincing

Other interesting b o s decays

- ALEPH $B \to X_c \tau \nu$ search via large $E_{\rm miss}$ also bounded $B \to X_s \nu \bar{\nu}$ [Grossman, ZL, Nardi] ALEPH bound: $\mathcal{B}(B \to X_s \nu \bar{\nu}) < 6.4 \times 10^{-4}$ still the best to date Does only $B \to K \nu \bar{\nu}$ have a chance at super-B?
- Can also bound $B_{(s)} \to \tau^+ \tau^-(X)$, only at few % level Renewed recent interest in connection with DØ anomaly, to enhance $\Delta\Gamma_{B_s}$ BaBar established: $\mathcal{B}(B \to \tau^+ \tau^-) < 4.1 \times 10^{-3}$
- Models with unrelated couplings in each channel, e.g., SUSY without R-parity¹ Models with enhanced 3332 generation couplings: $B \to X_s \nu \bar{\nu}, \ X_s \tau \tau, \ B_s \to \tau \tau$
- Even in 2020, we'll have (exp. bound)/(SM prediction) $\gtrsim 10^3$ in some channels E.g.: $B_{(s)} \to \tau^+ \tau^-(X)$, $B_{(s)} \to e^+ e^-$, maybe more...

¹"Can do everything except make coffee" — Babar Physics Book

Some other rare B decays

• Important probes of new physics (a crude guide, $\ell = e$ or μ)

 \Rightarrow Patrick

Decay	\sim SM rate	present status	expected
$B \to X_s \gamma$	3.2×10^{-4}	$(3.52 \pm 0.25) \times 10^{-4}$	4%
B o au u	1×10^{-4}	$(1.73 \pm 0.35) \times 10^{-4}$	5%
$B \to X_s \nu \bar{\nu}$	3×10^{-5}	$<6.4\times10^{-4}$	only $K u ar{ u}$?
$B \to X_s \ell^+ \ell^-$	6×10^{-6}	$(4.5 \pm 1.0) \times 10^{-6}$	6%
$B_s \to au^+ au^-$	1×10^{-6}	< few $%$	$\Upsilon(5S)$ run ?
$B \to X_s \tau^+ \tau^-$	5×10^{-7}	< few $%$?
$B \to \mu \nu$	4×10^{-7}	$<1.3\times10^{-6}$	6%
$B \to \tau^+ \tau^-$	5×10^{-8}	$<4.1\times10^{-3}$	$\mathcal{O}(10^{-4})$
$B_s \to \mu^+ \mu^-$	3×10^{-9}	$<5\times10^{-8}$	LHCb
$B \to \mu^+ \mu^-$	1×10^{-10}	$< 1.5 \times 10^{-8}$	LHCb

- Many interesting modes will first be seen at super-B (or LHCb)
 Maintain ability for inclusive studies as much as possible (smaller theory errors)
- Some of the theoretically cleanest modes (ν , τ , inclusive) only possible at e^+e^-

Bump hunting: not only for ATLAS & CMS...

(The first LHC result superseding Tevatron limits)

Bump hunting: dark matter in B decay?

Recent observations of cosmic ray excesses lead to flurry DM model building

E.g., "axion portal": light ($\lesssim 1\,\mathrm{GeV}$) scalar particle coupling as $(m_\psi/f_a)\,\bar\psi\gamma_5\psi\,a$

[Freytsis, ZL, Thaler]

• In most of parameter space $B \to K \ell^+ \ell^-$ gives best bound, LHCb can improve it

Nonleptonic decays

Terminology

Some motivations

Two hadrons in the final state are more complicated (also for lattice QCD)

Lot at stake, even if precision is worse

Many observables sensitive to NP — can we disentangle from hadronic physics?

- $B \to \pi\pi, K\pi$ branching ratios and CP asymmetries (related to α, γ in SM)
- Polarization in charmless $B \to VV$ decays
- First derive correct expansion in $m_b \gg \Lambda_{\rm QCD}$ limit, then worry about predictions
 - Need to test accuracy of expansion (even in $B \to \pi\pi$, $|\vec{p}_q| \sim 1 \, {\rm GeV}$)
 - Sometimes model dependent additional inputs needed

HQET vs. SCET

• HQET: nonperturbative interactions do not change four-velocity of heavy quark $p_b^\mu=m_bv^\mu+k^\mu \text{ — once we fix } v\text{, superselection rule; } v\text{ label, } k\text{ residual momenta}$ Project out large component: $h_v^{(b)}(x)=e^{im_bv\cdot x}\,\frac{1+\psi}{2}\,b(x)$

• SCET: light-cone momentum of collinear partons change via $\mathcal{O}(1)$ interactions

Collinear quark in n direction: $p^- = \bar{n} \cdot p$ and p_\perp are labels, but not conserved

Define: $n^2 = \bar{n}^2 = 0$, $n \cdot \bar{n} = 2$; decompose: $p^{\mu} = \frac{1}{2}(\bar{n} \cdot p)n^{\mu} + \frac{1}{2}(n \cdot p)\bar{n}^{\mu} + p^{\mu}_{\perp}$

Collinear partons: $p^{\mu}=(p^-,p^+,p_{\perp})\sim Q\left(1,\lambda^2,\lambda\right)$ (Q: large scale, λ : small param.)

Introduce new fields: $\psi(x) = e^{-i\widetilde{p}\cdot x} \psi_{n,p}(x)$ $\xi_{n,p}(x) = \frac{n}{4} \psi_{n,p}(x)$

SCET in a nutshell

• Effective theory for processes involving energetic hadrons, $E \gg \Lambda$

[Bauer, Fleming, Luke, Pirjol, Stewart, + . . .]

Introduce distinct fields for relevant degrees of freedom, power counting in λ

modes	fields	$p = (-, +, \bot)$	p^2	SCET _I : $\lambda = \sqrt{\Lambda/E}$ — jets $(m{\sim}\Lambda E)$
collinear	$\xi_{n,p}, A^{\mu}_{n,q}$	$H(1, 1, \lambda^2, \lambda)$	$H^{12} \lambda^{2}$	
soft	q_q, A_s^μ	$E(\lambda,\lambda,\lambda)$	$E^2\lambda^2$	$SCET_{\mathrm{II}} : \lambda = \Lambda/E - hadrons \ (m {\sim} \Lambda)$
usoft	q_{us}, A^{μ}_{us}	$E(\lambda^2,\lambda^2,\lambda^2)$	$E^2\lambda^4$	$Match\;QCD\toSCET_\mathrm{I}\toSCET_\mathrm{II}$

ullet Can decouple ultrasoft gluons from collinear Lagrangian at leading order in λ

$$\xi_{n,p} = Y_n \, \xi_{n,p}^{(0)}$$
 $A_{n,q} = Y_n \, A_{n,q}^{(0)} \, Y_n^{\dagger}$ $Y_n = P \exp \left[ig \int_{-\infty}^x ds \, n \cdot A_{us}(ns) \right]$

Nonperturbative usoft effects made explicit through factors of Y_n in operators New symmetries: collinear / soft gauge invariance

- ullet Simplified / new $(B o D\pi,\,\pi\ellar
 u)$ proofs of factorization theorems [Bauer, Pirjol, Stewart]
- Subleading order untractable before: $B \to D^0 \pi^0$, CPV in $B \to K^* \gamma$, etc.

$B o D^{(*)}\pi$ decays in SCET

• Proven that $A \propto \mathcal{F}^{B \to D} f_{\pi}$ at leading order [n.b.: $p_{\pi} = (2.310, 0, 0, 2.306) \, \text{GeV}$]

Also holds in large N_c , works at 5–10% level, need precise data to test mechanism

$$B^- \to D^0 \pi^-$$
$$\overline{B}{}^0 \to D^0 \pi^0$$

$$\mathcal{O}(\Lambda_{\mathrm{QCD}}/Q)$$

$$\overline{B}^0 \to D^+ \pi^ \overline{B}^0 \to D^0 \pi^0$$

$$\mathcal{O}(\Lambda_{\mathrm{QCD}}/Q)$$

$$Q = \{E_{\pi}, m_{b,c}\}$$

Predictions: $\frac{\mathcal{B}(B^- \to D^{(*)0}\pi^-)}{\mathcal{B}(\overline{B}^0 \to D^{(*)+}\pi^-)} = 1 + \mathcal{O}(\Lambda_{\rm QCD}/Q)$,

(Q), data: $\sim 1.8 \pm 0.2$ (also for ρ) $\Rightarrow \mathcal{O}(30\%)$ power corrections [Beneke, Buchalla, Neubert, Sachrajda; Bauer, Pirjol, Stewart]

 $rac{\mathcal{B}(\overline{B}^0 o D^0\pi^0)}{\mathcal{B}(\overline{B}^0 o D^{*0}\pi^0)} = 1 + \mathcal{O}(\Lambda_{\mathrm{QCD}}/Q)\,,$

data: $\sim 1.1 \pm 0.25$

Unforeseen before SCET

[Mantry, Pirjol, Stewart]

SCET:

Color suppressed $B o D^{(*)0} \pi^0$ decays

Single class of power suppressed SCET_I operators: $T\{\mathcal{O}^{(0)},\mathcal{L}^{(1)}_{\xi q},\mathcal{L}^{(1)}_{\xi q}\}$ [Mantry, Pirjol, Stewart]

$$A(D^{(*)0}M^{0}) = N_{0}^{M} \int dz \, dx \, dk_{1}^{+} dk_{2}^{+} T^{(i)}(z) J^{(i)}(z, x, k_{1}^{+}, k_{2}^{+}) \underbrace{S^{(i)}(k_{1}^{+}, k_{2}^{+})}_{\text{complex - nonpert. strong phase}} \phi_{M}(x) + \dots$$

Color suppressed $B o D^{(*)0} \pi^0$ decays

Single class of power suppressed SCET_{I} operators: $T\{\mathcal{O}^{(0)},\mathcal{L}^{(1)}_{\xi q},\mathcal{L}^{(1)}_{\xi q}\}$ [Mantry, Piriol, Stewart]

$$A(D^{(*)0}M^{0}) = N_{0}^{M} \int dz \, dx \, dk_{1}^{+} dk_{2}^{+} \, T^{(i)}(z) \, J^{(i)}(z, x, k_{1}^{+}, k_{2}^{+}) \underbrace{S^{(i)}(k_{1}^{+}, k_{2}^{+})}_{\text{complex - nonpert. strong phase}} \phi_{M}(x) + \dots$$

Not your garden variety factorization formula... $S^{(i)}(k_1^+,k_2^+)$ know about n

$$S^{(0)}(k_1^+, k_2^+) = \frac{\langle D^0(v') | (\bar{h}_{v'}^{(c)} S) \not n P_L(S^\dagger h_v^{(b)}) (\bar{d}S)_{k_1^+} \not n P_L(S^\dagger u)_{k_2^+} | \bar{B}^0(v) \rangle}{\sqrt{m_B m_D}}$$

Separates scales, allows to use HQS without $E_{\pi}/m_c = \mathcal{O}(1)$ corrections

$$(i = 0, 8 \text{ above})$$

Color suppressed $B o D^{(*)0} \pi^0$ decays

Single class of power suppressed $SCET_I$ operators: $T\{\mathcal{O}^{(0)}, \mathcal{L}^{(1)}_{\xi q}, \mathcal{L}^{(1)}_{\xi q}\}$ [Mantry, Pirjol, Stewart]

$$A(D^{(*)0}M^{0}) = N_{0}^{M} \int dz \, dx \, dk_{1}^{+} dk_{2}^{+} \, T^{(i)}(z) \, J^{(i)}(z, x, k_{1}^{+}, k_{2}^{+}) \underbrace{S^{(i)}(k_{1}^{+}, k_{2}^{+})}_{\text{complex - nonpert. strong phase}} \phi_{M}(x) + \dots$$

- Ratios: the $\triangle = 1$ relations follow from naive factorization and heavy quark symmetry
 - The $\bullet = 1$ relations do not a prediction of SCET not foreseen by model calculations

Also predict equal strong phases between I=1/2 and 3/2 amplitudes in $D\pi$ and $D^*\pi$

Data: $\delta(D\pi) = (28 \pm 3)^{\circ}$, $\delta(D^*\pi) = (32 \pm 5)^{\circ}$

Λ_b and B_s decays

• CDF measured in 2003: $\Gamma(\Lambda_b \to \Lambda_c^+ \pi^-)/\Gamma(\overline{B}{}^0 \to D^+ \pi^-) \approx 2$

Factorization does not follow from large N_c , but holds at leading order in $\Lambda_{\rm QCD}/Q$

$$\frac{\Gamma(\Lambda_b \to \Lambda_c \pi^-)}{\Gamma(\overline{B}^0 \to D^{(*)+}\pi^-)} \simeq 1.8 \left(\frac{\zeta(w_{\rm max}^{\Lambda})}{\xi(w_{\rm max}^{D^{(*)}})}\right)^2 \tag{Leibovich et al.}$$

Isgur-Wise functions may be expected to be comparable

Lattice could nail this

• $B_s \to D_s \pi$ is pure tree, can help to determine relative size of E vs. C

[CDF '03:
$$\mathcal{B}(B_s \to D_s^- \pi^+)/\mathcal{B}(B^0 \to D^- \pi^+) \simeq 1.35 \pm 0.43$$
 (using $f_s/f_d = 0.26 \pm 0.03$)]

Lattice could help: Factorization relates tree amplitudes, need SU(3) breaking in $B_s \to D_s \ell \bar{\nu}$ vs. $B \to D \ell \bar{\nu}$ form factors from exp. or lattice

More complicated: $\Lambda_b \to \Sigma_c \pi$

Recall quantum numbers:

$$\Sigma_c = \Sigma_c(2455), \Sigma_c^* = \Sigma_c(2520)$$

multiplets	s_l	$I(J^P)$
Λ_c	0	$0(\frac{1}{2}^+)$
Σ_c, Σ_c^*	1	$1(\frac{1}{2}^+), 1(\frac{3}{2}^+)$

Can't address in naive factorization, since

 $\Lambda_b \to \Sigma_c$ form factor vanishes by isospin

[Leibovich et al.]

 $\mathcal{O}(\Lambda_{\rm QCD}/Q)$

C = "color commensurate" E = "exchange" $\mathcal{O}(\Lambda_{\mathrm{QCD}}/Q)$

B = "bow-tie" $\mathcal{O}(\Lambda_{\rm QCD}^2/Q^2)$

• Prediction:
$$\frac{\Gamma(\Lambda_b \to \Sigma_c^* \pi)}{\Gamma(\Lambda_b \to \Sigma_c \pi)} = 2 + \mathcal{O}\left[\Lambda_{\rm QCD}/Q \,,\, \alpha_s(Q)\right] = \frac{\Gamma(\Lambda_b \to \Sigma_c^{*0} \rho^0)}{\Gamma(\Lambda_b \to \Sigma_c^0 \rho^0)}$$

Can avoid π^0 's from $\Lambda_b \to \Sigma_c^{(*)0} \pi^0 \to \Lambda_c \pi^- \pi^0$ or $\Lambda_b \to \Sigma_c^{(*)+} \pi^- \to \Lambda_c \pi^0 \pi^-$

Semileptonic $B o \pi, ho$ form factors

• At leading order in Λ/Q , to all orders in α_s , two contributions at $q^2 \ll m_B^2$: soft form factor & hard scattering (Separation scheme dependent; $Q=E,m_b$, omit μ 's)

[Beneke & Feldmann; Bauer, Pirjol, Stewart; Becher, Hill, Lange, Neubert]

$$F(Q) = C_i(Q) \zeta_i(Q) + \frac{m_B f_B f_M}{4E^2} \int dz dx dk_+ T(z, Q) J(z, x, k_+, Q) \phi_M(x) \phi_B(k_+)$$

- Symmetries \Rightarrow nonfactorizable (1st) term obey form factor relations [Charles et al.] $3 B \rightarrow P$ and $7 B \rightarrow V$ form factors related to 3 universal functions
- Relative size? QCDF: 2nd $\sim \alpha_s \times (1st)$, PQCD: 1st \ll 2nd, SCET: 1st \sim 2nd
- Whether first term factorizes (involves $\alpha_s(\mu_i)$, as 2nd term does) involves same physics issues as hard scattering, annihilation, etc., contributions to $B \to M_1 M_2$

Charmless $B o M_1 M_2$ decays

Limited consensus about implications of the heavy quark limit

[Bauer, Pirjol, Rothstein, Stewart; Chay, Kim; Beneke, Buchalla, Neubert, Sachrajda]

$$egin{aligned} A &= A_{car{c}} + N \left[f_{M_2} \, \zeta^{BM_1} \! \int \! \mathrm{d}u \, T_{2\zeta}(u) \, \phi_{M_2}(u)
ight. \ &+ f_{M_2} \! \int \! \mathrm{d}z \mathrm{d}u \, T_{2J}(u,z) \, \zeta_J^{BM_1}(z) \, \phi_{M_2}(u) + (1 \leftrightarrow 2)
ight] \end{aligned}$$

- $\zeta_J^{BM_1} = \int dx dk_+ J(z, x, k_+) \phi_{M_1}(x) \phi_B(k_+)$ also appears in $B \to M_1$ form factors \Rightarrow Relations to semileptonic decays do not require expansion in $\alpha_s(\sqrt{\Lambda Q})$
- Charm penguins: suppression of long distance part argued, not proven Lore: "long distance charm loops", "charming penguins", " $D\overline{D}$ rescattering" are the same (unknown) term; may yield strong phases and other surprises
- SCET: fit both ζ 's and ζ_J 's, calculate T's; QCDF: fit ζ 's, calculate factorizable (2nd) terms perturbatively; PQCD: 1st line dominates and depends on k_{\perp}

Endpoint singularities (e.g., annihilation)

Power suppressed $\mathcal{O}(\Lambda/E)$ corrections

Yields convolution integrals of the form: $\int_0^1 \mathrm{d}x \, \phi_\pi(x)/x^2$, $\phi_\pi(x) \sim 6x(1-x)$ Singular if gluon near on-shell — one of the mesons near endpoint configuration

- KLS: first emphasized importance for strong phases and CPV [Keum, Li, Sanda] Singularity regulated by k_T in $1/(m_b^2x k_T^2 + i\varepsilon)$, still sizable phases
- ullet BBNS: interpret as IR sensitivity \Rightarrow model by complex parameters " X_A " $=\int_0^1 dx/x o (1+
 ho_A e^{iarphi_A}) \ln(m_B/500\,{
 m MeV})$ [Beneke, Buchalla, Neubert, Sachrajda]
- SCET: singularity to do with double counting Real & calculable at LO [Arnesen, ZL, Rothstein, Stewart]

Comparison of approaches

For charmless two-body decays significant differences in details

[Stewart @ FPCP'09]

	BPRS	BBNS	KLS
Expansion in $\alpha_s(\mu_i)$?	No	Yes	Yes
T, P if Singular convolution	N/A	New parameters	uses $k_{ m T}$
Annihilation	Real at "LO", complex "NLO"	Complex, new parameters	perturbative, large phases
Charm Loop?	Non- perturbative	Perturbative	Perturbative
Number of fit parameters	Most	Middle	N/A

Many measurements are well described, some important issues remain...

Extracting lpha from $B o \pi\pi$

Until \sim 1997 the hope was to determine lpha simply from:

$$\frac{\Gamma(\overline{B}^0(t) \to \pi^+\pi^-) - \Gamma(B^0(t) \to \pi^+\pi^-)}{\Gamma(\overline{B}^0(t) \to \pi^+\pi^-) + \Gamma(B^0(t) \to \pi^+\pi^-)} = S\sin(\Delta m \, t) - C\cos(\Delta m \, t)$$

 $\arg \lambda_{\pi^+\pi^-} = (B\text{-mix} = 2\beta) + (\overline{A}/A = 2\gamma + \ldots) \Rightarrow \text{measures } \sin 2\alpha \text{ if amplitudes}$ with one weak phase dominated — relied on expectation that $P/T = \mathcal{O}(\alpha_s/4\pi)$

 $K\pi$ and $\pi\pi$ rates \Rightarrow comparable amplitudes with different weak & strong phases

Isospin analysis:

Tree and penguin operators: $\Delta I = \frac{1}{2}, \frac{3}{2}$ terms; Bose statistics: $\pi\pi$ in I = 0, 2

 $(\pi\pi)_{\ell=0} \rightarrow I_f = 0 \quad \text{or} \quad I_f = 2$ (u, d): *I*-spin doublet

other quarks and gluons: I=0 (1×1) $(\Delta I=\frac{1}{2})$ $(\Delta I=\frac{3}{2})$

[Note: γ , Z: mixtures of I=0,1, violate isospin and yield a (small) uncertainty]

$B o \pi\pi$ results

Two amplitudes for B^+, B^0 and $B^-, \overline{B}{}^0$ decay:

$$A_{+-} = -\lambda_u (T + P_u) - \lambda_c P_c - \lambda_t P_t = e^{-i\gamma} T_{\pi\pi} - P_{\pi\pi}$$

$$\sqrt{2}A_{00} = \lambda_u (-C + P_u) + \lambda_c P_c + \lambda_t P_t = e^{-i\gamma} C_{\pi\pi} + P_{\pi\pi}$$

$$\sqrt{2}A_{-0} = -\lambda_u (T + C) = e^{-i\gamma} (T_{\pi\pi} + C_{\pi\pi})$$

The 6 rates determine α & 5 hadronic parameters

Need a lot more data — current bound:

$$\alpha - \alpha_{\rm eff} < 15^{\circ} \ (90\% \ {\rm CL})$$

Far from limited by theoretical uncertainty

Puzzles in $B o \pi\pi$ amplitudes

- Tension remains: BaBar: $C_{\pi^+\pi^-} = -0.25 \pm 0.08$, Belle: $C_{\pi^+\pi^-} = -0.55 \pm 0.09$
- Unexpected features of the data:

$$\mathcal{B}(B \to \pi^0 \pi^0) = (1.55 \pm 0.19) \times 10^{-6}$$
: much bigger than earlier predictions

$$C_{\pi^0\pi^0} = -0.43 \pm 0.25$$
: expect opposite sign than $C_{\pi^+\pi^-}^{(\mathrm{WA})} = -0.38 \pm 0.06$, $(C \text{ or } T) \pm P$

• Problem: |C/T| cannot be small because $\pi^0\pi^0$ rate is large

We expect: $arg(C/T) = \mathcal{O}(\alpha_s, \Lambda/m_b)$, P_u is calculable (small),

Same sign for $C_{\pi^+\pi^-}$ and $C_{\pi^0\pi^0}$ implies some of: $-\arg(C/T)$ not small

- P_u or P_{ew} not small / NP
- annihilation not small
- large fluctuations in the data
- Cannot do better than full isospin analysis, unless this is better understood

$B \to \rho \rho$: the best α at present

- $\rho\rho$ is mixture of CP even/odd (as all VV modes); data: CP = even dominates Isospin analysis applies for each L, or in transversity basis for each σ (= 0, ||, \perp)
- Small rate $\mathcal{B}(B \to \rho^0 \rho^0) = (0.73 \pm 0.28) \times 10^{-6} \ (90\% \ \text{CL}) \Rightarrow$ small penguin pollution $\frac{\mathcal{B}(B \to \pi^0 \pi^0)}{\mathcal{B}(B \to \pi^+ \pi^0)} \approx 0.28 \ \text{vs.} \ \frac{\mathcal{B}(B \to \rho^0 \rho^0)}{\mathcal{B}(B \to \rho^+ \rho^0)} \approx 0.03$
- Ultimately, more complicated than $\pi\pi$, I=1 possible due to finite Γ_{ρ} , giving $\mathcal{O}(\Gamma_{\rho}^2/m_{\rho}^2)$ effects [can be constrained] $B\to\rho\rho$ isospin analysis: $\alpha=(90\pm5)^{\circ}$
- Also $B \to \rho \pi$ Dalitz plot analysis
- $\rho\rho$ mode dominates α determination for now, may change at a super B factory

Aside: amplituded ratios from SU(3)

Simple example — compare: $B_d^0 \to \pi^0 K^0 \ (\bar{b} \to q \bar{q} \bar{s})$ vs. $B_s^0 \to \pi^0 \overline{K}{}^0 \ (\bar{b} \to q \bar{q} \bar{d})$ SU(3) flavor symmetry (in this case U-spin) implies amplitude relations:

$$A(B_d^0 \to \pi^0 K^0) = V_{cb}^* V_{cs} (P_c - P_t + T_{c\bar{c}s}) + V_{ub}^* V_{us} (P_u - P_t + T_{u\bar{u}s}) \equiv P + T$$

$$A(B_s^0 \to \pi^0 \overline{K}^0) = V_{cb}^* V_{cd} (P_c - P_t + T_{c\bar{c}s}) + V_{ub}^* V_{ud} (P_u - P_t + T_{u\bar{u}s}) = \lambda P + \lambda^{-1} T$$

- Assume B_d decay dominated by P, while B_s by $T \Rightarrow$ bound P/T from rates Caveats: no B_s data, often more complicated amplitude relations, octets / singlets
- Multi-state amplitude relations: generally weaker bounds, a simple & useful one:

$$a(\pi^{0}K_{S}) = \frac{1}{\sqrt{2}}b(K^{+}K^{-}) - b(\pi^{0}\pi^{0})$$

Gives: $|\xi_{\pi^0 K_S}| < 0.14$ — was useful to interpret earlier data

ullet In precision era, I doubt that SU(3)-based methods can establish presence of NP

The old/new $B o K\pi$ puzzle

Q: Have we seen new physics in CPV?

$$A_{K^{+}\pi^{-}} = -0.098 \pm 0.012 \quad (P+T)$$

$$A_{K^+\pi^0} = 0.050 \pm 0.025 \ (P + T + C + A + P_{ew})$$

What is the reason for large difference?

$$A_{K^{+}\pi^{0}} - A_{K^{+}\pi^{-}} = 0.148 \pm 0.028 \ \ (> 5\sigma)$$

(Annihilation not shown) [Belle, Nature 452, 332 (2008)]

SCET / factorization predicts: $\arg(C/T) = \mathcal{O}(\Lambda_{\rm QCD}/m_b)$ and $A + P_{ew}$ small

- **A**: huge fluctuation, breakdown of 1/m exp., missing something subtle, new phys.
- No similarly transparent problem with branching ratios, e.g., Lipkin sum rule looks OK by now:

$$2\,\frac{\bar{\Gamma}(B^-\to\pi^0K^-)+\bar{\Gamma}(\overline{B}^0\to\pi^0\overline{K}^0)}{\bar{\Gamma}(B^-\to\pi^-\overline{K}^0)+\bar{\Gamma}(\overline{B}^0\to\pi^+K^-)}=1.07\pm0.05 \qquad \text{(should be ≈ 1)}$$

Summary

- Lots of progress for $|V_{cb}|$ and $|V_{ub}|$, determinations from exclusive decays largely in the hands of lattice QCD, room for progress in continuum tension is troubling
- Theoretical tools for rare decays are similar, so developments often simultaneous
- Breakthroughs in understanding nonleptonic decays; unfortunately the best understood cases are not the most interesting to learn about weak scale physics
- More work & data needed to understand the expansions Why some predictions work at $\lesssim 10\%$ level, while others receive $\sim 30\%$ corrections Clarify role of charming penguins, chirally enhanced terms, annihilation, etc.
- Active field, experimental data stimulated lots of theory developments, expect more work & progress as LHCb and super-B provides challenges & opportunities

