2nd Lecture

When (some) QCD matters

- Flavor symmetries
- Heavy quark symmetry
- Operator product expansion for inclusive decays Semileptonic b decays, $b \rightarrow s \gamma$, and friends
- Nonleptonic decays
B decays to charm, Λ_{b} decay charmless B decays, different approaches

Interplay of electroweak and strong interactions

- How to learn about high energy physics from low energy hadronic processes?
- QCD coupling is scale dependent, $\alpha_{s}\left(m_{B}\right) \sim 0.2$

$$
\alpha_{s}(\mu)=\frac{\alpha_{s}(\Lambda)}{1+\frac{\alpha_{s}}{2 \pi} \beta_{0} \ln \frac{\mu}{\Lambda}}, \quad \beta_{0}=11-\frac{2}{3} n_{f}>0
$$

Nobel prize in 2004:
Politzer, Wilczek, Gross

Interplay of electroweak and strong interactions

- How to learn about high energy physics from low energy hadronic processes?
- QCD coupling is scale dependent, $\alpha_{s}\left(m_{B}\right) \sim 0.2$
$\alpha_{s}(\mu)=\frac{\alpha_{s}(\Lambda)}{1+\frac{\alpha_{s}}{2 \pi} \beta_{0} \ln \frac{\mu}{\Lambda}}, \quad \beta_{0}=11-\frac{2}{3} n_{f}>0$
High energy (short distance): perturbation theory is useful

Low energy (long distance): QCD becomes nonperturbative \Rightarrow It is usually very hard, if not impossible, to make precise calculations

- Solutions: New symmetries in some limits: effective theories (heavy quark, chiral) Certain processes are determined by short-distance physics Lattice QCD (bite the bullet - limited cases)
- Incalculable nonperturbative hadronic effects are often the limiting factor

Disentangling weak and strong interactions

- Want to learn about electroweak physics, but hadronic physics is nonperturbative Model independent continuum approaches:
- (1) Symmetries of QCD (exact or approximate)
E.g.: $\sin 2 \beta$ from $B \rightarrow J / \psi K_{S}$: amplitude not calculable Solution: $C P$ symmetry of QCD (θ_{QCD} can be neglected)

$$
\left\langle\psi K_{S}\right| \mathcal{H}\left|B^{0}\right\rangle=-\left\langle\psi K_{S}\right| \mathcal{H}\left|\bar{B}^{0}\right\rangle \times\left[1+\mathcal{O}\left(\alpha_{s} \lambda^{2}\right)\right]
$$

- (2) Effective field theories (separation of scales)
E.g.: $\left|V_{c b}\right|$ and $\left|V_{u b}\right|$ from semileptonic B decays Solution: Heavy quark expansions

$$
\Gamma=\left|V_{c b}\right|^{2} \times(\text { known factors }) \times\left[1+\mathcal{O}\left(\Lambda_{\mathrm{QCD}}^{2} / m_{b}^{2}\right)\right]
$$

Many relevant scales: $B \rightarrow X_{s} \gamma$

- Separate physics at: $\left(m_{t, W} \sim 100 \mathrm{GeV}\right) \gg\left(m_{b} \sim 5 \mathrm{GeV}\right) \gg(\Lambda \sim 0.5 \mathrm{GeV})$

Inclusive decay:

$$
X_{s}=K^{*}, K^{(*)} \pi, K^{(*)} \pi \pi, \text { etc. }
$$

Diagrams with many gluons are crucial, resumming certain subset of them affects rate at factor-of-two level

Rate calculated at < 10% level, using several effective theories, renormalization group, operator product expansion... one of the most involved SM analyses

- Solution: Short distance dominated; unknown corrections suppressed by

$$
\Gamma\left(B \rightarrow X_{s} \gamma\right)=[\text { known }] \times\left\{1+\mathcal{O}\left(\alpha_{s}^{3} \ln \frac{m_{W}}{m_{b}}, \frac{\Lambda_{\mathrm{QCD}}^{2}}{m_{b, c}^{2}}, \frac{\alpha_{s} \Delta m_{c}}{m_{b}}\right)\right\}
$$

Some caveats

- Lot at stake: theoretical tools for semileptonic and rare decays are the same
- Measurements of CKM elements
- Better understanding of hadronic physics improves sensitivity to new physics
- For today's talk: [strong interaction] model independent \equiv theor. uncertainty suppressed by small parameters
... so theorists argue about $\mathcal{O}(1) \times$ (small numbers) instead of $\mathcal{O}(1)$ effects
- Most of the progress have come from expanding in powers of $\Lambda / m_{Q}, \alpha_{s}\left(m_{Q}\right)$
... a priori not known whether $\Lambda \sim 200 \mathrm{MeV}$ or $\sim 2 \mathrm{GeV}\left(f_{\pi}, m_{\rho}, m_{K}^{2} / m_{s}\right)$
... need experimental guidance to see how well the theory works

The name of the game

The SM shows impressive consistency — even by Stockholm standards
Only robust deviations from model independent theory are likely to be interesting

$$
\text { (} 2 \sigma: 50 \text { theory papers } \quad 3 \sigma: 200 \text { theory papers } \quad 5 \sigma \text { : strong sign of effect) }
$$

Heavy quark symmetry

\Rightarrow Sebastien

Heavy quark symmetry

- $Q \bar{Q}$: positronium-type bound state, perturbative in the $m_{Q} \gg \Lambda_{\mathrm{QCD}}$ limit
- $Q \bar{q}$: wave function of the light degrees of freedom ("brown muck") insensitive to spin and flavor of Q B meson is a lot more complicated than just a $b \bar{q}$ pair In the $m_{Q} \gg \Lambda_{\mathrm{QCD}}$ limit, the heavy quark acts as a static color source with fixed four-velocity v^{μ}
$\Rightarrow S U(2 n)$ heavy quark spin-flavor symmetry at fixed v^{μ}

- Similar to atomic physics: $\left(m_{e} \ll m_{N}\right)$

1. Flavor symmetry \sim isotopes have similar chemistry [Ψ_{e} independent of m_{N}]
2. Spin symmetry \sim hyperfine levels almost degenerate $\left[\vec{s}_{e}-\vec{s}_{N}\right.$ interaction $\left.\rightarrow 0\right]$

Spectroscopy of heavy-light mesons

- In $m_{Q} \gg \Lambda_{\mathrm{QCD}}$ limit, spin of the heavy quark is a good quantum number, and so is the spin of the light d.o.f., since $\vec{J}=\vec{s}_{Q}+\vec{s}_{l}$ and $\left.\begin{array}{r}\text { angular momentum conservation: }[\vec{J}, \mathcal{H}]=0 \\ \text { heavy quark symmetry: }\left[\vec{s}_{Q}, \mathcal{H}\right]=0\end{array}\right\} \Rightarrow\left[\vec{s}_{l}, \mathcal{H}\right]=0$
- For a given s_{l}, two degenerate states:

$$
J_{ \pm}=s_{l} \pm \frac{1}{2}
$$

$\Rightarrow \Delta_{i}=\mathcal{O}\left(\Lambda_{\mathrm{QCD}}\right)$ - same in B and D sector
Doublets are split by order $\Lambda_{Q \mathrm{CD}}^{2} / m_{Q}$, e.g.:
$m_{D^{*}}-m_{D} \simeq 140 \mathrm{MeV}$
$m_{B^{*}}-m_{B} \simeq 45 \mathrm{MeV}$

Aside: a puzzle

- Since vector-pseudoscalar mass splitting $\propto 1 / m_{Q}$, expect: $m_{V}^{2}-m_{P}^{2}=$ const.

Experimentally:

$$
\begin{aligned}
& m_{B^{*}}^{2}-m_{B}^{2}=0.49 \mathrm{GeV}^{2} \\
& m_{B_{s}^{*}}^{2}-m_{B_{s}}^{2}=0.50 \mathrm{GeV}^{2} \\
& m_{D^{*}}^{2}-m_{D}^{2}=0.54 \mathrm{GeV}^{2} \\
& m_{D_{s}^{*}}^{2}-m_{D_{s}}^{2}=0.58 \mathrm{GeV}^{2}
\end{aligned}
$$

Aside: a puzzle

- Since vector-pseudoscalar mass splitting $\propto 1 / m_{Q}$, expect: $m_{V}^{2}-m_{P}^{2}=$ const. Experimentally:

$$
\begin{aligned}
m_{B^{*}}^{2}-m_{B}^{2} & =0.49 \mathrm{GeV}^{2} \\
m_{B_{s}^{*}}^{2}-m_{B_{s}}^{2} & =0.50 \mathrm{GeV}^{2} \\
m_{D^{*}}^{2}-m_{D}^{2} & =0.54 \mathrm{GeV}^{2} \\
m_{D_{s}^{*}}^{2}-m_{D_{s}}^{2} & =0.58 \mathrm{GeV}^{2} \\
m_{K^{*}}^{2}-m_{K}^{2} & =0.55 \mathrm{GeV}^{2} \\
m_{\rho}^{2}-m_{\pi}^{2} & =0.57 \mathrm{GeV}^{2}
\end{aligned}
$$

- The HQS argument relies on $m_{Q} \gg \Lambda_{\mathrm{QCD}}$, so something more has to go on...
- It's not only important to test how a theory works, but also how it breaks down!

Successes in charm spectrum

Spectroscopy of D mesons

- D_{1} is narrow: S-wave $D_{1} \rightarrow$ $D^{*} \pi$ amplitude allowed by angular

Aside: strong decays of D_{1} and D_{2}^{*}

- The strong interaction Hamiltonian conserves the spin of the heavy quark and the light degrees of freedom separately
$\left(D_{1}, D_{2}^{*}\right) \rightarrow\left(D, D^{*}\right) \pi$ - four amplitudes related by heavy quark spin symmetry

$$
\Gamma\left(j \rightarrow j^{\prime} \pi\right) \propto\left(2 s_{l}+1\right)\left(2 j^{\prime}+1\right)\left|\left\{\begin{array}{ccc}
L & s_{l}^{\prime} & s_{l} \\
\frac{1}{2} & j & j^{\prime}
\end{array}\right\}\right|^{2}
$$

Multiplets have opposite parity $\Rightarrow \pi$ must be in $L=2$ partial wave

$\Gamma\left(D_{1} \rightarrow D \pi\right)$	$: \Gamma\left(D_{1} \rightarrow D^{*} \pi\right)$	$: \Gamma\left(D_{2}^{*} \rightarrow D \pi\right)$	$: \Gamma\left(D_{2}^{*} \rightarrow D^{*} \pi\right)$			
0	$:$	1	$:$	$\frac{2}{5}$	$:$	$\frac{3}{5}$
0	$:$	1	$:$	2.3	$:$	0.92

- Last line includes large $\left|p_{\pi}\right|^{5}$ HQS violation from phase space, which changes $\Gamma\left(D_{2}^{*} \rightarrow D \pi\right) / \Gamma\left(D_{2}^{*} \rightarrow D^{*} \pi\right)$ from $2 / 3$ to 2.5 (data: 2.3 ± 0.6)
[Note: prediction for ratio of D_{1} and D_{2}^{*} total widths works less well]

Semileptonic and rare B decays

$\left|V_{u b}\right|$ is the dominant uncertainty of the side of the UT opposite to β
$\left|V_{u b}\right|$ is crucial for comparing treedominated and loop-mediated pro- $=$ cesses

Error of $\left|V_{c b}\right|$ is a large part of the uncertainty in the ϵ_{K} constraint, and
 in $K \rightarrow \pi \nu \bar{\nu}$ when it's measured

Rare $b \rightarrow s \gamma, s \ell^{+} \ell^{-}$, and $s \nu \bar{\nu}$ decays are sensitive probes of the Standard Model

Exclusive $B \rightarrow D^{(*)} \ell \bar{\nu}$ decay

- In the $m_{b, c} \gg \Lambda_{\mathrm{QCD}}$ limit, configuration of brown muck only depends on the fourvelocity of the heavy quark, but not on its mass and spin
- On a time scale $\ll \Lambda_{Q C D}^{-1}$ weak current changes $b \rightarrow c$ i.e.: $\vec{p}_{b} \rightarrow \vec{p}_{c}$ and possibly \vec{s}_{Q} flips In $m_{b, c} \gg \Lambda_{\mathrm{QCD}}$ limit brown muck only feels $v_{b} \rightarrow v_{c}$ Form factors independent of Dirac structure of weak current \Rightarrow all form factors related to a single function of $w=v \cdot v^{\prime}$, the Isgur-Wise function, $\xi(w)$

Contains all nonperturbative low-energy hadronic physics

- $\xi(1)=1$, because at "zero recoil" configuration of brown muck not changed at all

$B \rightarrow D^{(*)} \ell \bar{\nu}$ form factors

- Lorentz invariance $\Rightarrow 6$ form factors

$$
\begin{aligned}
&\left\langle D\left(v^{\prime}\right)\right| V_{\nu}|B(v)\rangle=\sqrt{m_{B} m_{D}}\left[h_{+}\left(v+v^{\prime}\right)_{\nu}+h_{-}\left(v-v^{\prime}\right)_{\nu}\right] \\
&\left\langle D^{*}\left(v^{\prime}\right)\right| V_{\nu}|B(v)\rangle=i \sqrt{m_{B} m_{D^{*}}} h_{V} \epsilon_{\nu \alpha \beta \gamma} \epsilon^{* \alpha} v^{\prime \beta} v^{\gamma} \\
&\left\langle D\left(v^{\prime}\right)\right| A_{\nu}|B(v)\rangle=0 \\
&\left\langle D^{*}\left(v^{\prime}\right)\right| A_{\nu}|B(v)\rangle=\sqrt{m_{B} m_{D^{*}}}\left[h_{A_{1}}(w+1) \epsilon_{\nu}^{*}-h_{A_{2}}\left(\epsilon^{*} \cdot v\right) v_{\nu}-h_{A_{3}}\left(\epsilon^{*} \cdot v\right) v_{\nu}^{\prime}\right] \\
& V_{\nu}=\bar{c} \gamma_{\nu} b, \quad A_{\nu}=\bar{c} \gamma_{\nu} \gamma_{5} b, \quad w \equiv v \cdot v^{\prime}=\frac{m_{B}^{2}+m_{D}^{2}-q^{2}}{2 m_{B} m_{D}}, \quad \text { and } h_{i}=h_{i}(w, \mu)
\end{aligned}
$$

- In $m_{Q} \gg \Lambda_{\mathrm{QCD}}$ limit, up to corrections suppressed by α_{s} and $\Lambda_{\mathrm{QCD}} / m_{c, b}$

$$
h_{-}=h_{A_{2}}=0, \quad h_{+}=h_{V}=h_{A_{1}}=h_{A_{3}}=\xi(w)
$$

The α_{s} are corrections calculable
$\Lambda_{\mathrm{QCD}} / m_{c, b}$ corrections is where model dependence enters

$\left|V_{c b}\right|$ from $B \rightarrow D^{(*)} \ell \bar{\nu}$

- Extract $\left|V_{c b}\right|$ from $w \equiv v \cdot v^{\prime}=\left(m_{B}^{2}+m_{D}^{2}-q^{2}\right) /\left(2 m_{B} m_{D}\right) \rightarrow 1$ limit of the rate $\frac{\mathrm{d} \Gamma\left(B \rightarrow D^{(*)} \ell \bar{\nu}\right)}{\mathrm{d} w}=(\ldots)\left(w^{2}-1\right)^{3 / 2(1 / 2)}\left|V_{c c}\right|^{2} F_{(*)}^{2}(w)$
$\nwarrow_{w \equiv v \cdot v^{\prime}} \quad$ Isgur-Wise function $+\ldots$
$\mathcal{F}(1)=1_{\text {Isgur-Wise }}+0.02_{\alpha_{s}, \alpha_{s}^{2}}+\frac{\text { (lattice or models) }}{m_{c, b}}+\ldots$
$\mathcal{F}_{*}(1)=1_{\text {Isgur-Wise }}-0.04_{\alpha_{s, \alpha_{s}^{2}}}+\frac{0_{\text {Luke }}}{m_{c, b}}+\frac{(\text { lattice or models })}{m_{c, b}^{2}}+\ldots$
- Lattice QCD: $\mathcal{F}_{*}(1)=0.921 \pm 0.024, \mathcal{F}(1)=1.074 \pm 0.024$ [arxiv:0808.2519, hep-lato409116]
- Need constraints on shape to fit
[Boyd, Grinstein, Lebed; Caprini, Lellouch, Neubert]
- Need some understanding of decays to higher mass X_{c} states (backgrounds)
- Data: $\left|V_{c b} \mathcal{F}_{*}(1)\right|=(35.75 \pm 0.42) \times 10^{-3},\left|V_{c b} \mathcal{F}(1)\right|=(42.3 \pm 1.5) \times 10^{-3} \quad$ [HFAG] [note: $\chi^{2} /$ dof $=39.6 / 21(56.9 / 21), C L=0.8 \%(4 E-5)$]

Heavy quark expansion

The multipole expansion

Physics at $r \sim L$ is complicated
Depends on the details of the charge distribution

The multipole expansion

Physics at $r \gg L$ is much simpler
Charge distribution characterized by total charge, q

Details suppressed by powers of L / r, and can be parameterized in terms of $p_{i}, Q_{i j}, \ldots$

Simplifications occur due to separating physics at different distance scales

- Complicated charge distribution can be replaced by a point source with additional interactions (multipoles) - underlying idea of effective theories

The multipole expansion (cont.)

- Potential:

$$
V(x)=q \frac{1}{r}+p_{i} \frac{x_{i}}{r^{3}}+\frac{1}{2} Q_{i j} \frac{x_{i} x_{j}}{r^{5}}+\ldots
$$

Short distance quantities: $q=\int \rho(x) \mathrm{d}^{3} x, \quad p_{i}=\int x_{i} \rho(x) \mathrm{d}^{3} x, \quad$ etc.
Long distance quantities: $\left\langle\frac{1}{r}\right\rangle,\left\langle\frac{x_{i}}{r^{3}}\right\rangle,\left\langle\frac{x_{i} x_{j}}{r^{5}}\right\rangle, \quad$ etc.

- Higher multipoles: new interactions from "integrating out" short distance physics
- Useful tool independent of the fact whether we know the underlying theory or not
- Any theory at momentum $p \ll M$ can be described by an effective Hamiltonian $H_{\text {eff }}=H_{0}+\sum_{i} \frac{C_{i}}{M^{n_{i}}} O_{i} \quad \begin{array}{r}M \rightarrow \infty \text { limit }+ \text { corrections with well-defined power counting } \\ H_{0} \text { may have more symmetries than full theory at nonzero } p / M \\ \text { Can work to higher orders in } p / M \text {; can sum logs of } p / M\end{array}$ NP can modify C_{i} or give rise to new O_{i} 's - right coefficients? right operators?

Inclusive heavy hadron decays

- Sum over hadronic final states, subject to constraints determined by short distance physics

Decay: short distance (calculable)
Hadronization: long distance (nonperturbative), but probability to hadronize is unity; sum over details

- Optical theorem + operator product expansion (OPE) + heavy quark symmetry

Can think of the OPE as expansion of forward scattering amplitude in $k \sim \Lambda_{\mathrm{QCD}}$

Operator product expansion

- Consider semileptonic $b \rightarrow u$ decay: $O_{b u}=-\frac{4 G_{F}}{\sqrt{2}} V_{u b} \underbrace{\left(\bar{u} \gamma^{\mu} P_{L} b\right)}_{J_{b u}^{\mu}} \underbrace{\left(\bar{\ell} \gamma_{\mu} P_{L} \nu\right)}_{J_{\ell \nu}}$

Decay rate: $\left.\quad \Gamma\left(B \rightarrow X_{u} \ell \bar{\nu}\right) \sim \sum_{X_{c}} \int \mathrm{~d}[\mathrm{PS}]\left|\left\langle X_{u} \ell \bar{\nu}\right| O_{b u}\right| B\right\rangle\left.\right|^{2}$
Factor to: $B \rightarrow X_{u} W^{*}$ and $W^{*} \rightarrow \ell \bar{\nu}$, concentrate on hadronic part

$$
\left.W^{\mu \nu} \sim \sum_{X_{c}} \delta^{4}\left(p_{B}-q-p_{X}\right)\left|\langle B| J_{b u}^{\mu \dagger}\right| X_{u}\right\rangle\left.\left\langle X_{u}\right| J_{b u}^{\nu}|B\rangle\right|^{2}=\operatorname{Im} T^{\mu \nu}
$$

(optical theorem) $\quad T^{\mu \nu}=i \int \mathrm{~d} x e^{-i q \cdot x}\langle B| T\left\{J_{b u}^{\mu \dagger}(x) J_{b u}^{\nu}(0)\right\}|B\rangle$

- Operators: $\bar{b} b \rightarrow$ free quark decay, $\left\langle\bar{b} D^{2} b\right\rangle,\left\langle\bar{b} \sigma_{\mu \nu} G^{\mu \nu} b\right\rangle \sim m_{B^{*}}^{2}-m_{B}^{2}$, etc.

$$
\mathrm{d} \Gamma=\binom{b \text { quark }}{\text { decay }} \times\left\{1+\frac{0}{m_{b}}+\frac{f\left(\lambda_{1}, \lambda_{2}\right)}{m_{b}^{2}}+\ldots+\alpha_{s}(\ldots)+\alpha_{s}^{2}(\ldots)+\ldots\right\}
$$

- As for $e^{+} e^{-} \rightarrow$ hadrons, question is when perturbative calculation can be trusted

Analytic structure for semileptonic decays

- More complicated than $e^{+} e^{-} \rightarrow$ hadrons

For fixed q^{2}, cuts of $T^{\mu \nu}$ in the complex q^{0} plane:
$q^{0}=q \cdot v<\left(m_{B}^{2}+q^{2}-m_{X_{q}^{\text {min }}}^{2}\right) / 2 m_{B}$
$q^{0}=q \cdot v>\left(m_{X \overline{\min }}^{2}-m_{B}^{2}-q^{2}\right) / 2 m_{B}$

For $b \rightarrow c \ell \bar{\nu}$, two cuts are separated by $>4 m_{c}$
For $b \rightarrow u \ell \bar{\nu}$ near $q_{\text {max }}^{2}$ only by $\mathcal{O}\left(\Lambda_{\mathrm{QCD}}\right)$ at)

- To calculate any observable, contour must approach the cut somewhere

Integration over neutrino (or kinematic variables) "builds in" some smearing

- Tested in great detail in semileptonic $B \rightarrow X_{c} \ell \bar{\nu}$ decays
- Nonleptonic rates (lifetimes) have to use OPE in the physical region

Classic application: inclusive $\left|V_{c b}\right|$

- Want to determine $\left|V_{c b}\right|$ from $B \rightarrow X_{c} \ell \bar{\nu}$:

$$
\begin{aligned}
\Gamma(B & \left.\rightarrow X_{c} \ell \bar{\nu}\right)=\frac{G_{F}^{2}\left|V_{c b}\right|^{2}}{192 \pi^{3}}(4.7 \mathrm{GeV})^{5}(0.534) \times \\
{[1} & -0.22\left(\frac{\Lambda_{1 S}}{500 \mathrm{MeV}}\right)-0.011\left(\frac{\Lambda_{1 S}}{500 \mathrm{MeV}}\right)^{2}-0.052\left(\frac{\lambda_{1}}{(500 \mathrm{MeV})^{2}}\right)-0.071\left(\frac{\lambda_{2}}{(500 \mathrm{MeV})^{2}}\right) \\
& -0.006\left(\frac{\lambda_{1} \Lambda_{1 S}}{(500 \mathrm{MeV})^{3}}\right)+0.011\left(\frac{\lambda_{2} \Lambda_{1 S}}{(500 \mathrm{MeV})^{3}}\right)-0.006\left(\frac{\rho_{1}}{(500 \mathrm{MeV})^{3}}\right)+0.008\left(\frac{\rho_{2}}{(500 \mathrm{MeV})^{3}}\right) \\
& +0.011\left(\frac{T_{1}}{(500 \mathrm{MeV})^{3}}\right)+0.002\left(\frac{T_{2}}{(500 \mathrm{MeV})^{3}}\right)-0.017\left(\frac{T_{3}}{(500 \mathrm{MeV})^{3}}\right)-0.008\left(\frac{T_{4}}{(500 \mathrm{MeV})^{3}}\right) \\
& \left.+0.096 \epsilon-0.030 \epsilon_{\mathrm{BLM}}^{2}+0.015 \epsilon\left(\frac{\Lambda_{1 S}}{500 \mathrm{MeV}}\right)+\ldots\right]
\end{aligned}
$$

Corrections: $\mathcal{O}(\Lambda / m): \sim 20 \%, \quad \mathcal{O}\left(\Lambda^{2} / m^{2}\right): \sim 5 \%, \quad \mathcal{O}\left(\Lambda^{3} / m^{3}\right): \sim 1-2 \%$,

$$
\mathcal{O}\left(\alpha_{s}\right): \sim 10 \%, \quad \text { Unknown terms: }<\text { few } \%
$$

Matrix elements extracted from shape variables - good fit to lots of data

- Error of $\left|V_{c b}\right| \sim 2 \%$ - a precision field; uncomfortable $\sim 2 \sigma$ tension with exclusive

The challenge of inclusive $\left|V_{u b}\right|$ measurements

- Total rate predicted with $\sim 4 \%$ accuracy, similar to $\mathcal{B}\left(B \rightarrow X_{c} \ell \bar{\nu}\right)$
- To remove the huge charm background ($\left|V_{c b} / V_{u b}\right|^{2} \sim 100$), need phase space cuts Can enhance pert. and nonpert. corrections
- Instead of being constants, the hadronic parameters become functions (like PDFs)
Leading order: universal \& related to $B \rightarrow X_{s} \gamma$; $\mathcal{O}\left(\Lambda_{\mathrm{QCD}} / m_{b}\right)$: several new unknown functions

Nonperturbative effects shift endpoint $\frac{1}{2} m_{b} \rightarrow \frac{1}{2} m_{B}$ \& determine its shape

- Shape in the endpoint region is determined by b quark PDF in B - related to the $B \rightarrow X_{s} \gamma$ photon spectrum at lowest order

Shape function: lepton endpoint vs. $B \rightarrow X_{s} \gamma$

b quark decay spectrum
with a model for b quark PDF

Shape function: lepton endpoint vs. $B \rightarrow X_{s} \gamma$

b quark decay spectrum
with a model for b quark PDF

Shape function: lepton endpoint vs. $B \rightarrow X_{s} \gamma$

b quark decay spectrum
with a model for b quark PDF

difference:

Shape function: lepton endpoint vs. $B \rightarrow X_{s} \gamma$

b quark decay spectrum
with a model for b quark PDF

difference:

Shape function: lepton endpoint vs. $B \rightarrow X_{s} \gamma$

b quark decay spectrum
with a model for b quark PDF

difference:

- Both of these spectra determined at lowest order by the b quark PDF in B meson
- Lots of work toward extending beyond leading order; some open issues remain

Regions of $B \rightarrow X_{s} \gamma$ phase space

- Important both for $\left|V_{u b}\right|$ and constraining NP
- $m_{B}-2 E_{\gamma} \lesssim 2 \mathrm{GeV}$, and $<1 \mathrm{GeV}$ at the peak

Three cases: 1) $\Lambda_{\mathrm{QCD}} \sim m_{B}-2 E_{\gamma} \ll m_{B}$
2) $\Lambda_{\mathrm{QCD}} \ll m_{B}-2 E_{\gamma} \ll m_{B}$
3) $\Lambda_{\mathrm{QCD}} \ll m_{B}-2 E_{\gamma} \sim m_{B}$

Neither 1) nor 2) is fully appropriate [Sometimes called: 1) SCET and 2) MSOPE regions]
 $\mathrm{E}_{\mathrm{f}}^{\text {c.m.s. }}[\mathrm{GeV}]$

- Not clear if reducing $E_{\gamma}^{\text {cut }}$ to $\sim 1.7 \mathrm{GeV}$ is indeed optimal / practical
- $B \rightarrow X_{u} \ell \bar{\nu}$ is more complicated: hadronic physics depends not on one $\left(E_{\gamma}\right)$ but two variables (best choice: $p_{X}^{ \pm}=E_{X} \mp\left|\vec{p}_{X}\right|$ - "jettyness" of hadronic final state)
- Existing approaches based on theory in one region, extrapolated / modeled to rest

Approaches to $\left|V_{u b}\right|$ - more to come

- BLNP ${ }_{\text {[Bosch etal. }}$ - based on SCET region
- factorization \& resummation in shape function region treated correctly
- crossing into local OPE region not model independent
- tied to "shape function" scheme
- DGE ${ }_{\text {[Andersen \& Gardi] }}$ - based on SCET region + perturbative model for the SF
- SCET region treated correctly; motivated by renormalon resummation
- GGOU [Gambino etal] - based on local OPE region + SF smearing
- no resummation in SCET region
- tied to "kinetic" scheme
- BLL [Bauer, zL, Luke] — based on local OPE at large q^{2} (but expansion scale is smaller)
- combine q^{2} and m_{X} cuts, such that SF effect is kept small
- Shape function independent relations [Leibovich, Low, Rothstein; Hoang, zl, Luke; Lange, Neubert, Paz; Lange]
- beautiful at leading order, less so when $\mathcal{O}\left(\Lambda_{\mathrm{QCD}} / m_{b}\right)$ included

If all else fails: "Grinstein-type double ratios"

- Continuum theory may be competitive using HQS + chiral symmetry suppression
- $\frac{f_{B}}{f_{B_{s}}} \times \frac{f_{D_{s}}}{f_{D}}$ - lattice: double ratio $=1$ within few $\%$
- $\frac{f^{(B \rightarrow \rho \ell \bar{\nu})}}{f^{\left(B \rightarrow K^{*} \ell^{+} \ell^{-}\right)}} \times \frac{f^{\left(D \rightarrow K^{*} \ell \bar{\nu}\right)}}{f^{(D \rightarrow \rho \ell \bar{\nu})}}$ or q^{2} spectra - accessible soon?
$D \rightarrow \rho \ell \bar{\nu}$ data still consistent with no $S U(3)$ breaking in form factors
Could lattice QCD do more to pin down the corrections?
Worth looking at similar ratio with K, π - role of B^{*} pole...?
- $\frac{\mathcal{B}(B \rightarrow \ell \bar{\nu})}{\mathcal{B}\left(B_{s} \rightarrow \ell^{+} \ell^{-}\right)} \times \frac{\mathcal{B}\left(D_{s} \rightarrow \ell \bar{\nu}\right)}{\mathcal{B}(D \rightarrow \ell \bar{\nu})}$ - very clean \ldots after 2015?
- $\frac{\mathcal{B}\left(B_{u} \rightarrow \ell \bar{\nu}\right)}{\mathcal{B}\left(B_{d} \rightarrow \mu^{+} \mu^{-}\right)}$- even cleaner... around 2020?
- For implications for probing SUSY models, ask Nazila

\Rightarrow Patrick

Inclusive $B \rightarrow X_{s} \gamma$ calculations

- One (if not "the") most elaborate SM calculations Constrains many models: 2HDM, SUSY, LRSM, etc.
- NNLO practically completed
[Misiak et al., hep-ph/0609232]
4-loop running, 3-loop matching and matrix elements

Scale dependencies significantly reduced \Rightarrow

- $\left.\mathcal{B}\left(B \rightarrow X_{s} \gamma\right)\right|_{E_{\gamma}>1.6 \mathrm{GeV}}=(3.15 \pm 0.23) \times 10^{-4}$
measurement: $(3.52 \pm 0.25) \times 10^{-4}$
- $\mathcal{O}\left(10^{4}\right)$ diagrams, e.g.:

$B \rightarrow X_{s} \gamma$ and neutralino dark matter

- Green: excluded by $B \rightarrow X_{s} \gamma$

Brown: excluded (charged LSP)
Magenta: favored by $g_{\mu}-2$
Blue: favored by $\Omega_{\chi} h^{2}$ from WMAP

- Analyses assume constrained MSSM

If either $S_{\eta^{\prime} K} \neq \sin 2 \beta$ or $S_{K^{*} \gamma} \neq 0$, then has to be redone

Then $B \rightarrow X_{s} \ell^{+} \ell^{-}$and $B_{s} \rightarrow \mu \mu$ may give complementary constraints

[Ellis, Olive, Santoso, Spanos]

Photon polarization in $B \rightarrow X_{s} \gamma$

- Is $B \rightarrow X_{s} \gamma$ due to $O_{7} \sim \bar{s} \sigma_{\mu \nu} F^{\mu \nu} P_{R} b\left(b \rightarrow s_{L} \gamma_{L}\right)$ or $O_{7}^{\prime} \sim \bar{s} \sigma_{\mu \nu} F^{\mu \nu} P_{L} b\left(b \rightarrow s_{R} \gamma_{R}\right)$? In SM: $C_{7}^{\prime} / C_{7}=m_{s} / m_{b}$, so decays to γ_{L} dominate
Left- and right-handed photons do not interfere

Inclusive $B \rightarrow X_{s} \gamma$

Assumption: 2-body decay Does not apply for $b \rightarrow s \gamma g$

Exclusive $B \rightarrow K^{*} \gamma$

In quark model (s_{L} implies $J_{z}^{K^{*}}=-1$)
Does not apply for higher K^{*} Fock states

- Had been expected to give $S_{K^{*} \gamma}=-2\left(m_{s} / m_{b}\right) \sin 2 \phi_{1}$

$$
\frac{\Gamma\left[\bar{B}^{0}(t) \rightarrow K^{*} \gamma\right]-\Gamma\left[B^{0}(t) \rightarrow K^{*} \gamma\right]}{\Gamma\left[\bar{B}^{0}(t) \rightarrow K^{*} \gamma\right]+\Gamma\left[B^{0}(t) \rightarrow K^{*} \gamma\right]}=S_{K^{*} \gamma} \sin (\Delta m t)-C_{K^{*} \gamma} \cos (\Delta m t)
$$

- Data: $S_{K^{*} \gamma}=-0.16 \pm 0.22$ - both the measurement and the theory can progress

Right-handed photons in the SM

- Dominant source of "wrong-helicity" photons in the SM is O_{2}

Equal $b \rightarrow s \gamma_{L}$, s γ_{R} rates at $\mathcal{O}\left(\alpha_{s}\right)$; calculated to $\mathcal{O}\left(\alpha_{s}^{2} \beta_{0}\right)$ Inclusively only rates are calculable: $\Gamma_{22}^{(\text {brem })} / \Gamma_{0} \simeq 0.025$
Suggests: $A\left(b \rightarrow s \gamma_{R}\right) / A\left(b \rightarrow s \gamma_{L}\right) \sim \sqrt{0.025 / 2}=0.11$
[Grinstein, Grossman, ZL, Pirjol]

- $B \rightarrow K^{*} \gamma$: At leading order in $\Lambda_{\mathrm{QCD}} / m_{b}$, wrong helicity amplitude vanishes Subleading order: no longer vanishes

Order of magnitude: $\frac{A\left(\bar{B}^{0} \rightarrow \bar{K}^{0 *} \gamma_{R}\right)}{A\left(\bar{B}^{0} \rightarrow \bar{K}^{0 *} \gamma_{L}\right)}=\mathcal{O}\left(\frac{C_{2}}{3 C_{7}} \frac{\Lambda_{\mathrm{QCD}}}{m_{b}}\right) \sim 0.1$
Some additional suppression expected, but I don't find $\lesssim 0.02$ claims convincing

- Consider pattern in several modes, hope to build a case

Even more observables

- Direct $C P$ asymmetry:

$$
\begin{aligned}
& A_{B \rightarrow X_{s} \gamma}=-0.012 \pm 0.028 \\
& A_{B \rightarrow X_{d+s} \gamma}=-0.011 \pm 0.012 \\
& A_{B \rightarrow K^{*} \gamma}=-0.010 \pm 0.028
\end{aligned}
$$

SM prediction < 0.01 , except for $A_{B \rightarrow \rho \gamma}$ which is larger

- Isospin asymmetry: it seems to me that theoretical uncertainties would make it hard to argue for new physics
- If these observables don't show NP, I doubt higher K states could be convincing

Other interesting $b \rightarrow s$ decays

- ALEPH $B \rightarrow X_{c} \tau \nu$ search via large $E_{\text {miss }}$ also bounded $B \rightarrow X_{s} \nu \bar{\nu}[$ Grossman, zL, Nardi] ALEPH bound: $\mathcal{B}\left(B \rightarrow X_{s} \nu \bar{\nu}\right)<6.4 \times 10^{-4}$ still the best to date Does only $B \rightarrow K \nu \bar{\nu}$ have a chance at super- B ?
- Can also bound $B_{(s)} \rightarrow \tau^{+} \tau^{-}(X)$, only at few $\%$ level Renewed recent interest in connection with $D \varnothing$ anomaly, to enhance $\Delta \Gamma_{B_{s}}$ BaBar established: $\mathcal{B}\left(B \rightarrow \tau^{+} \tau^{-}\right)<4.1 \times 10^{-3}$
- Models with unrelated couplings in each channel, e.g., SUSY without R-parity ${ }^{17}$ Models with enhanced 3332 generation couplings: $B \rightarrow X_{s} \nu \bar{\nu}, X_{s} \tau \tau, B_{s} \rightarrow \tau \tau$
- Even in 2020, we'll have (exp. bound)/(SM prediction) $\gtrsim 10^{3}$ in some channels E.g.: $B_{(s)} \rightarrow \tau^{+} \tau^{-}(X), B_{(s)} \rightarrow e^{+} e^{-}$, maybe more...

[^0]

Some other rare B decays

- Important probes of new physics (a crude guide, $\ell=e$ or μ)

Decay	\sim SM rate	present status	expected
$B \rightarrow X_{s} \gamma$	3.2×10^{-4}	$(3.52 \pm 0.25) \times 10^{-4}$	4%
$B \rightarrow \tau \nu$	1×10^{-4}	$(1.73 \pm 0.35) \times 10^{-4}$	5%
$B \rightarrow X_{s} \nu \bar{\nu}$	3×10^{-5}	$<6.4 \times 10^{-4}$	only $K \nu \bar{\nu} ?$
$B \rightarrow X_{s} \ell^{+} \ell^{-}$	6×10^{-6}	$(4.5 \pm 1.0) \times 10^{-6}$	6%
$B_{s} \rightarrow \tau^{+} \tau^{-}$	1×10^{-6}	$<$ few $\%$	$\Upsilon(5 S)$ run ?
$B \rightarrow X_{s} \tau^{+} \tau^{-}$	5×10^{-7}	$<$ few $\%$	$?$
$B \rightarrow \mu \nu$	4×10^{-7}	$<1.3 \times 10^{-6}$	6%
$B \rightarrow \tau^{+} \tau^{-}$	5×10^{-8}	$<4.1 \times 10^{-3}$	$\mathcal{O}\left(10^{-4}\right)$
$B \rightarrow \mu^{+} \mu^{-}$	3×10^{-9}	$<5 \times 10^{-8}$	LHCb
$B \rightarrow \mu^{+} \mu^{-}$	1×10^{-10}	$<1.5 \times 10^{-8}$	LHCb

- Many interesting modes will first be seen at super- B (or LHCb)

Maintain ability for inclusive studies as much as possible (smaller theory errors)

- Some of the theoretically cleanest modes (ν, τ, inclusive) only possible at $e^{+} e^{-}$

Bump hunting: not only for ATLAS \& CMS...

(The first LHC result superseding Tevatron limits)

Bump hunting: dark matter in B decay?

- Recent observations of cosmic ray excesses lead to flurry DM model building E.g., "axion portal": light ($\lesssim 1 \mathrm{GeV}$) scalar particle coupling as $\left(m_{\psi} / f_{a}\right) \bar{\psi} \gamma_{5} \psi a$

- In most of parameter space $B \rightarrow K \ell^{+} \ell^{-}$gives best bound, LHCb can improve it

Nonleptonic decays

Terminology

(T)

(C) B^{+}

(WA)

Some motivations

- Two hadrons in the final state are more complicated (also for lattice QCD)

Lot at stake, even if precision is worse
Many observables sensitive to NP - can we disentangle from hadronic physics?

- $B \rightarrow \pi \pi, K \pi$ branching ratios and $C P$ asymmetries (related to α, γ in SM)
- Polarization in charmless $B \rightarrow V V$ decays
- First derive correct expansion in $m_{b} \gg \Lambda_{\mathrm{QCD}}$ limit, then worry about predictions
- Need to test accuracy of expansion (even in $B \rightarrow \pi \pi,\left|\vec{p}_{q}\right| \sim 1 \mathrm{GeV}$)
- Sometimes model dependent additional inputs needed

HQET vs. SCET

- HQET: nonperturbative interactions do not change four-velocity of heavy quark $p_{b}^{\mu}=m_{b} v^{\mu}+k^{\mu}$ - once we fix v, superselection rule; v label, k residual momenta Project out large component: $h_{v}^{(b)}(x)=e^{i m_{b} v \cdot x} \frac{1+\nmid}{2} b(x)$
- SCET: light-cone momentum of collinear partons change via $\mathcal{O}(1)$ interactions Collinear quark in n direction: $p^{-}=\bar{n} \cdot p$ and p_{\perp} are labels, but not conserved Define: $n^{2}=\bar{n}^{2}=0, n \cdot \bar{n}=2$; decompose: $p^{\mu}=\frac{1}{2}(\bar{n} \cdot p) n^{\mu}+\frac{1}{2}(n \cdot p) \bar{n}^{\mu}+p_{\perp}^{\mu}$ Collinear partons: $p^{\mu}=\left(p^{-}, p^{+}, p_{\perp}\right) \sim Q\left(1, \lambda^{2}, \lambda\right) \quad(Q$: large scale, λ : small param. $)$ Introduce new fields: $\psi(x)=e^{-i \widetilde{p} \cdot x} \psi_{n, p}(x) \quad \xi_{n, p}(x)=\frac{h i \vec{n}}{4} \psi_{n, p}(x)$

SCET in a nutshell

- Effective theory for processes involving energetic hadrons, $E \gg \Lambda$
[Bauer, Fleming, Luke, Pirjol, Stewart, + ...]
Introduce distinct fields for relevant degrees of freedom, power counting in λ

modes	fields	$p=(-,+, \perp)$	p^{2}	SCET $_{\text {I }}: \lambda=\sqrt{\Lambda / E}$ - jets $(m \sim \Lambda E)$
	collinear	$\xi_{n, p}, A_{n, q}^{\mu}$	$E\left(1, \lambda^{2}, \lambda\right)$	$E^{2} \lambda^{2}$
soft	q_{q}, A_{s}^{μ}	$E(\lambda, \lambda, \lambda)$	$E^{2} \lambda^{2}$	SCET $_{\text {II }}: \lambda=\Lambda / E-$ hadrons $(m \sim \Lambda)$
usoft	$q_{u s}, A_{u s}^{\mu}$	$E\left(\lambda^{2}, \lambda^{2}, \lambda^{2}\right)$	$E^{2} \lambda^{4}$	Match QCD $\rightarrow \operatorname{SCET}_{\text {I }} \rightarrow$ SCET $_{\text {II }}$

- Can decouple ultrasoft gluons from collinear Lagrangian at leading order in λ

$$
\xi_{n, p}=Y_{n} \xi_{n, p}^{(0)} \quad A_{n, q}=Y_{n} A_{n, q}^{(0)} Y_{n}^{\dagger} \quad Y_{n}=\mathrm{P} \exp \left[i g \int_{-\infty}^{x} \mathrm{~d} s n \cdot A_{u s}(n s)\right]
$$

Nonperturbative usoft effects made explicit through factors of Y_{n} in operators
New symmetries: collinear / soft gauge invariance

- Simplified / new ($B \rightarrow D \pi, \pi \ell \bar{\nu}$) proofs of factorization theorems [Bauer, Piriol, Stewart]
- Subleading order untractable before: $B \rightarrow D^{0} \pi^{0}$, CPV in $B \rightarrow K^{*} \gamma$, etc.

$B \rightarrow D^{(*)} \pi$ decays in SCET

- Proven that $A \propto \mathcal{F}^{B \rightarrow D} f_{\pi}$ at leading order [n.b.: $\left.p_{\pi}=(2.310,0,0,2.306) \mathrm{GeV}\right]$ Also holds in large N_{c}, works at $5-10 \%$ level, need precise data to test mechanism

$B^{-} \rightarrow D^{0} \pi^{-}$
$\bar{B}^{0} \rightarrow D^{+} \pi^{-}$
$\bar{B}^{0} \rightarrow D^{0} \pi^{0}$

$\mathcal{O}\left(\Lambda_{\mathrm{QCD}} / Q\right)$
SCET:
$\mathcal{O}(1)$
data: $\sim 1.8 \pm 0.2$ (also for ρ)
$\Rightarrow \mathcal{O}(30 \%)$ power corrections
[Beneke, Buchalla, Neubert, Sachrajda; Bauer, Pirjol, Stewart]

$$
\frac{\mathcal{B}\left(\bar{B}^{0} \rightarrow D^{0} \pi^{0}\right)}{\mathcal{B}\left(\bar{B}^{0} \rightarrow D^{* 0} \pi^{0}\right)}=1+\mathcal{O}\left(\Lambda_{\mathrm{QCD}} / Q\right)
$$

$$
\text { data: } \sim 1.1 \pm 0.25
$$

Unforeseen before SCET
[Mantry, Pirjol, Stewart]

Color suppressed $B \rightarrow D^{(*) 0} \pi^{0}$ decays

- Single class of power suppressed SCET $_{I}$ operators: $T\left\{\mathcal{O}^{(0)}, \mathcal{L}_{\xi q}^{(1)}, \mathcal{L}_{\xi q}^{(1)}\right\}$
[Mantry, Pirjol, Stewart]

$A\left(D^{(*) 0} M^{0}\right)=N_{0}^{M} \int \mathrm{~d} z \mathrm{~d} x \mathrm{~d} k_{1}^{+} \mathrm{d} k_{2}^{+} T^{(i)}(z) J^{(i)}\left(z, x, k_{1}^{+}, k_{2}^{+}\right) \underbrace{S^{(i)}\left(k_{1}^{+}, k_{2}^{+}\right)}_{\text {complex - nonpert. strong phase }} \phi_{M}(x)+\ldots$

Color suppressed $B \rightarrow D^{(*) 0} \pi^{0}$ decays

- Single class of power suppressed SCET $_{I}$ operators: $T\left\{\mathcal{O}^{(0)}, \mathcal{L}_{\xi q}^{(1)}, \mathcal{L}_{\xi q}^{(1)}\right\}$
[Mantry, Pirjol, Stewart]

$A\left(D^{(*) 0} M^{0}\right)=N_{0}^{M} \int \mathrm{~d} z \mathrm{~d} x \mathrm{~d} k_{1}^{+} \mathrm{d} k_{2}^{+} T^{(i)}(z) J^{(i)}\left(z, x, k_{1}^{+}, k_{2}^{+}\right) \underbrace{S^{(i)}\left(k_{1}^{+}, k_{2}^{+}\right)}_{\text {complex - nonpert. strong phase }} \phi_{M}(x)+\ldots$
- Not your garden variety factorization formula... $S^{(i)}\left(k_{1}^{+}, k_{2}^{+}\right)$know about n

$$
S^{(0)}\left(k_{1}^{+}, k_{2}^{+}\right)=\frac{\left\langle D^{0}\left(v^{\prime}\right)\right|\left(\bar{h}_{v^{\prime}}^{(c)} S\right) \npreceq P_{L}\left(S^{\dagger} h_{v}^{(b)}\right)(\bar{d} S)_{k_{1}^{+}} \npreceq P_{L}\left(S^{\dagger} u\right)_{k_{2}^{+}}\left|\bar{B}^{0}(v)\right\rangle}{\sqrt{m_{B} m_{D}}}
$$

Separates scales, allows to use HQS without $E_{\pi} / m_{c}=\mathcal{O}(1)$ corrections ($i=0,8$ above)

Color suppressed $B \rightarrow D^{(*) 0} \pi^{0}$ decays

- Single class of power suppressed SCET $_{I}$ operators: $T\left\{\mathcal{O}^{(0)}, \mathcal{L}_{\xi q}^{(1)}, \mathcal{L}_{\xi q}^{(1)}\right\}$
[Mantry, Pirjol, Stewart]

$A\left(D^{(*) 0} M^{0}\right)=N_{0}^{M} \int \mathrm{~d} z \mathrm{~d} x \mathrm{~d} k_{1}^{+} \mathrm{d} k_{2}^{+} T^{(i)}(z) J^{(i)}\left(z, x, k_{1}^{+}, k_{2}^{+}\right) \underbrace{S^{(i)}\left(k_{1}^{+}, k_{2}^{+}\right)}_{\text {complex - nonpert. strong phase }} \phi_{M}(x)+\ldots$
- Ratios: the $\Delta=1$ relations follow from naive factorization and heavy quark symmetry

The $\bullet=1$ relations do not - a prediction of SCET not foreseen by model calculations

Also predict equal strong phases between
$I=1 / 2$ and $3 / 2$ amplitudes in $D \pi$ and $D^{*} \pi$
Data: $\delta(D \pi)=(28 \pm 3)^{\circ}, \delta\left(D^{*} \pi\right)=(32 \pm 5)^{\circ}$

Λ_{b} and B_{s} decays

- CDF measured in 2003: $\Gamma\left(\Lambda_{b} \rightarrow \Lambda_{c}^{+} \pi^{-}\right) / \Gamma\left(\bar{B}^{0} \rightarrow D^{+} \pi^{-}\right) \approx 2$

Factorization does not follow from large N_{c}, but holds at leading order in $\Lambda_{\mathrm{QCD}} / Q$
$\frac{\Gamma\left(\Lambda_{b} \rightarrow \Lambda_{c} \pi^{-}\right)}{\Gamma\left(\bar{B}^{0} \rightarrow D^{(*)+} \pi^{-}\right)} \simeq 1.8\left(\frac{\zeta\left(w_{\max }^{\Lambda}\right)}{\xi\left(w_{\max }^{D(*)}\right)}\right)^{2}$
Isgur-Wise functions may be expected to be comparable
Lattice could nail this

- $B_{s} \rightarrow D_{s} \pi$ is pure tree, can help to determine relative size of E vs. C [CDF '03: $\mathcal{B}\left(B_{s} \rightarrow D_{s}^{-} \pi^{+}\right) / \mathcal{B}\left(B^{0} \rightarrow D^{-} \pi^{+}\right) \simeq 1.35 \pm 0.43$ (using $\left.\left.f_{s} / f_{d}=0.26 \pm 0.03\right)\right]$

Lattice could help: Factorization relates tree amplitudes, need $S U(3)$ breaking in $B_{s} \rightarrow D_{s} \ell \bar{\nu}$ vs. $B \rightarrow D \ell \bar{\nu}$ form factors from exp. or lattice

More complicated: $\Lambda_{b} \rightarrow \Sigma_{c} \pi$

Recall quantum numbers:

multiplets	s_{l}	$I\left(J^{P}\right)$
Λ_{c}	0	$0\left(\frac{1}{2}^{+}\right)$

$$
\Sigma_{c}=\Sigma_{c}(2455), \Sigma_{c}^{*}=\Sigma_{c}(2520) \quad \Sigma_{c}, \Sigma_{c}^{*} \quad 1 \quad 1\left(\frac{1}{2}^{+}\right), 1\left(\frac{3}{2}^{+}\right)
$$

- Can't address in naive factorization, since
 $\Lambda_{b} \rightarrow \Sigma_{c}$ form factor vanishes by isospin
[Leibovich et al.]

$C=$ "color commensurate" $\mathcal{O}\left(\Lambda_{\mathrm{QCD}} / Q\right)$

$E=$ "exchange"
$\mathcal{O}\left(\Lambda_{\mathrm{QCD}} / Q\right)$

$B=$ "bow-tie" $\mathcal{O}\left(\Lambda_{\mathrm{QCD}}^{2} / Q^{2}\right)$
- Prediction: $\frac{\Gamma\left(\Lambda_{b} \rightarrow \Sigma_{c}^{*} \pi\right)}{\Gamma\left(\Lambda_{b} \rightarrow \Sigma_{c} \pi\right)}=2+\mathcal{O}\left[\Lambda_{\mathrm{QCD}} / Q, \alpha_{s}(Q)\right]=\frac{\Gamma\left(\Lambda_{b} \rightarrow \Sigma_{c}^{* 0} \rho^{0}\right)}{\Gamma\left(\Lambda_{b} \rightarrow \Sigma_{c}^{0} \rho^{0}\right)}$

Can avoid π^{0} 's from $\Lambda_{b} \rightarrow \Sigma_{c}^{(*) 0} \pi^{0} \rightarrow \Lambda_{c} \pi^{-} \pi^{0}$ or $\Lambda_{b} \rightarrow \Sigma_{c}^{(*)+} \pi^{-} \rightarrow \Lambda_{c} \pi^{0} \pi^{-}$

Semileptonic $B \rightarrow \pi, \rho$ form factors

- At leading order in Λ / Q, to all orders in α_{s}, two contributions at $q^{2} \ll m_{B}^{2}$: soft form factor \& hard scattering (Separation scheme dependent; $Q=E, m_{b}$, omit μ 's)
[Beneke \& Feldmann; Bauer, Pirjol, Stewart; Becher, Hill, Lange, Neubert]

$F(Q)=C_{i}(Q) \zeta_{i}(Q)+\frac{m_{B} f_{B} f_{M}}{4 E^{2}} \int \mathrm{~d} z \mathrm{~d} x \mathrm{~d} k_{+} T(z, Q) J\left(z, x, k_{+}, Q\right) \phi_{M}(x) \phi_{B}\left(k_{+}\right)$
- Symmetries \Rightarrow nonfactorizable (1st) term obey form factor relations
[Charles et al.] $3 B \rightarrow P$ and $7 B \rightarrow V$ form factors related to 3 universal functions
- Relative size? QCDF: 2nd $\sim \alpha_{s} \times(1 \mathrm{st})$, PQCD: 1 st $\ll 2 \mathrm{nd}, \quad$ SCET: 1 st $\sim 2 \mathrm{nd}$
- Whether first term factorizes (involves $\alpha_{s}\left(\mu_{i}\right)$, as 2 nd term does) involves same physics issues as hard scattering, annihilation, etc., contributions to $B \rightarrow M_{1} M_{2}$

Charmless $B \rightarrow M_{1} M_{2}$ decays

- Limited consensus about implications of the heavy quark limit

$$
\begin{aligned}
& \text { Limited consensus about implications of the heavy quark limit } \\
& \begin{aligned}
\text { [Bauer, Pirjol, Rothstein, Stewart; Chay, Kim; Beneke, Buchalla, Neubert, Sachrajda] }
\end{aligned} \\
& \quad+A_{c \bar{c}}+N\left[f_{M_{2}} \zeta^{B M_{1}} \int \mathrm{~d} u T_{2 \zeta}(u) \phi_{M_{2}}(u)\right. \\
& \\
& \left.\quad \mathrm{d} z \mathrm{~d} u T_{2 J}(u, z) \zeta_{J}^{B M_{1}}(z) \phi_{M_{2}}(u)+(1 \leftrightarrow 2)\right]
\end{aligned}
$$

- $\zeta_{J}^{B M_{1}}=\int \mathrm{d} x \mathrm{~d} k_{+} J\left(z, x, k_{+}\right) \phi_{M_{1}}(x) \phi_{B}\left(k_{+}\right)$also appears in $B \rightarrow M_{1}$ form factors \Rightarrow Relations to semileptonic decays do not require expansion in $\alpha_{s}(\sqrt{\Lambda Q})$
- Charm penguins: suppression of long distance part argued, not proven

Lore: "long distance charm loops", "charming penguins", " $D \bar{D}$ rescattering" are the same (unknown) term; may yield strong phases and other surprises

- SCET: fit both ζ 's and ζ_{J} 's, calculate T's; QCDF: fit ζ 's, calculate factorizable (2nd) terms perturbatively; PQCD: 1st line dominates and depends on k_{\perp}

Endpoint singularities (e.g., annihilation)

- Power suppressed $\mathcal{O}(\Lambda / E)$ corrections

Yields convolution integrals of the form: $\int_{0}^{1} \mathrm{~d} x \phi_{\pi}(x) / x^{2}, \quad \phi_{\pi}(x) \sim 6 x(1-x)$ Singular if gluon near on-shell — one of the mesons near endpoint configuration

- KLS: first emphasized importance for strong phases and CPV
[Keum, Li, Sanda]
Singularity regulated by k_{T} in $1 /\left(m_{b}^{2} x-k_{T}^{2}+i \varepsilon\right)$, still sizable phases
- BBNS: interpret as IR sensitivity \Rightarrow model by complex parameters
$" X_{A} "=\int_{0}^{1} d x / x \rightarrow\left(1+\rho_{A} e^{i \varphi_{A}}\right) \ln \left(m_{B} / 500 \mathrm{MeV}\right)$
[Beneke, Buchalla, Neubert, Sachrajda]
- SCET: singularity to do with double counting Real \& calculable at LO [Arresen, zL, Rothstein, Stewart]

Comparison of approaches

- For charmless two-body decays significant differences in details

	BPRS	BBNS	KLS
Expansion in $\alpha_{s}\left(\mu_{\mathrm{i}}\right)$?	No	Yes	Yes
T, P if Singular convolution	N/A	New parameters	uses kT
Annihilation	Real at "LO", complex "NLO"	Complex, new parameters	perturbative, large phases
Charm Loop?	Non- perturbative	Perturbative	Perturbative
Number of fit parameters	Most	Middle	N/A

- Many measurements are well described, some important issues remain...

Extracting α from $B \rightarrow \pi \pi$

- Until ~ 1997 the hope was to determine α simply from:

$$
\frac{\Gamma\left(\bar{B}^{0}(t) \rightarrow \pi^{+} \pi^{-}\right)-\Gamma\left(B^{0}(t) \rightarrow \pi^{+} \pi^{-}\right)}{\Gamma\left(\bar{B}^{0}(t) \rightarrow \pi^{+} \pi^{-}\right)+\Gamma\left(B^{0}(t) \rightarrow \pi^{+} \pi^{-}\right)}=S \sin (\Delta m t)-C \cos (\Delta m t)
$$

$\arg \lambda_{\pi^{+} \pi^{-}}=(B$-mix $=2 \beta)+(\bar{A} / A=2 \gamma+\ldots) \Rightarrow$ measures $\sin 2 \alpha$ if amplitudes with one weak phase dominated - relied on expectation that $P / T=\mathcal{O}\left(\alpha_{s} / 4 \pi\right)$
$K \pi$ and $\pi \pi$ rates \Rightarrow comparable amplitudes with different weak \& strong phases

- Isospin analysis:

Tree and penguin operators: $\Delta I=\frac{1}{2}, \frac{3}{2}$ terms; Bose statistics: $\pi \pi$ in $I=0,2$ $(u, d): I$-spin doublet $\quad(\pi \pi)_{\ell=0} \quad \rightarrow \quad I_{f}=0 \quad$ or $\quad I_{f}=2$ other quarks and gluons: $I=0 \quad(1 \times 1) \quad\left(\Delta I=\frac{1}{2}\right) \quad\left(\Delta I=\frac{3}{2}\right)$
[Note: γ, Z : mixtures of $I=0,1$, violate isospin and yield a (small) uncertainty]

$B \rightarrow \pi \pi$ results

- Two amplitudes for B^{+}, B^{0} and B^{-}, \bar{B}^{0} decay:
$A_{+-}=-\lambda_{u}\left(T+P_{u}\right)-\lambda_{c} P_{c}-\lambda_{t} P_{t}=e^{-i \gamma} T_{\pi \pi}-P_{\pi \pi}$
$\sqrt{2} A_{00}=\lambda_{u}\left(-C+P_{u}\right)+\lambda_{c} P_{c}+\lambda_{t} P_{t}=e^{-i \gamma} C_{\pi \pi}+P_{\pi \pi}$
$\sqrt{2} A_{-0}=-\lambda_{u}(T+C)=e^{-i \gamma}\left(T_{\pi \pi}+C_{\pi \pi}\right)$

$A^{0+}=\widetilde{A}^{0-}$
The 6 rates determine α \& 5 hadronic parameters

Need a lot more data - current bound:

$$
\alpha-\alpha_{\mathrm{eff}}<15^{\circ}(90 \% \mathrm{CL})
$$

- Far from limited by theoretical uncertainty

Puzzles in $B \rightarrow \pi \pi$ amplitudes

- Tension remains: BaBar: $C_{\pi^{+} \pi^{-}}=-0.25 \pm 0.08$, Belle: $C_{\pi^{+} \pi^{-}}=-0.55 \pm 0.09$
- Unexpected features of the data:
$\mathcal{B}\left(B \rightarrow \pi^{0} \pi^{0}\right)=(1.55 \pm 0.19) \times 10^{-6}$: much bigger than earlier predictions
$C_{\pi^{0} \pi^{0}}=-0.43 \pm 0.25$: expect opposite sign than $C_{\pi^{+} \pi^{-}}^{(\mathrm{WA})}=-0.38 \pm 0.06,(C$ or $T) \pm P$
- Problem: $|C / T|$ cannot be small because $\pi^{0} \pi^{0}$ rate is large

We expect: $\arg (C / T)=\mathcal{O}\left(\alpha_{s}, \Lambda / m_{b}\right), P_{u}$ is calculable (small),
Same sign for $C_{\pi^{+} \pi^{-}}$and $C_{\pi^{0} \pi^{0}}$ implies some of: $-\arg (C / T)$ not small

- P_{u} or $P_{e w}$ not small / NP
- annihilation not small
- large fluctuations in the data
- Cannot do better than full isospin analysis, unless this is better understood

$B \rightarrow \rho \rho:$ the best α at present

- $\rho \rho$ is mixture of $C P$ even/odd (as all $V V$ modes); data: $C P=$ even dominates Isospin analysis applies for each L, or in transversity basis for each $\sigma(=0, \|, \perp)$
- Small rate $\mathcal{B}\left(B \rightarrow \rho^{0} \rho^{0}\right)=(0.73 \pm 0.28) \times 10^{-6}(90 \% \mathrm{CL}) \Rightarrow$ small penguin pollution $\frac{\mathcal{B}\left(B \rightarrow \pi^{0} \pi^{0}\right)}{\mathcal{B}\left(B \rightarrow \pi^{+} \pi^{0}\right)} \approx 0.28$ vs. $\frac{\mathcal{B}\left(B \rightarrow \rho^{0} \rho^{0}\right)}{\mathcal{B}\left(B \rightarrow \rho^{+} \rho^{0}\right)} \approx 0.03$
- Ultimately, more complicated than $\pi \pi$, $I=1$ possible due to finite Γ_{ρ}, giving $\mathcal{O}\left(\Gamma_{\rho}^{2} / m_{\rho}^{2}\right)$ effects [can be constrained] $B \rightarrow \rho \rho$ isospin analysis: $\alpha=(90 \pm 5)^{\circ}$
- Also $B \rightarrow \rho \pi$ Dalitz plot analysis
- $\rho \rho$ mode dominates α determination for now, may change at a super B factory

Aside: amplituded ratios from $S U(3)$

- Simple example - compare: $B_{d}^{0} \rightarrow \pi^{0} K^{0}(\bar{b} \rightarrow q \bar{q} \bar{s})$ vs. $B_{s}^{0} \rightarrow \pi^{0} \bar{K}^{0}(\bar{b} \rightarrow q \bar{q} \bar{d})$ $S U(3)$ flavor symmetry (in this case U-spin) implies amplitude relations:
$A\left(B_{d}^{0} \rightarrow \pi^{0} K^{0}\right)=V_{c b}^{*} V_{c s}\left(P_{c}-P_{t}+T_{c \bar{c} s}\right)+V_{u b}^{*} V_{u s}\left(P_{u}-P_{t}+T_{u \bar{u} s}\right) \equiv P+T$ $A\left(B_{s}^{0} \rightarrow \pi^{0} \bar{K}^{0}\right)=V_{c b}^{*} V_{c d}\left(P_{c}-P_{t}+T_{c \bar{c} s}\right)+V_{u b}^{*} V_{u d}\left(P_{u}-P_{t}+T_{u \bar{u} s}\right)=\lambda P+\lambda^{-1} T$
- Assume B_{d} decay dominated by P, while B_{s} by $T \Rightarrow$ bound P / T from rates Caveats: no B_{s} data, often more complicated amplitude relations, octets / singlets
- Multi-state amplitude relations: generally weaker bounds, a simple \& useful one:

$$
a\left(\pi^{0} K_{S}\right)=\frac{1}{\sqrt{2}} b\left(K^{+} K^{-}\right)-b\left(\pi^{0} \pi^{0}\right)
$$

Gives: $\left|\xi_{\pi^{0} K_{S}}\right|<0.14$ - was useful to interpret earlier data

- In precision era, I doubt that $S U(3)$-based methods can establish presence of NP

The old / new $B \rightarrow K \pi$ puzzle

- Q: Have we seen new physics in CPV?
$A_{K^{+} \pi^{-}}=-0.098 \pm 0.012 \quad(P+T)$

$A_{K^{+} \pi^{0}}=0.050 \pm 0.025{ }_{\left(P+T+C+A+P_{e w}\right)}$
What is the reason for large difference?
$A_{K^{+} \pi^{0}}-A_{K^{+} \pi^{-}}=0.148 \pm 0.028$ ($>5 \sigma$)

(Annihilation not shown) [Belle, Nature 452, 332 (2008)]
SCET / factorization predicts: $\arg (C / T)=\mathcal{O}\left(\Lambda_{\mathrm{QCD}} / m_{b}\right)$ and $A+P_{e w}$ small
- A: huge fluctuation, breakdown of $1 / m$ exp., missing something subtle, new phys.
- No similarly transparent problem with branching ratios, e.g., Lipkin sum rule looks OK by now:

$$
2 \frac{\bar{\Gamma}\left(B^{-} \rightarrow \pi^{0} K^{-}\right)+\bar{\Gamma}\left(\bar{B}^{0} \rightarrow \pi^{0} \bar{K}^{0}\right)}{\bar{\Gamma}\left(B^{-} \rightarrow \pi^{-} \bar{K}^{0}\right)+\bar{\Gamma}\left(\bar{B}^{0} \rightarrow \pi^{+} K^{-}\right)}=1.07 \pm 0.05
$$

Summary

- Lots of progress for $\left|V_{c b}\right|$ and $\left|V_{u b}\right|$, determinations from exclusive decays largely in the hands of lattice QCD, room for progress in continuum - tension is troubling
- Theoretical tools for rare decays are similar, so developments often simultaneous
- Breakthroughs in understanding nonleptonic decays; unfortunately the best understood cases are not the most interesting to learn about weak scale physics
- More work \& data needed to understand the expansions Why some predictions work at $\lesssim 10 \%$ level, while others receive $\sim 30 \%$ corrections Clarify role of charming penguins, chirally enhanced terms, annihilation, etc.
- Active field, experimental data stimulated lots of theory developments, expect more work \& progress as LHCb and super- B provides challenges \& opportunities

[^0]: 1"Can do everything except make coffee" - Babar Physics Book

