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Every end is a new beginning...

• Past: Ten years ago we did not know that the
CKM picture was (essentially) correct

O(1) deviations in CP violation were possible

• End: Nobel Prize in 2008 is formal recognition
that the KM phase is esablished as the domi-
nant source of CPV in flavor changing transi-
tions of quarks

• Present: No significant deviations from SM

• Begin: Looking for corrections to the SM picture of flavor and CP violation

• Future: What can flavor physics teach us about beyond SM physics?
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What is particle physics?

• Central question:

L = ?

... What are the elementary degrees of freedom and how do they interact?
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What is particle physics?

• Central question:

L = ?

... What are the elementary degrees of freedom and how do they interact?

• Most of the observed phenomena consistent with the standard model (SM)

• Clearest empirical evidence that SM is incomplete:

– Dark matter

– Baryon asymmetry of the Universe

– Neutrino mass [can add in straightforward (albeit unnatural) way]

– Dark energy [cosmological constant? need to know more to understand?]

– Hierarchy problem [is there an elementary Higgs? why so light? aesthetical?]
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What is dark matter?

• Overwhelming evidence for DM: rotation curves, gravitational lensing, cosmology

• It cannot be a SM particle
Know: non-baryonic (BBN), long lived, neutral (charge, color), abundance
Don’t know: interactions, mass, quantum numbers, one/many species

• Maybe thermal relic of early universe: weakly interacting massive particle (WIMP)

• Required WIMP interaction strength is at TeV scale — LHC may directly probe it
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Matter–antimatter asymmetry

• Gravity, electromagnetism, strong interaction are same for matter and antimatter

• Soon after the big bang, quarks and anti-
quarks were in thermal equilibrium

N(baryon)

N(photon)
∼ 10−9 ⇒ Nq −Nq

Nq +Nq
∼ 10−9

at t < 10−6 s (T > 1 GeV)

• The SM prediction is 1010 times smaller

• Solution may lie at the TeV scale

May learn about it at the LHC and from precision flavor physics measurements
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Discrete symmetries: P , C, and T

• Discovering “new” symmetries / violation of “old” symmetries often lead to more
fundamental understanding — may imply presence of new interactions

• P = parity (~x↔ −~x)
C = charge conjugation (particle↔ antiparticle)
T = time reversal (t↔ −t, initial↔ final states)

CPT cannot be violated in a relativistically covariant local quantum field theory
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Discrete symmetries: P , C, and T

• Discovering “new” symmetries / violation of “old” symmetries often lead to more
fundamental understanding — may imply presence of new interactions

• P = parity (~x↔ −~x)
C = charge conjugation (particle↔ antiparticle)
T = time reversal (t↔ −t, initial↔ final states)

CPT cannot be violated in a relativistically covariant local quantum field theory

Only νL and ν̄R participate in weak interaction

Weak interactions maximally violate C and P
(⇒ Nobel prize 1957)

CP conservation was widely believed / assumed
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Discrete symmetries: P , C, and T

• Discovering “new” symmetries / violation of “old” symmetries often lead to more
fundamental understanding — may imply presence of new interactions

• P = parity (~x↔ −~x)
C = charge conjugation (particle↔ antiparticle)
T = time reversal (t↔ −t, initial↔ final states)

CPT cannot be violated in a relativistically covariant local quantum field theory

• Only νL and ν̄R participate in weak interaction (1956)

Weak interactions maximally violate C and P
(⇒ Nobel prize 1957)

• CP conservation was widely believed / assumed
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Telling matter from anti-matter

• CP violation well established in kaon decays since 1964 (⇒ Nobel prize 1980)
Roughly consistent with SM, but theoretical uncertainties preclude precision tests

Simplest example: Γ(K0
L → e+ +X) > Γ(K0

L → e− +X)

Can “define” matter: smaller probability to produce e− than e+ in KL decay
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Telling matter from anti-matter

• CP violation well established in kaon decays since 1964 (⇒ Nobel prize 1980)
Roughly consistent with SM, but theoretical uncertainties preclude precision tests

Simplest example: Γ(K0
L → e+ +X) > Γ(K0

L → e− +X)

Can “define” matter: smaller probability to produce e− than e+ in KL decay

• “Practical” issues:

Can tell if spaceship is made of matter
or anti-matter... to avoid annihilation

Matter / antimatter are distinguishable

CPV & CKM
ZL — p.1/vi



Matter–antimatter asymmetry

• How could N(baryon)

N(photon)
∼ 10

−9 be generated dynamically?

• Sakharov conditions:

1. baryon number violating interactions

2. C and CP violation

3. deviation from thermal equilibrium

• SM contains 1–3, but:

i. CP violation is too small

ii. deviation from thermal equilibrium too small at electroweak phase transition

• New TeV-scale physics can enhance both (e.g., SUSY)

• What is the microscopic theory of CP violation? How can we test it?

CPV & CKM
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Outline (1)

• Brief introduction to the standard model

Weak interactions, flavor, CKM

• Testing the flavor sector

Bits of history, K decays, recent D mixing results

• Mixing and CPV in neutral mesons

Types of CPV, how to get clean information

Examples: β from B → ψKs, φK, Bs → φφ; γ from B → DK and Bs → D±s K
∓

• Constraining new physics in mixing

Sizable corrections to the SM are still allowed

CPV & CKM
ZL — p.1/viii



Outline (2–3)

• Isospin and SU(3): α from B → ππ and ρρ

• Heavy quark symmetry and OPE
Spectroscopy, exclusive / inclusive decays, |Vcb|, |Vub|
Rare decays, B → Xsγ, and friends

• Nonleptonic decays, factorization
B decays to final states with & without charm

• Flavor symmetries and new physics

• Lepton flavor violation

• FCNC top decays

• Minimal flavor violation
Flavor at high-pT

• Conclusions

CPV & CKM
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Preliminaries

• Dictionary:
Dictionary:

SM = standard model NP = new physics

CPV = CP violation UT = unitarity triangle

• Disclaimers: I will not talk about: the strong CP problem θQCD

16π2
FµνF̃

µν

Disclaimers: I will not talk about: lattice QCD
Disclaimers: I will not talk about: detailed new physics scenarios

• Most importantly: If I do not talk about your favorite decay mode [the one you are
Most importantly: working on...], it does not mean that I think it’s not important!

• Many books and reviews, e.g.:
G. Branco, L. Lavoura and J. Silva, CP Violation, Clarendon Press, Oxford, UK (1999)
Y. Grossman, ZL, Y. Nir, arXiv:0904.4262; A. Hocker, ZL, hep-ph/0605217; ZL, hep-lat/0601022
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The Standard Model briefly



Ingredients of a model

• Need to specify: (i) gauge (local) symmetries

Need to specify: (ii) representations of fermions and scalars

Need to specify: (iii) vacuum — spontaneous symmetry breaking

• L = all gauge invariant terms (renormalizable, d ≤ 4)

Everything follows, after a finite number of parameters are fixed from experiments

• Implicit assumptions: Lorentz symmetry and QFT; No global symmetries
imposed; Accidental symmetries can arise in absence of higher dimension terms

• Higher dimension terms are suppressed at low energies

(We are modest and not worry about details of physics we cannot probe)

If higher dimension operators are present⇒ new physics at a higher scale

CPV & CKM
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Standard model tidbits

• Gauge symmetry: SU(3)c × SU(2)L × U(1)Y (internal symmetry made local)

“forces” strong & electroweak interactions

Gauge symmetry: Carriers: 8 gluons, W±, Z0, γ [spin-1]

• Particle content: 3 generations of fermions (indistinguishable to start)

“charges” quarks:
(
u c t

d s b

)
leptons:

(
νe νµ ντ

e µ τ

)
[spin-1

2]

Particle content:
↖

3 colors, strong int.

• Symmetry breaking: SU(2)L × U(1)Y → U(1)EM

symmetry breaking: Nonzero vev of an SU(2) doublet scalar: 〈φ〉 =

(
0

v/
√

2

)

• Strongly interacting particles observed in Nature have no color; quarks confined
mesons: π+ (ud̄), K0 (s̄d), B0 (b̄d), B0

s (b̄s); baryons: p (uud), n (udd)

CPV & CKM
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The identities of quarks

• Hamiltonian ⇒ want to determine eigenstates, eigenenergies

Degeneracy = unresolved ambiguity in naming things

– degeneracy broken by perturbations ⇒ “good” states
– degeneracy unbroken ⇒ symmetry?

Some perturbations break degeneracies and assign identities

• The quantum numbers of u, c, t are identical, so are those of d, s, b

Degeneracy under choosing “good” combinations: q̃ i =
∑
j Uij q

j

Ambiguity in assigning identities to particles: are qi or q̃ i fundamental?

• Degeneracy broken by quark masses — where do they come from?

[Only known difference between the 3 generations of particles⇒ “flavor physics”]

CPV & CKM
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Masses of elementary particles

• Quark and lepton representations of SU(3)c × SU(2)L × U(1)Y

quarks:
[
QL(3, 2)1/6, uR(3, 1)2/3, dR(3, 1)−1/3

]
× 3 copies

leptons:
[
LL(1, 2)−1/2, `R(1, 1)−1

]
× 3 copies [νR(1, 1)0 ?]

• Problem: SM gauge symmetries forbid mψ̄ψ fermion mass terms (also W±, Z0)

Loophole: the vacuum can also be charged

“Higgs condensate” has SU(2)× U(1) charge

(also gives mass to W±, Z0, but not to γ)

Q(3, 2)1/6 Y uij u(3, 1)2/3

φ(1, 2)1/2

• Mass is an interaction with something unknown

• Simplest explicit model: Higgs = SU(2)L doublet scalar field

Simplest explicit model: after it acquires a vev⇒ one physical Higgs boson

CPV & CKM
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The missing piece: Higgs

• In the SM: mH < 1 TeV

No known spin-0 elementary particles

Electroweak precision measurements ⇒
(LEP, SLC, Tevatron): mH <∼ 200 GeV

• If H has SM-like production cross sec-
tions and decays, the LHC will find it

• Quark masses: couplings to Higgs

0

1

2

3

4

5

6

10030 300

mH [GeV]

∆χ
2

Excluded Preliminary

∆αhad =∆α(5)

0.02758±0.00035

0.02749±0.00012

incl. low Q2 data

Theory uncertainty
August 2009 mLimit = 157 GeV
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Terms in the SM Lagrangian

• Kinetic terms: Lkin = −1

4

∑
groups

(F aµν)
2 +

∑
rep′s

ψ iD/ ψ (3 param’s: g, g′, gs)

always CPC (ignoring FF̃ )

• Higgs terms: LHiggs = |Dµφ|2 + µ2φ†φ− λ(φ†φ)2 (2 param’s; v2 = µ2/λ)
CPC if ∃ only one Higgs doublet — CPV possible with extended Higgs sector

• Yukawa couplings in interaction basis: (this is where flavor is)

LY = −Y dijQILi φdIRj − Y uij QILi φ̃ uIRj − Y `ij LILi φ `IRj + h.c.

i, j ∼ generations
(cannot write such mass term for νi)

↘
=

(
0 1

−1 0

)
φ∗

• CPV is related to unremovable phases of Yukawa couplings:

Yij ψLi φψRj + Y ∗ij ψRj φ
†ψLi

⇓ CP exchanges fermion bilinears
Yij ψRj φ

†ψLi + Y ∗ij ψLi φψRj

CPV & CKM
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Yukawa couplings and CKM matrix

• SM is the simplest scenario: Higgs background = single scalar field φ

LY = −Y ij
u QI

Li φ̃ u
I
Rj − Y

ij
d QI

Li φ d
I
Rj φ̃ =

(
0 1

−1 0

)
φ∗

• Y iju,d = 3× 3 are complex matrices⇒ mass terms after φ acquires VEV

Lmass = −M ij
u u

I
Li u

I
Rj −M

ij
d d

I
Li d

I
Rj , Mu,d ∝ Yu,d

Diagonalize: Mdiag
f ≡ VfLMf V

†
fR (f = u, d)

Mass eigenstates: fLi ≡ V ijfL f ILj , fRi ≡ V ijfR f IRj

• Mass matrices diagonalized by different transformations for uLi and dLi, which
are part of the same SU(2)L doublet, QL, so:

(
uILi
dILi

)
= (V †uL)ij

(
uLj

(VuLV
†
dL)jk dLk

)
• Charged current weak interactions become off-diagonal: ↙

↗ CKM matrix

−
g

2
QI
Li
γ
µ
W
a
µ τ

a
Q
I
Li + h.c. ⇒ −

g
√

2

(
uL, cL, tL

)
γ
µ
W

+
µ (VuLV

†
dL

)

 dL

sL

bL

+ h.c.

CPV & CKM
ZL — p.1/7



Aside: counting flavor parameters

• Nonzero Yukawa couplings break flavor symmetries — pattern of masses and
mixings are inherited from the interactions of fermions with the Higgs background

• Quark sector: U(3)Q × U(3)u × U(3)d → U(1) quark (baryon) number

[36 couplings]− [26 broken symmetries] = 10 parameters with physical meaning

= [6 masses] +

parameters in VCKM︷ ︸︸ ︷
[3 angles] + [1 phase]︸ ︷︷ ︸

Single source of CP violation in the quark sector in the SM

• Lepton sector (Majorana ν’s): LY = −Y ij
e LILi φ e

I
Rj −

Y ij
ν

M
L
I
LiL

I
Lj φφ (Y ij

ν = Y ji
ν )

Lepton sector U(3)L × U(3)e completely broken

[30 couplings]− [18 broken symmetries] = 12 parameters with physical meaning

= [6 masses] + [3 angles] + [3CPV phases]︸ ︷︷ ︸
One CPV phase measurable in ν oscillations, others in 0νββ decay

CPV & CKM
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Quark mixing and the unitarity triangle

• The W± couples (u, c, t) and (d, s, b) with strength: (λ ∼ 0.23)

VCKM =

Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb


︸ ︷︷ ︸

CKM matrix

=

 1− 1
2λ

2 λ Aλ3(ρ− iη)

−λ 1− 1
2λ

2 Aλ2

Aλ3(1− ρ− iη) −Aλ2 1

+ . . .

One complex phase in VCKM: only source of CP violation in quark sector
9 complex couplings depend on 4 real parameters⇒ many relations

• Unitarity triangle: simply visualize SM constraints and compare measurements

CPV in SM ∝ Area

Vud V
∗
ub + Vcd V

∗
cb + Vtd V

∗
tb = 0

Sides and angles measurable in many ways

Goal: overconstrain by many measurements
sensitive to different short distance physics

CPV & CKM
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Weak interaction properties

• Only the W± interactions change the type of quarks

Interaction strength is given by Cabibbo-Kobayashi-Maskawa
(CKM) quark mixing matrix, Vij, 3× 3 unitary matrix � �

� �����
��

�� ��	�

 
 
� �
 
 
� �

���
��� � � �

• Flavor changing charged currents at tree level
e.g.: K → ππ or K → π`ν̄

No flavor changing neutral currents (FCNC) at tree level
e.g.: no K0 –K0 mixing, K → µ+µ−, etc.
(Show that Z0 interactions remain flavor conserving in the mass basis)

• FCNC only at loop level in SM; suppressed by (m2
i −m2

j)/m
2
W

e.g.: K0 –K0 mixing used to predict mc before its discovery

• FCNCs probe differences between the generations

�
�
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� �
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Summary — standard model

• The SM is consistent with a vast amount of particle physics phenomena

– special relativity + quantum mechanics

– local symmetry + spontaneous breaking

• “Electroweak symmetry breaking” what breaks SU(2)L × U(1)Y → U(1)EM

What is the physics of Higgs condensate? What generates it? What else is there?

⇒ The LHC will directly address this (produce h)

• “Flavor physics” what breaks U(3)Q × U(3)u × U(3)d → U(1)Baryon

Which interactions distinguish generations (e.g., d, s, b identical if massless)?

How do the fermions see the condensate and the physics associated with it?

⇒ CP violation and flavor changing neutral currents are very sensitive probes

CPV & CKM
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Testing the flavor sector



Spectacular track record

• Most parameters of the SM (and in many of its extensions) are related to flavor

• Flavor physics was crucial to figure out LSM:

– β-decay predicted neutrino (Pauli)

– Absence of KL → µµ predicted charm (GIM)

– εK predicted 3rd generation (KM)

– ∆mK predicted mc (GL)

– ∆mB predicted large mt

• Likely to be important to figure out LLHC too — excellent probes of new physics

If there is NP at the TEV scale, it must have a very special flavor & CP structure

CPV & CKM
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The low energy viewpoint

• At scale mb, flavor changing pro-
cesses are mediated by dozens of
higher dimension operators

Depend only on a few parameters
in the SM⇒ correlations between
s, c, b, t decays

weak / NP scale ∼ 5 GeV

E.g.: in SM ∆md

∆ms

,
b→ dγ

b→ sγ
,
b→ d`+`−

b→ s`+`−
∝
∣∣∣∣VtdVts

∣∣∣∣, but test different short dist. physics

• Does the SM (i.e., integrating out virtual W , Z, and quarks in tree and loop dia-
grams) explain all flavor changing interactions? Right coefficients and operators?
– Changes in correlations (B vs. K constraints, SψKS 6= SφKS, etc.)
– Enhanced or suppressed CP violation (sizable SBs→ψφ or Ab→sγ, etc.)
– Compare tree and loop processes — FCNC’s at unexpected level

CPV & CKM
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How do we know that CP is violated?

• Prior to 1964, the explanation of the large lifetime ratio of the two neutral kaons
was CP symmetry (before 1956, it was C alone...)

|K0〉 = s d , |K0〉 = d s , CP |K0〉 = +|K0〉 (convention dependent)

states of definite CP : |K1,2〉 = 1√
2

(|K0〉 ± |K0〉)

states of definite CP : CP |K1〉 = |K1〉 , CP |K2〉 = −|K2〉

If CP were an exact symmetry:
only K1 → ππ

both K1,2 → πππ

}
⇒ τ(K1)� τ(K2)

• But KL → ππ was observed (1964) at the 10−3 level! (not the goal of the exp!)

η00 = 〈π0π0|H|KL〉
〈π0π0|H|KS〉

η+− = 〈π+π−|H|KL〉
〈π+π−|H|KS〉

εK ≡ 1
3 (η00 + 2η+−) ε′K ≡ 1

3 (η+−− η00)

Took <1 yr to propose superweak, but 9 till KM (before 2nd generation complete!)

CPV & CKM
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∆mK, εK are built in NP models since 70’s

• In the SM: ∆mK ∼ α2
w |VcsVcd|2

m2
c

m4
W

f2
KmK

(severe suppressions!) �� � � � �
� � �

� � � �
� � �

�

����
	���

� � � �
� � �

� � � �
� � �

��� � �

� ���
	���

� �

• If tree-level exchange of a heavy gauge boson was responsible for a significant
fraction of the measured value of ∆mK
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∣∣∣∣M (X)
12

∆mK

∣∣∣∣ ∼ ∣∣∣∣ g2 Λ3
QCD

M2
X ∆mK

∣∣∣∣ ⇒ MX >∼ g × 2 · 103 TeV

Similarly, from B0−B0 mixing: MX >∼ g×3 ·102 TeV

• Or new particles at TeV scale can have large contributions in loops [g ∼ O(10−2)]

(In many scenarios the constraits from kaons are the strongest, since so is the
SM suppression, and these are built into models since the 70’s)
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Aside: K0 –K0 mixing in supersymmetry

• (∆mK)SUSY

(∆mK)exp
∼ 104

(
1 TeV

m̃

)2 (
∆m̃2

12

m̃2

)2
Re
[
(Kd

L)12(Kd
R)12

]
Kd
L(R): mixing in gluino couplings to left-(right-)handed down quarks and squarks

For εK, replace: 104 Re
[
(Kd

L)12(Kd
R)12

]
⇒ 106 Im

[
(Kd

L)12(Kd
R)12

]
• Classes of models to suppress each factors

(i) Heavy squarks: m̃� 1 TeV (e.g., split SUSY)

(ii) Universality: ∆m2
Q̃,D̃
� m̃2 (e.g., gauge mediation)

(iii) Alignment: |(Kd
L,R)12| � 1 (e.g., horizontal symmetries)

• Has driven SUSY model building — all models incorporate some of the above

• D0 –D0 mixing discovery (BaBar & Belle, 2007) ruled out (iii) as sole explanation

CPV & CKM
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Testing CKM with Kaons

• CPV in K system is at the right level (εK accommodated with O(1) CKM phase)

• Hadronic uncertainties preclude precision tests (ε′K notoriously hard to calculate)

• K → πνν: Theoretically clean, but rates small B ∼ 10−10(K±), 10−11(KL)

A ∝


(λ5m2

t ) + i(λ5m2
t ) t : CKM suppressed

(λm2
c) + i(λ5m2

c) c : GIM suppressed
(λΛ2

QCD) u : GIM suppressed

� �� �

�����	��

����	���

� �

� � � �
� �

So far 3 events observed: B(K+ → π+νν̄) = (1.73+1.15
−1.05)× 10−10

Only an upper bound: B(KL → π0νν̄) < (2.6× 10−8 (90% CL)

• Need much higher statistics to make definitive tests

CPV & CKM
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Constraints on CKM matrix

• For 35 years, untill 1999, the only unambiguous measurement of CPV was εK
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• sin 2β = 0.673±0.023 — by now dozens of CPV measurements, so the interesting
question is in which cases can both theory and experiment be precise
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The D meson system

• Complementary to K,B: CPV, FCNC both GIM & CKM suppressed⇒ tiny in SM

– 2007: significance of mixing >5σ [HFAG combination]

– Only meson mixing generated by down-type quarks
(SUSY: up-type squarks)

– SM suppression: ∆mD, ∆ΓD <∼ 10−2 Γ, since doubly-
Cabibbo-suppressed and vanish in flavor SU(3) limit

– CPV (mixing or direct) > 10−3 would be sign of NP

– To do: Precise values of ∆m and ∆Γ?
To do: Is CPV detectable in mixing and decays?
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(x = ∆m/Γ, y = ∆Γ/2Γ)
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The D meson system

• Complementary to K,B: CPV, FCNC both GIM & CKM suppressed⇒ tiny in SM

– 2007: significance of mixing >5σ [HFAG combination]

– Only meson mixing generated by down-type quarks
(SUSY: up-type squarks)

– SM suppression: ∆mD, ∆ΓD <∼ 10−2 Γ, since doubly-
Cabibbo-suppressed and vanish in flavor SU(3) limit

– CPV (mixing or direct) > 10−3 would be sign of NP

– To do: Precise values of ∆m and ∆Γ?
To do: Is CPV detectable in mixing and decays?

|q/p|
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Not yet known if |q/p| ' 1

• Particularly interesting for SUSY: ∆mD and ∆mK ⇒ if first two squark doublets
are within LHC reach, they must be quasi-degenerate (alignment alone not viable)
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Important features of the SM

• All flavor changing processes depend only on a few parameters in the SM
⇒ correlations between large number of s, c, b, t decays

• The SM flavor structure is very special:

– Single source of CP violation in CC interactions

– Suppressions due to hierarchy of mixing angles

– Suppression of FCNC processes (loops)

– Suppression of FCNC chirality flips by quark masses (e.g., SK∗γ)

Many suppressions that NP might not respect⇒ sensitivity to very high scales

• It is interesting and possible to test all of these

CPV & CKM
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What’s special about B’s?

• Large variety of interesting processes:

– Top quark loops neither GIM nor CKM suppressed

– Large CP violating effects possible, some with clean interpretation

– Some of the hadronic physics understood model independently (mb � ΛQCD)

• Experimentally feasible to study:

– Υ(4S) resonance is clean source of B mesons

– Long B meson lifetime

– Timescale of oscillation and decay comparable: ∆m/Γ ' 0.77 [= O(1)]

(and ∆Γ� Γ)

CPV & CKM
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Mixing and CPV in neutral mesons



Neutral meson mixing

• Quantum mechanical two-level system; flavor eigenstates: |B0〉= |bd〉, |B0〉= |bd〉

• Evolution: i d

dt

(|B0(t)〉
|B0(t)〉

)
=

(
M −

i

2
Γ

)(|B0(t)〉
|B0(t)〉

)
Mass eigenstates: |BH,L〉 = p|B0〉 ∓ q|B0〉

b

d

d

b

t

t

W W

b

d

d

b

W

W

t t

M, Γ: 2× 2 Hermitian matrices (CPT implies M11 = M22 and Γ11 = Γ22)

M12 dominated by box diagrams with top quarks⇒ sensitive to high scales

Time dependence involves mixing and decay: |BH,L(t)〉 = e−(iMH,L+ΓH,L/2)t|BH,L〉

• ForBd,s: |Γ12| � |M12| ⇒∆m = 2|M12|, ∆Γ = 2|Γ12| cosφ12, φ12 = arg(−M12/Γ12)

In SM: (q/p)Bd = e−2iβ+conv.dep. +O(10−3) (q/p)Bs = etiny+conv.dep.

• Sizable hadronic uncertainties in ∆m and especially |q/p|, but not in arg(q/p)
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Effective Hamiltonians

• Interactions at high scale (weak or new physics) produce local operators at lower
scales (hadron masses)

Consider, e.g., B0 −B0 mixing:
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t t
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Q(µ) = (bL γν dL) (bL γ
ν dL)

New physics can modify coefficients and/or induce new operators

• Going from operators to observables is equally important

In SM: M12 = (VtbV
∗
td)

2 G
2
F

8π2

M2
W

mB
S

(
m2
t

M2
W

)
ηB bB(µ) 〈B0|Q(µ)|B0〉

what we are after calculable perturbatively nonperturbative

ηB bB(µ) : Resumming αns lnn(mW/µ), where µ ∼ mb, is often very important

〈B0|Q(µ)|B0〉 = 2
3 m

2
B f

2
B

B̂B
bB(µ) : hadronic uncertainties enter here
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Aside: importance of |Γ12| � |M12|

• New physics in mixing modifies M12; new CPV phases may alter φ ≡ arg(q/p)

Observing φ different from the SM prediction may be the best hope to find NP

Bd,s: Γ12 �M12, K: M12 ∼ Γ12, D: Γ12 ∼ or > M12

Solving the eigenvalue equation:

– If ∆m� ∆Γ, the CPV phase can be LARGE: φ = arg(M12) +O(Γ2
12/M

2
12)

– If ∆Γ� ∆m, the CPV phase is SMALL: φ = O(M2
12/Γ

2
12)× sin(2φ12)

• If ∆Γ � ∆m then even if new physics dominates M12, the sensitivity of any
physical observable to it is suppressed by ∆m/∆Γ

• Another reason to pin down ∆mD; while ∆ΓD 6= 0 at > 5σ, ∆mD 6= 0 is barely
more than 2σ — will affect sensitivity to NP
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Bs mixing: Vtd/Vts from ∆ms

• B0
s–B0

s oscillate 25 times on average before they decay — challenge to measure
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Largest uncertainty: ξ =
fBs
√
Bs

fBd

√
Bd

Lattice QCD: ξ = 1.24±0.04±0.06
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CPV in decay

• CPV in decay: simplest form of CPV — count events

|Af/Af | 6= 1: need amplitudes with different weak (φk) & strong (δk) phases

Af = 〈f |H|B〉 =
∑
kAk e

iδk eiφk Af = 〈f |H|B〉 =
∑
kAk e

iδk e−iφk

• Unambiguously established by ε′K 6= 0, and since 2004 also in B decays:

AK−π+ ≡
Γ(B → K−π+)− Γ(B → K+π−)

Γ(B → K−π+) + Γ(B → K+π−)
= −0.098± 0.012

– After “K-superweak”, also “B-superweak” excluded: CPV is not only in mixing

– There are large strong phases (also in B → ψK∗); challenge to some models

• Theoretical understanding for both ε′K and AK−π+ insufficient to either prove or to
rule out that NP enters (3.6σ signal also in B → ρπ)

Sensitive to NP in cases when SM prediction is model independently small

CPV & CKM
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CPV in mixing

• If CP is conserved then physical states are 1√
2

(|B0〉 ± |B0〉), corresponding to
|q/p| = 1 and arg(M12/Γ12) = 0 — CPV if (mass eigenstates) 6= (CP eigenstates)∣∣∣∣pq

∣∣∣∣ 6= 1 ⇒ CPV in mixing occurs iff: 〈BH|BL〉 = |p|2 − |q|2 6= 0

• Simplest example: decay to “wrong sign” lepton (“dimuon asymmetry”)

ASL =
Γ[B0(t)→ `+X]− Γ[B0(t)→ `−X]

Γ[B0(t)→ `+X] + Γ[B0(t)→ `−X]
=
|p/q|2 − |q/p|2

|p/q|2 + |q/p|2
=

1− |q/p|4

1 + |q/p|4
= Im

Γ12

M12

Observed in K decay in agreement with SM — intriguing hint at DØ in Bs mixing

• Large hadronic uncertainties in calculation of Γ12, but interesting to look for NP:

|Γ12/M12| = O(m2
b/m

2
W ) model independently

arg(Γ12/M12) = O(m2
c/m

2
b) in SM, maybe O(1) with NP
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CPV in interference between decay and mixing

• Can get theoretically clean information in some
cases whenB0 andB0 decay to same final state

|BL,H〉 = p|B0〉 ± q|B0〉 λfCP =
q

p

AfCP
AfCP

0B

0B

CPf

q/p

A

A

• Time dependent CP asymmetry:

afCP =
Γ[B0(t)→ f ]− Γ[B0(t)→ f ]

Γ[B0(t)→ f ] + Γ[B0(t)→ f ]
=

2 Imλf
1 + |λf |2︸ ︷︷ ︸

Sf

sin(∆mt)− 1− |λf |2

1 + |λf |2︸ ︷︷ ︸
Cf (−Af)

cos(∆mt)

• If amplitudes with one weak phase dominate a decay, hadronic physics drops out

• Measure a phase in the Lagrangian theoretically cleanly:

afCP = ηfCP sin(phase difference between decay paths) sin(∆mt)

CPV & CKM
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Quantum entanglement in Υ(4S)→ B0B0

• B0B0 pair created in a p-wave (L = 1) evolve coherently and undergo oscillations

Two identical bosons cannot be in an antisymmetric state — if one B decays as
a B0 (B0), then at the same time the other B must be B0 (B0)

• EPR effect used for precision physics:

Measure B decays and ∆z

• First decay ends quantum correlation and tags the flavor of the other B at t = t1

CPV & CKM
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Asymmetric colliders

... to measure time dependence of decay after the collision



Hadron colliders — no quantum correlation

• B0
s with sufficient boost to study CPV at Tevatron & LHC (+ Belle data on rates)

• gg, qq̄ → bb̄: measure flavor of a b hadron, and flavor of B0
s as a function of time

Need excellent time resolution, and fully reconstructed B0
s to know its boost

CPV & CKM
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The cleanest case: B → ψKS

• Interference of B → ψK0 (b→ cc̄s) with B → B → ψK0 (b̄→ cc̄s̄)

Amplitudes with a second weak phase strongly suppressed
(unitarity: VtbV ∗ts + VcbV

∗
cs + VubV

∗
us = 0)

AψKS = VcbV
∗
cs︸ ︷︷ ︸

O(λ2)

〈“T”〉︸ ︷︷ ︸
“1”

+VubV
∗
us︸ ︷︷ ︸

O(λ4)

〈“P”〉︸ ︷︷ ︸
αs(2mc)

First term� second term ⇒ theoretically very clean

SψKS = − sin[(B-mix = −2β) + (decay = 0) + (K-mix = 0)]

Corrections: |A/A| 6= 1 (main uncertainty), εK 6= 0, ∆ΓB 6= 0

Corrections: all are few×10−3 ⇒ accuracy < 1%
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• World average: sin 2β = 0.673± 0.023 — better than 4%!

• Large deviations from CKM excluded (e.g., approximate CP in the sense that all
CPV phases are small)⇒ Look for corrections, rather than alternatives to CKM
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CP violation in B → J/ψKS by the naked eye

• CP violation is an O(1) effect: sin 2β = 0.673± 0.023

afCP =
Γ[B

0
(t)→ ψK]− Γ[B

0
(t)→ ψK]

Γ[B
0
(t)→ ψK] + Γ[B

0
(t)→ ψK]

= sin 2β sin(∆mt)

• CP violation is large in some B decays — in K decays it is small due to small
CKM elements, not because CP violation is generically small

CPV & CKM
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Similarly: βs from Bs→ ψφ

• Next key measurement: time dep. CP asymmetry in Bs → ψφ (analog of sin 2β)

In SM: βs = arg(−VtsV ∗tb/VcsV ∗cb) = 0.019± 0.001

• CDF & DØ hints at possible deviation: The Bs “squashed” UT:
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• No big change in results at ICHEP, no combination yet⇒ key LHCb measurement
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B → φK and Bs→ φφ — window to NP?

• Measuring same angle in decays sensitive to different short distance physics may
give best sensitivity to NP

Amplitudes with one weak phase expected to dominate:

A = VcbV
∗
cs︸ ︷︷ ︸

O(λ2)

[Pc − Pt + Tc]︸ ︷︷ ︸
“1”

+VubV
∗
us︸ ︷︷ ︸

O(λ4)

[Pu − Pt + Tu]︸ ︷︷ ︸
O(1)

SM:SφKS − SψK and CφKS < 0.05

NP: SφKS 6= SψK possible
NP: Expect different Sf for each b→ s mode
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NP could enter SψK mainly in mixing, while SφKS through both mixing and decay

• Interesting to pursue independent of present results — plenty of room left for NP
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Status of sin 2βeff measurements

sin(2β
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• Earlier hints of deviations reduced, e.g., SψK − SφKS = 0.11± 0.17

It is still interesting to significantly reduce these experimental uncertainties
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γ from B±→ DK±

• Tree level: interference of b→ cūs (B− → D0K−) and b→ uc̄s (B− → D0K−)

Extract B & D decay amplitudes from data; many variants depending on D decay

• Problem: large ratio of interfering amplitudes,
sensitivity crucially depends on:

rB = |A(B− → D0K−)/A(B− → D0K−)| ≈ 0.1

• Best measurement so far: D0, D0 → KS π
+π−

– Both amplitudes Cabibbo allowed;
– Can integrate over regions in Dalitz plot
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Full Frequentist treatment on MC basis
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CKM fit

 
WA

More data: besides reducing error of γ, test/refine the D decay model

• Measurement will not be theory limited at any conceived future experiment
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γ: some other methods

• B± → K±D [GLW]: theoretically very clean, experimentally hard
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(only assumes no CPV in D sector)

|A(B+ → K+D0)|
|A(B+ → K+D0|

∼ λ

Nc

• B± → K±(D0, D0)→ K±f [ADS] (f can be two- or multy-body)

Idea: B+ → K+D0 → K+f doubly Cabibbo suppressed

Idea: B+ → K+D0 → K+f Cabibbo allowed

}
comparable
amplitudes

Using n differentB → DKXi decays and k differentD → fj states, n+k unknown
amplitudes and n× k observables; or measure D → f amplitudes separately
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Only LHCb: γ from Bs→ D±s K
∓

• Same weak phase in each Bs, Bs → D±s K
∓ decay⇒ the 4 time dependent rates

determine 2 amplitudes, a strong, and a weak phase (clean, although |f〉 6= |fCP 〉)

Four amplitudes: Bs
A1→ D+

s K
− (b→ cus) , Bs

A2→ K+D−s (b→ ucs)

Four amplitudes: Bs
A1→ D−s K

+ (b→ cus) , Bs
A2→ K−D+

s (b→ ucs)

AD+
s K−

AD+
s K−

=
A1

A2

(
VcbV

∗
us

V ∗ubVcs

)
,

AD−s K+

AD−s K+

=
A2

A1

(
VubV

∗
cs

V ∗cbVus

)
Magnitudes and relative strong phase of A1 and A2 drop out if four time depen-
dent rates are measured⇒ no hadronic uncertainty:

λD+
s K−

λD−s K+ =

(
V ∗tbVts
VtbV ∗ts

)2(
VcbV

∗
us

V ∗ubVcs

)(
VubV

∗
cs

V ∗cbVus

)
= e−2i(γ−2βs−βK)

• Similarly, Bd → D(∗)±π∓ determines γ + 2β, since λD+π− λD−π+ = e−2i(γ+2β)

... ratio of amplitudes O(λ2) ⇒ small asymmetries (tag side interference)
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Constraining new physics



The standard model CKM fit

• Very impressive accomplishments

• Level of agreement between the
measurements often misinterpreted

• Increasing the number of parame-
ters can alter the fit completely

• Plausible TeV scale NP scenarios,
consistent with all low energy data,
w/o minimal flavor violation (MFV)

• CKM is inevitable; the question is
not if it’s correct, but is it sufficient?

γ

γ

α

α
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New physics in B0–B0 mixing

• Assume: (i) 3× 3 CKM matrix is unitary; (ii) Tree-level decays dominated by SM

Concentrate on NP in mixing amplitude; two parameters for each neutral meson:

M12 = MSM
12 r2 e2iθ︸ ︷︷ ︸

easy to relate to data

≡ MSM
12 (1 + h e2iσ)︸ ︷︷ ︸

easy to relate to models

• Tree-level CKM constraints unaffected: |Vub/Vcb| and γ (or π − β − α)

• BB mixing dependent observables sensitive to NP: ∆md,s, Sfi, A
d,s
SL , ∆Γs
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New physics in B0–B0 mixing

• Assume: (i) 3× 3 CKM matrix is unitary; (ii) Tree-level decays dominated by SM

Concentrate on NP in mixing amplitude; two parameters for each neutral meson:

M12 = MSM
12 r2 e2iθ︸ ︷︷ ︸

easy to relate to data

≡ MSM
12 (1 + h e2iσ)︸ ︷︷ ︸

easy to relate to models

• Tree-level CKM constraints unaffected: |Vub/Vcb| and γ (or π − β − α)

• BB mixing dependent observables sensitive to NP: ∆md,s, Sfi, A
d,s
SL , ∆Γs

∆mBq = r2
q ∆mSM

Bq
= |1 + hqe

2iσq|∆mSM
q

SψK = sin(2β + 2θd) = sin[2β + arg(1 + hde
2iσd)] Sρρ = sin(2α− 2θd)

Sψφ = sin(2βs − 2θs) = sin[2βs − arg(1 + hse
2iσs)]

Aq
SL = Im

(
Γq12

Mq
12r

2
q e

2iθq

)
= Im

[
Γq12

Mq
12(1 + hqe2iσq)

]
∆ΓCPs = ∆ΓSM

s cos2 2θs
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Constraints on new physics in B0
d mixing

• Overconstraining measurements (tree vs. loop) are crucial to bound new physics
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ντ →w/o B 

ρ, η determined from
(effectively) tree level
and loop-induced pro-
cesses, separately

M12 = MSM
12 (1 + he2iσ)

a
Only the SM-like region is allowed,
even in the presence of NP in mixing

NP ∼ SM is still allowed, approaching
NP� SM unless σd = 0 (mod π/2)

• What we really want to know: assume h ∼ (4πv/Λflav.)
2, is then Λflav. � ΛEWSB?
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The one-page summary of BaBar & Belle

• Strong constraints on NP in many FCNC amplitudes — much more progress in
this and more interesting than just the uncertainties of the SM parameters

Qualitative change before vs. after 2004 — the justification of the Nobel Prize in my mind
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M12 = MSM
12 (rd e

2iθd) = MSM
12 (1 + hd e

2iσd)

• Despite huge progress∼20% NP contribution to most loop processes still allowed
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Summary

• The SM flavor sector is tested with impressive & increasing precision
KM phase is the dominant source of CP violation in flavor changing processes

• The point is not just to measure magnitudes and phases of CKM elements (or ρ, η
and α, β, γ), but to probe the flavor sector by overconstraining it in many ways

• Measurements probe scales�1 TeV; sensitivity limited by statistics, not theory

• New physics in most FCNC processes may still be >∼10% of the SM contributions

• Few hints of discrepancies — existing data could have shown NP, and a lot more
is needed to achieve theoretical limits
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