CP violation and CKM

Zoltan Ligeti

(ligeti@lbl.gov)

Lawrence Berkeley National Laboratory

5 - 10 septembre 2010 Besse-et-Saint-Anastaise Ecole de Physique des Particules Organisation LPC Germani-Farand Lourdes Violation de CP et OKM (Théorie): Ikaros Bigi Méthodes numériques de QCD : Olivier Pène Méthodes analytiques de QCD : Sébastien Descotes-Genon Saveurs lourdes et nouvelle physique: Tobias Hurth Violation de CP et OKM (Expérience) : Stéphane Monteil Les désintégrations rares : Patrick Koppenburg Inscription avant le : 9 juillet 2010 Contact: glf2010gclermont.in2p3.fr http://air2010.in2p3.fr

Besse-et-Saint-Anastaise, Sep 5-10, 2010

CP violation and CKM

(in the next decade)

Zoltan Ligeti

(ligeti@lbl.gov)

Lawrence Berkeley National Laboratory

5 - 10 septembre 2010 Besse-et-Saint-Anastaise Ecole de Physique des Particules Organisation LPC Germani-Farand Lourdes ion de CP et OKM (Théorie): Ikaros Big Méthodes numériques de QCD : Olivier Pène Méthodes analytiques de QCD : Sébastien Descotes-Genor Saveurs lourdes et nouvelle physique : Tobias Hurth Violation de CP et OKM (Expérience) : Stéphane Monteil Inscription avant le : 9 juillet 2010 Contact: gl/2010gclermont.in2p3.fr http://air2010.in2p3.fr

Besse-et-Saint-Anastaise, Sep 5-10, 2010

Flavor Physics

in the next decade

Zoltan Ligeti

(ligeti@lbl.gov)

Lawrence Berkeley National Laboratory

5 - 10 septembre 2010 Besse-et-Saint-Anastaise Ecole de Physique des Particules Organisation LPC Germani-Farand Lourdes Violation de CP et OKM (Théorie): Ikaros Bigi Méthodes numériques de QCD : Olivier Pène Méthodes analytiques de QCD : Sébastien Descotes-Genor Saveurs lourdes et nouvelle physique : Tobias Hurth Violation de CP et OKM (Expérience) : Stéphane Monteil Inscription avant le : 9 juillet 2010 Contact: gl/2010gclermont.in2p3.fr http://air2010.in2p3.fr

Besse-et-Saint-Anastaise, Sep 5-10, 2010

Every end is a new beginning...

- Past: Ten years ago we did not know that the CKM picture was (essentially) correct $\mathcal{O}(1)$ deviations in CP violation were possible
- End: Nobel Prize in 2008 is formal recognition that the KM phase is esablished as the dominant source of CPV in flavor changing transitions of quarks
- Present: No significant deviations from SM

"for the discovery of the origin of the broken symmetry which predicts the existence of at least three families of quarks in nature"

- ullet Begin: Looking for corrections to the SM picture of flavor and CP violation
- Future: What can flavor physics teach us about beyond SM physics?

What is particle physics?

Central question:

$$\mathcal{L} = ?$$

... What are the elementary degrees of freedom and how do they interact?

What is particle physics?

Central question:

$$\mathcal{L} = ?$$

... What are the elementary degrees of freedom and how do they interact?

- Most of the observed phenomena consistent with the standard model (SM)
- Clearest empirical evidence that SM is incomplete:
 - Dark matter
 - Baryon asymmetry of the Universe
 - Neutrino mass [can add in straightforward (albeit unnatural) way]
 - Dark energy [cosmological constant? need to know more to understand?]
 - Hierarchy problem [is there an elementary Higgs? why so light? aesthetical?]

What is dark matter?

- Overwhelming evidence for DM: rotation curves, gravitational lensing, cosmology
- It cannot be a SM particle

Know: non-baryonic (BBN), long lived, neutral (charge, color), abundance Don't know: interactions, mass, quantum numbers, one/many species

- Maybe thermal relic of early universe: weakly interacting massive particle (WIMP)
- Required WIMP interaction strength is at TeV scale LHC may directly probe it

Matter-antimatter asymmetry

Gravity, electromagnetism, strong interaction are same for matter and antimatter

Soon after the big bang, quarks and antiquarks were in thermal equilibrium

$$rac{N({
m baryon})}{N({
m photon})} \sim 10^{-9} \ \Rightarrow \ rac{N_q - N_{\overline{q}}}{N_q + N_{\overline{q}}} \sim 10^{-9}$$
 at $t < 10^{-6}\,{
m s}$ ($T > 1\,{
m GeV}$)

ullet The SM prediction is 10^{10} times smaller

Solution may lie at the TeV scale
 May learn about it at the LHC and from precision flavor physics measurements

Discrete symmetries: P, C, and T

- Discovering "new" symmetries / violation of "old" symmetries often lead to more fundamental understanding — may imply presence of new interactions
- $P = \text{parity } (\vec{x} \leftrightarrow -\vec{x})$
 - C = charge conjugation (particle \leftrightarrow antiparticle)
 - T= time reversal ($t\leftrightarrow -t$, initial \leftrightarrow final states)

CPT cannot be violated in a relativistically covariant local quantum field theory

Discrete symmetries: P, C, and T

- Discovering "new" symmetries / violation of "old" symmetries often lead to more fundamental understanding — may imply presence of new interactions
- $P = \text{parity } (\vec{x} \leftrightarrow -\vec{x})$
 - C = charge conjugation (particle \leftrightarrow antiparticle)
 - $T = \text{time reversal } (t \leftrightarrow -t, \text{ initial} \leftrightarrow \text{final states})$
 - CPT cannot be violated in a relativistically covariant local quantum field theory

Discrete symmetries: P, C, and T

- Discovering "new" symmetries / violation of "old" symmetries often lead to more fundamental understanding — may imply presence of new interactions
- $P = \text{parity } (\vec{x} \leftrightarrow -\vec{x})$
 - C = charge conjugation (particle \leftrightarrow antiparticle)
 - $T = \text{time reversal } (t \leftrightarrow -t, \text{ initial} \leftrightarrow \text{final states})$
 - CPT cannot be violated in a relativistically covariant local quantum field theory
- Only ν_L and $\bar{\nu}_R$ participate in weak interaction (1956) Weak interactions maximally violate C and P (\Rightarrow Nobel prize 1957)
 - $lackbox{ iny }CP$ conservation was widely believed / assumed

Telling matter from anti-matter

• CP violation well established in kaon decays since 1964 (\Rightarrow Nobel prize 1980) Roughly consistent with SM, but theoretical uncertainties preclude precision tests

Simplest example: $\Gamma(K_L^0 \to e^+ + X) > \Gamma(K_L^0 \to e^- + X)$

Can "define" matter: smaller probability to produce e^- than e^+ in K_L decay

Telling matter from anti-matter

• CP violation well established in kaon decays since 1964 (\Rightarrow Nobel prize 1980) Roughly consistent with SM, but theoretical uncertainties preclude precision tests

Simplest example: $\Gamma(K_L^0 \to e^+ + X) > \Gamma(K_L^0 \to e^- + X)$

Can "define" matter: smaller probability to produce e^- than e^+ in K_L decay

"Practical" issues:

Can tell if spaceship is made of matter or anti-matter... to avoid annihilation

Matter / antimatter are distinguishable

Matter-antimatter asymmetry

- How could $\frac{N(\text{baryon})}{N(\text{photon})} \sim 10^{-9}$ be generated dynamically?
- Sakharov conditions:
 - baryon number violating interactions
 - 2. C and CP violation
 - 3. deviation from thermal equilibrium
- SM contains 1-3, but:
 - i. *CP* violation is too small
 - ii. deviation from thermal equilibrium too small at electroweak phase transition
- New TeV-scale physics can enhance both (e.g., SUSY)
- What is the microscopic theory of CP violation? How can we test it?

Outline (1)

Brief introduction to the standard model

Weak interactions, flavor, CKM

Testing the flavor sector

Bits of history, K decays, recent D mixing results

Mixing and CPV in neutral mesons

Types of CPV, how to get clean information

Examples: β from $B \to \psi K_s$, ϕK , $B_s \to \phi \phi$; γ from $B \to DK$ and $B_s \to D_s^{\pm} K^{\mp}$

Constraining new physics in mixing

Sizable corrections to the SM are still allowed

Outline (2-3)

- Isospin and SU(3): α from $B \to \pi\pi$ and $\rho\rho$
- Heavy quark symmetry and OPE Spectroscopy, exclusive / inclusive decays, $|V_{cb}|$, $|V_{ub}|$ Rare decays, $B \to X_s \gamma$, and friends
- Nonleptonic decays, factorization
 B decays to final states with & without charm
- Flavor symmetries and new physics
- Lepton flavor violation
- FCNC top decays
- Minimal flavor violation Flavor at high- p_T
- Conclusions

Preliminaries

Dictionary: SM = standard model NP = new physics

CPV = CP violation UT = unitarity triangle

- Disclaimers: I will not talk about: the strong CP problem $\frac{\theta_{\rm QCD}}{16\pi^2}F_{\mu\nu}\widetilde{F}^{\mu\nu}$ lattice QCD detailed new physics scenarios
- Most importantly: If I do not talk about your favorite decay mode [the one you are working on...], it does not mean that I think it's not important!
- Many books and reviews, e.g.:
 - G. Branco, L. Lavoura and J. Silva, CP Violation, Clarendon Press, Oxford, UK (1999)
 - Y. Grossman, ZL, Y. Nir, arXiv:0904.4262; A. Hocker, ZL, hep-ph/0605217; ZL, hep-lat/0601022

The Standard Model briefly

Ingredients of a model

- Need to specify: (i) gauge (local) symmetries
 - (ii) representations of fermions and scalars
 - (iii) vacuum spontaneous symmetry breaking
- $\mathcal{L}=$ all gauge invariant terms (renormalizable, $d\leq 4$)

Everything follows, after a finite number of parameters are fixed from experiments

- Implicit assumptions: Lorentz symmetry and QFT; No global symmetries imposed; Accidental symmetries can arise in absence of higher dimension terms
- Higher dimension terms are suppressed at low energies
 (We are modest and not worry about details of physics we cannot probe)

If higher dimension operators are present \Rightarrow new physics at a higher scale

Standard model tidbits

• Gauge symmetry: $SU(3)_c \times SU(2)_L \times U(1)_Y$ (internal symmetry made local)

"forces" strong & electroweak interactions

Carriers: 8 gluons, W^{\pm} , Z^{0} , γ

Particle content: 3 generations of fermions (indistinguishable to start)

"charges" quarks:
$$\begin{pmatrix} u & c & t \\ d & s & b \end{pmatrix}$$
 leptons: $\begin{pmatrix} \nu_e & \nu_\mu & \nu_\tau \\ e & \mu & \tau \end{pmatrix}$ [spin- $\frac{1}{2}$] 3 colors, strong int.

• Symmetry breaking: $SU(2)_L \times U(1)_Y \rightarrow U(1)_{\rm EM}$

Nonzero vev of an
$$SU(2)$$
 doublet scalar: $\langle \phi \rangle = \begin{pmatrix} 0 \\ v/\sqrt{2} \end{pmatrix}$

• Strongly interacting particles observed in Nature have no color; quarks confined mesons: $\pi^+(u\bar{d}), K^0(\bar{s}d), B^0(\bar{b}d), B^0_s(\bar{b}s);$ baryons: p(uud), n(udd)

[spin-1]

The identities of quarks

- Hamiltonian \Rightarrow want to determine eigenstates, eigenenergies
 - Degeneracy = unresolved ambiguity in naming things
 - degeneracy broken by perturbations ⇒ "good" states
 - degeneracy unbroken ⇒ symmetry?

Some perturbations break degeneracies and assign identities

- The quantum numbers of u, c, t are identical, so are those of d, s, b
 - Degeneracy under choosing "good" combinations: $\widetilde{q}^{i} = \sum_{j} U_{ij} q^{j}$
 - Ambiguity in assigning identities to particles: are q^i or \tilde{q}^i fundamental?
- Degeneracy broken by quark masses where do they come from?
 - [Only known difference between the 3 generations of particles \Rightarrow "flavor physics"]

Masses of elementary particles

• Quark and lepton representations of $SU(3)_c \times SU(2)_L \times U(1)_Y$

quarks:
$$\left[Q_L(3,2)_{1/6}, u_R(3,1)_{2/3}, d_R(3,1)_{-1/3}\right] \times 3$$
 copies

leptons:
$$[L_L(1,2)_{-1/2}, \ell_R(1,1)_{-1}] \times 3$$
 copies

$$[\nu_R(1,1)_0?]$$

• Problem: SM gauge symmetries forbid $m \bar{\psi} \psi$ fermion mass terms (also W^{\pm}, Z^0)

Loophole: the vacuum can also be charged

"Higgs condensate" has $SU(2) \times U(1)$ charge (also gives mass to W^{\pm}, Z^0 , but not to γ)

- Mass is an interaction with something unknown
- Simplest explicit model: Higgs $= SU(2)_L$ doublet scalar field after it acquires a vev \Rightarrow one physical Higgs boson

The missing piece: Higgs

• In the SM: $m_H < 1 \,\mathrm{TeV}$

No known spin-0 elementary particles

Electroweak precision measurements \Rightarrow (LEP, SLC, Tevatron): $m_H \lesssim 200 \, \mathrm{GeV}$

- If H has SM-like production cross sections and decays, the LHC will find it
- Quark masses: couplings to Higgs

Terms in the SM Lagrangian

- Kinetic terms: $\mathcal{L}_{\rm kin} = -\frac{1}{4} \sum_{\rm groups} (F_{\mu\nu}^a)^2 + \sum_{\rm rep's} \overline{\psi} \, i \not\!\!D \, \psi$ (3 param's: g, g', g_s) always CPC (ignoring $F\widetilde{F}$)
- Higgs terms: $\mathcal{L}_{\mathrm{Higgs}} = |D_{\mu}\phi|^2 + \mu^2\phi^{\dagger}\phi \lambda(\phi^{\dagger}\phi)^2$ (2 param's; $v^2 = \mu^2/\lambda$) CPC if \exists only one Higgs doublet CPV possible with extended Higgs sector
- Yukawa couplings in interaction basis: (this is where flavor is)

$$\mathcal{L}_Y = -Y_{ij}^d \, \overline{Q_{Li}^I} \, \phi \, d_{Rj}^I - Y_{ij}^u \, \overline{Q_{Li}^I} \, \widetilde{\phi} \, u_{Rj}^I - Y_{ij}^\ell \, \overline{L_{Li}^I} \, \phi \, \ell_{Rj}^I + \text{h.c.}$$

$$i, j \sim \text{generations} \\ (\text{cannot write such mass term for } \nu_i) \\ = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \phi^*$$

• CPV is related to unremovable phases of Yukawa couplings:

Yukawa couplings and CKM matrix

ullet SM is the simplest scenario: Higgs background = single scalar field ϕ

$$\mathcal{L}_{Y} = -Y_{u}^{ij} \, \overline{Q_{Li}^{I}} \, \widetilde{\phi} \, u_{Rj}^{I} - Y_{d}^{ij} \, \overline{Q_{Li}^{I}} \, \phi \, d_{Rj}^{I} \qquad \qquad \widetilde{\phi} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \phi^{*}$$

• $Y_{u,d}^{ij} = 3 \times 3$ are complex matrices \Rightarrow mass terms after ϕ acquires VEV

$$\mathcal{L}_{\text{mass}} = -M_u^{ij} \, \overline{u_{Li}^I} \, u_{Rj}^I - M_d^{ij} \, \overline{d_{Li}^I} \, d_{Rj}^I \,, \qquad M_{u,d} \propto Y_{u,d}$$

Diagonalize: $M_f^{\mathrm{diag}} \equiv V_{fL} M_f V_{fR}^{\dagger}$ (f = u, d)

Mass eigenstates: $f_{Li} \equiv V_{fL}^{ij} f_{Lj}^{I}$, $f_{Ri} \equiv V_{fR}^{ij} f_{Rj}^{I}$

- Mass matrices diagonalized by different transformations for u_{Li} and d_{Li} , which are part of the same $SU(2)_L$ doublet, Q_L , so: $\begin{pmatrix} u_{Li}^I \\ d_{Li}^I \end{pmatrix} = (V_{uL}^\dagger)_{ij} \begin{pmatrix} u_{Lj} \\ (V_{uL}V_{dL}^\dagger)_{jk} \ d_{Lk} \end{pmatrix}$
- Charged current weak interactions become off-diagonal: CKM matrix

$$-\frac{g}{2}\overline{Q_{Li}^{I}}\gamma^{\mu}W_{\mu}^{a}\tau^{a}Q_{Li}^{I} + \text{h.c.} \Rightarrow -\frac{g}{\sqrt{2}}\left(\overline{u_{L}}, \overline{c_{L}}, \overline{t_{L}}\right)\gamma^{\mu}W_{\mu}^{+}(V_{uL}V_{dL}^{\dagger})\begin{pmatrix} d_{L} \\ s_{L} \\ b_{L} \end{pmatrix} + \text{h.c.}$$

Aside: counting flavor parameters

- Nonzero Yukawa couplings break flavor symmetries pattern of masses and mixings are inherited from the interactions of fermions with the Higgs background
- Quark sector: $U(3)_Q \times U(3)_u \times U(3)_d \rightarrow U(1)$ quark (baryon) number

[36 couplings] - [26 broken symmetries] = 10 parameters with physical meaning = [6 masses] + [3 angles] + [1 phase]

Single source of CP violation in the quark sector in the SM

Lepton sector (Majorana ν 's): $\mathcal{L}_Y = -Y_e^{ij} \, \overline{L_{Li}^I} \, \phi \, e_{Rj}^I - \frac{Y_\nu^{ij}}{M} \, L_{Li}^I L_{Lj}^I \, \phi \, \phi$ $(Y_\nu^{ij} = Y_\nu^{ji}) \, U(3)_L \times U(3)_e$ completely broken

[30 couplings] - [18 broken symmetries] = 12 parameters with physical meaning = [6 masses] + [3 angles] + [3 CPV phases]

One CPV phase measurable in ν oscillations, others in $0\nu\beta\beta$ decay

Quark mixing and the unitarity triangle

• The W^{\pm} couples (u, c, t) and (d, s, b) with strength:

$$(\lambda \sim 0.23)$$

$$V_{
m CKM} = \underbrace{ egin{pmatrix} V_{ud} & V_{us} & V_{ub} \ V_{cd} & V_{cs} & V_{cb} \ V_{td} & V_{ts} & V_{tb} \ \end{pmatrix}}_{
m CKM\ matrix} = egin{pmatrix} 1 - rac{1}{2}\lambda^2 & \lambda & A\lambda^3(
ho - i\eta) \ -\lambda & 1 - rac{1}{2}\lambda^2 & A\lambda^2 \ A\lambda^3(1 -
ho - i\eta) & -A\lambda^2 & 1 \ \end{pmatrix} + \dots$$

One complex phase in V_{CKM} : only source of CP violation in quark sector 9 complex couplings depend on 4 real parameters \Rightarrow many relations

Unitarity triangle: simply visualize SM constraints and compare measurements

$$V_{ud} V_{ub}^* + V_{cd} V_{cb}^* + V_{td} V_{tb}^* = 0$$

Sides and angles measurable in many ways

Goal: overconstrain by many measurements sensitive to different short distance physics

Weak interaction properties

• Only the W^{\pm} interactions change the type of quarks
Interaction strength is given by Cabibbo-Kobayashi-Maskawa (CKM) quark mixing matrix, V_{ij} , 3×3 unitary matrix

Flavor changing charged currents at tree level

e.g.:
$$K \to \pi\pi$$
 or $K \to \pi\ell\bar{\nu}$

No flavor changing neutral currents (FCNC) at tree level

e.g.: no
$$K^0 - \overline{K}^0$$
 mixing, $K \to \mu^+ \mu^-$, etc.

(Show that \mathbb{Z}^0 interactions remain flavor conserving in the mass basis)

FCNCs probe differences between the generations

Summary — standard model

- The SM is consistent with a vast amount of particle physics phenomena
 - special relativity + quantum mechanics
 - local symmetry + spontaneous breaking
- "Electroweak symmetry breaking" what breaks $SU(2)_L \times U(1)_Y \to U(1)_{\rm EM}$ What is the physics of Higgs condensate? What generates it? What else is there? \Rightarrow The LHC will directly address this (produce h)
- "Flavor physics" what breaks $U(3)_Q \times U(3)_u \times U(3)_d \to U(1)_{Baryon}$ Which interactions distinguish generations (e.g., d, s, b identical if massless)? How do the fermions see the condensate and the physics associated with it? $\Rightarrow CP$ violation and flavor changing neutral currents are very sensitive probes

Testing the flavor sector

Spectacular track record

- Most parameters of the SM (and in many of its extensions) are related to flavor
- Flavor physics was crucial to figure out $\mathcal{L}_{\mathrm{SM}}$:
 - β -decay predicted neutrino (Pauli)
 - Absence of $K_L \to \mu\mu$ predicted charm (GIM)
 - ϵ_K predicted 3rd generation (KM)
 - Δm_K predicted m_c (GL)
 - Δm_B predicted large m_t
- Likely to be important to figure out \mathcal{L}_{LHC} too excellent probes of new physics If there is NP at the TEV scale, it must have a very special flavor & CP structure

The low energy viewpoint

• At scale m_b , flavor changing processes are mediated by dozens of higher dimension operators

Depend only on a few parameters in the SM \Rightarrow correlations between s, c, b, t decays

E.g.: in SM
$$\frac{\Delta m_d}{\Delta m_s}$$
, $\frac{b \to d\gamma}{b \to s\gamma}$, $\frac{b \to d\ell^+\ell^-}{b \to s\ell^+\ell^-} \propto \left| \frac{V_{td}}{V_{ts}} \right|$, but test different short dist. physics

- Does the SM (i.e., integrating out virtual W, Z, and quarks in tree and loop diagrams) explain all flavor changing interactions? Right coefficients and operators?
 - Changes in correlations (B vs. K constraints, $S_{\psi K_S} \neq S_{\phi K_S}$, etc.)
 - Enhanced or suppressed CP violation (sizable $S_{B_s \to \psi \phi}$ or $A_{b \to s \gamma}$, etc.)
 - Compare tree and loop processes FCNC's at unexpected level

How do we know that *CP* is violated?

 Prior to 1964, the explanation of the large lifetime ratio of the two neutral kaons was CP symmetry (before 1956, it was C alone...)

$$|K^0\rangle=\overline{s}\,d\,, \qquad |\overline{K}^0\rangle=\overline{d}\,s\,, \qquad CP|K^0\rangle=+|\overline{K}^0\rangle \qquad \text{(convention dependent)}$$

states of definite
$$CP$$
: $|K_{1,2}\rangle=\frac{1}{\sqrt{2}}\left(|K^0\rangle\pm|\overline{K}^0\rangle\right)$
$$CP|K_1\rangle=|K_1\rangle\,,\qquad CP|K_2\rangle=-|K_2\rangle$$

• But $K_L \to \pi\pi$ was observed (1964) at the 10^{-3} level! (not the goal of the exp!)

$$\eta_{00} = \frac{\langle \pi^0 \pi^0 | \mathcal{H} | K_L \rangle}{\langle \pi^0 \pi^0 | \mathcal{H} | K_S \rangle} \quad \eta_{+-} = \frac{\langle \pi^+ \pi^- | \mathcal{H} | K_L \rangle}{\langle \pi^+ \pi^- | \mathcal{H} | K_S \rangle} \quad \epsilon_K \equiv \frac{1}{3} \left(\eta_{00} + 2 \eta_{+-} \right) \quad \epsilon_K' \equiv \frac{1}{3} \left(\eta_{+-} - \eta_{00} \right)$$

Took < 1 yr to propose superweak, but 9 till KM (before 2nd generation complete!)

Δm_K , ϵ_K are built in NP models since 70's

• In the SM: $\Delta m_K \sim \alpha_w^2 \, |V_{cs} V_{cd}|^2 \, \frac{m_c^2}{m_W^4} \, f_K^2 \, m_K$

(severe suppressions!)

• If tree-level exchange of a heavy gauge boson was responsible for a significant fraction of the measured value of Δm_K

$$\left| \frac{M_{12}^{(X)}}{\Delta m_K} \right| \sim \left| \frac{g^2 \Lambda_{\text{QCD}}^3}{M_X^2 \Delta m_K} \right| \implies M_X \gtrsim g \times 2 \cdot 10^3 \text{ TeV}$$

Similarly, from $B^0 - \overline{B}{}^0$ mixing: $M_X \gtrsim g \times 3 \cdot 10^2 \text{ TeV}$

ullet Or new particles at TeV scale can have large contributions in loops $[g \sim \mathcal{O}(10^{-2})]$

(In many scenarios the constraits from kaons are the strongest, since so is the SM suppression, and these are built into models since the 70's)

Aside: $K^0 - \overline{K}^0$ mixing in supersymmetry

•
$$\frac{(\Delta m_K)^{\text{SUSY}}}{(\Delta m_K)^{\text{exp}}} \sim 10^4 \left(\frac{1 \text{ TeV}}{\tilde{m}}\right)^2 \left(\frac{\Delta \tilde{m}_{12}^2}{\tilde{m}^2}\right)^2 \text{Re}\left[(K_L^d)_{12}(K_R^d)_{12}\right]$$

 $K^d_{L(R)}$: mixing in gluino couplings to left-(right-)handed down quarks and squarks

For
$$\epsilon_K$$
, replace: $10^4 \operatorname{Re} \left[(K_L^d)_{12} (K_R^d)_{12} \right] \Rightarrow 10^6 \operatorname{Im} \left[(K_L^d)_{12} (K_R^d)_{12} \right]$

- Classes of models to suppress each factors
 - (i) Heavy squarks: $\tilde{m} \gg 1 \, \mathrm{TeV}$ (e.g., split SUSY)
 - (ii) Universality: $\Delta m_{\tilde{Q},\tilde{D}}^2 \ll \tilde{m}^2$ (e.g., gauge mediation)
 - (iii) Alignment: $|(K_{L,R}^d)_{12}| \ll 1$ (e.g., horizontal symmetries)
- Has driven SUSY model building all models incorporate some of the above
- $D^0 \overline{D}{}^0$ mixing discovery (BaBar & Belle, 2007) ruled out (iii) as sole explanation

Testing CKM with Kaons

- CPV in K system is at the right level (ϵ_K accommodated with $\mathcal{O}(1)$ CKM phase)
- Hadronic uncertainties preclude precision tests (ϵ'_{K} notoriously hard to calculate)
- $K \to \pi \nu \overline{\nu}$: Theoretically clean, but rates small $\mathcal{B} \sim 10^{-10} (K^{\pm}), 10^{-11} (K_L)$

$$\mathcal{A} \propto \begin{cases} (\lambda^5 \, m_t^2) + i (\lambda^5 \, m_t^2) & t : \mathsf{CKM} \; \mathsf{suppressed} \\ (\lambda \, m_c^2) + i (\lambda^5 \, m_c^2) & c : \mathsf{GIM} \; \mathsf{suppressed} \\ (\lambda \, \Lambda_{\mathrm{QCD}}^2) & u : \mathsf{GIM} \; \mathsf{suppressed} \end{cases} \underbrace{ \begin{matrix} w \\ v \end{matrix}_{u,c,t} \end{matrix}_{u,c,t} }^{s} \underbrace{ \begin{matrix} u,c,t \\ w \end{matrix}_{v} \end{matrix}_{u}$$

So far 3 events observed: $\mathcal{B}(K^+ \to \pi^+ \nu \bar{\nu}) = (1.73^{+1.15}_{-1.05}) \times 10^{-10}$

Only an upper bound: $\mathcal{B}(K_L \to \pi^0 \nu \bar{\nu}) < (2.6 \times 10^{-8})$ (90% CL)

Need much higher statistics to make definitive tests

Constraints on CKM matrix

• For 35 years, untill 1999, the only unambiguous measurement of CPV was ϵ_K

• $\sin 2\beta = 0.673 \pm 0.023$ — by now dozens of CPV measurements, so the interesting question is in which cases can both theory and experiment be precise

The D meson system

- Complementary to K, B: CPV, FCNC both GIM & CKM suppressed \Rightarrow tiny in SM
 - 2007: significance of mixing $> 5\sigma$ [HFAG combination]
 - Only meson mixing generated by down-type quarks (SUSY: up-type squarks)
 - SM suppression: Δm_D , $\Delta \Gamma_D \lesssim 10^{-2} \, \Gamma$, since doubly-Cabibbo-suppressed and vanish in flavor SU(3) limit
 - CPV (mixing or direct) $> 10^{-3}$ would be sign of NP

$$(x = \Delta m/\Gamma, y = \Delta \Gamma/2\Gamma)$$

The D meson system

- Complementary to K, B: CPV, FCNC both GIM & CKM suppressed \Rightarrow tiny in SM
 - 2007: significance of mixing $> 5\sigma$ [HFAG combination]
 - Only meson mixing generated by down-type quarks (SUSY: up-type squarks)
 - SM suppression: Δm_D , $\Delta \Gamma_D \lesssim 10^{-2} \, \Gamma$, since doubly-Cabibbo-suppressed and vanish in flavor SU(3) limit
 - CPV (mixing or direct) $> 10^{-3}$ would be sign of NP
 - To do: Precise values of Δm and $\Delta \Gamma$? Is CPV detectable in mixing and decays?

Not yet known if $|q/p| \simeq 1$

• Particularly interesting for SUSY: Δm_D and $\Delta m_K \Rightarrow$ if first two squark doublets are within LHC reach, they must be quasi-degenerate (alignment alone not viable)

Important features of the SM

- All flavor changing processes depend only on a few parameters in the SM
 - \Rightarrow correlations between large number of s, c, b, t decays
- The SM flavor structure is very special:
 - Single source of CP violation in CC interactions
 - Suppressions due to hierarchy of mixing angles
 - Suppression of FCNC processes (loops)
 - Suppression of FCNC chirality flips by quark masses (e.g., $S_{K^*\gamma}$)

Many suppressions that NP might not respect ⇒ sensitivity to very high scales

It is interesting and possible to test all of these

What's special about B's?

- Large variety of interesting processes:
 - Top quark loops neither GIM nor CKM suppressed
 - Large CP violating effects possible, some with clean interpretation
 - Some of the hadronic physics understood model independently $(m_b \gg \Lambda_{\rm QCD})$
- Experimentally feasible to study:
 - $\Upsilon(4S)$ resonance is clean source of B mesons
 - Long B meson lifetime
 - Timescale of oscillation and decay comparable: $\Delta m/\Gamma \simeq 0.77\, [=\mathcal{O}(1)]$ (and $\Delta\Gamma \ll \Gamma$)

Mixing and CPV in neutral mesons

Neutral meson mixing

- Quantum mechanical two-level system; flavor eigenstates: $|B^0\rangle = |\overline{b}d\rangle$, $|\overline{B}^0\rangle = |b\overline{d}\rangle$
- Evolution: $i\frac{\mathrm{d}}{\mathrm{d}t} \begin{pmatrix} |B^0(t)\rangle \\ |\overline{B}^0(t)\rangle \end{pmatrix} = \left(M \frac{i}{2}\Gamma\right) \begin{pmatrix} |B^0(t)\rangle \\ |\overline{B}^0(t)\rangle \end{pmatrix}$ $= \left(M \frac{i}{2}\Gamma\right) \begin{pmatrix} |B^0(t)\rangle \\ |\overline{B}^0(t)\rangle \end{pmatrix}$

Mass eigenstates: $|B_{H,L}\rangle = p|B^0\rangle \mp q|\overline{B}^0\rangle$

 M, Γ : 2×2 Hermitian matrices (CPT implies $M_{11} = M_{22}$ and $\Gamma_{11} = \Gamma_{22}$)

 M_{12} dominated by box diagrams with top quarks \Rightarrow sensitive to high scales

Time dependence involves mixing and decay: $|B_{H,L}(t)\rangle = e^{-(iM_{H,L}+\Gamma_{H,L}/2)t}|B_{H,L}\rangle$

• For $B_{d,s}$: $|\Gamma_{12}| \ll |M_{12}| \Rightarrow \Delta m = 2|M_{12}|$, $\Delta \Gamma = 2|\Gamma_{12}|\cos\phi_{12}$, $\phi_{12} = \arg(-M_{12}/\Gamma_{12})$

In SM: $(q/p)_{B_d} = e^{-2i\beta + \text{conv.dep.}} + \mathcal{O}(10^{-3})$ $(q/p)_{B_s} = e^{\text{tiny} + \text{conv.dep.}}$

• Sizable hadronic uncertainties in Δm and especially |q/p|, but not in $\arg(q/p)$

Effective Hamiltonians

 Interactions at high scale (weak or new physics) produce local operators at lower scales (hadron masses)

New physics can modify coefficients and/or induce new operators

Going from operators to observables is equally important

In SM:
$$M_{12} = (V_{tb}V_{td}^*)^2 \frac{G_F^2}{8\pi^2} \frac{M_W^2}{m_B} S\left(\frac{m_t^2}{M_W^2}\right) \eta_B \, b_B(\mu) \, \langle B^0|Q(\mu)|\overline{B}{}^0\rangle$$
 what we are after calculable perturbatively nonperturbative

 $\eta_B \, b_B(\mu)$: Resumming $\alpha_s^n \ln^n(m_W/\mu)$, where $\mu \sim m_b$, is often very important $\langle B^0|Q(\mu)|\overline{B}{}^0\rangle = \frac{2}{3} \, m_B^2 \, f_B^2 \frac{\widehat{B}_B}{b_B(\mu)}$: hadronic uncertainties enter here

Aside: importance of $|\Gamma_{12}| \ll |M_{12}|$

• New physics in mixing modifies M_{12} ; new CPV phases may alter $\phi \equiv \arg(q/p)$ Observing ϕ different from the SM prediction may be the best hope to find NP

$$B_{d,s}$$
: $\Gamma_{12} \ll M_{12}$, K : $M_{12} \sim \Gamma_{12}$, D : $\Gamma_{12} \sim \text{or} > M_{12}$

Solving the eigenvalue equation:

- If $\Delta m \gg \Delta \Gamma$, the CPV phase can be LARGE: $\phi = \arg(M_{12}) + \mathcal{O}(\Gamma_{12}^2/M_{12}^2)$
- If $\Delta\Gamma\gg\Delta m$, the CPV phase is small: $\phi=\mathcal{O}(M_{12}^2/\Gamma_{12}^2) imes\sin(2\phi_{12})$
- If $\Delta\Gamma\gg\Delta m$ then even if new physics dominates M_{12} , the sensitivity of any physical observable to it is suppressed by $\Delta m/\Delta\Gamma$
- Another reason to pin down Δm_D ; while $\Delta \Gamma_D \neq 0$ at $> 5\sigma$, $\Delta m_D \neq 0$ is barely more than 2σ will affect sensitivity to NP

B_s mixing: V_{td}/V_{ts} from Δm_s

• B_s^0 - \overline{B}_s^0 oscillate 25 times on average before they decay — challenge to measure

Uncertainty $\sigma(\Delta m_s)=0.7\%$ is already smaller than $\sigma(\Delta m_d)=0.8\%$

Largest uncertainty:
$$\xi = \frac{f_{B_s}\sqrt{B_s}}{f_{B_d}\sqrt{B_d}}$$

Lattice QCD: $\xi = 1.24 \pm 0.04 \pm 0.06$

CPV in decay

CPV in decay: simplest form of CPV — count events

 $|\overline{A}_{\overline{f}}/A_f| \neq 1$: need amplitudes with different weak (ϕ_k) & strong (δ_k) phases

$$A_f = \langle f | \mathcal{H} | B \rangle = \sum_k A_k \, e^{i\delta_k} \, e^{i\phi_k} \qquad \overline{A}_{\overline{f}} = \langle \overline{f} | \mathcal{H} | \overline{B} \rangle = \sum_k A_k \, e^{i\delta_k} \, e^{-i\phi_k}$$

• Unambiguously established by $\epsilon_K' \neq 0$, and since 2004 also in B decays:

$$A_{K^{-}\pi^{+}} \equiv \frac{\Gamma(\overline{B} \to K^{-}\pi^{+}) - \Gamma(B \to K^{+}\pi^{-})}{\Gamma(\overline{B} \to K^{-}\pi^{+}) + \Gamma(B \to K^{+}\pi^{-})} = -0.098 \pm 0.012$$

- After "K-superweak", also "B-superweak" excluded: CPV is not only in mixing
- There are large strong phases (also in $B \to \psi K^*$); challenge to some models
- Theoretical understanding for both ϵ_K' and $A_{K^-\pi^+}$ insufficient to either prove or to rule out that NP enters $(3.6\sigma \text{ signal also in } B \to \rho\pi)$

Sensitive to NP in cases when SM prediction is model independently small

CPV in mixing

• If CP is conserved then physical states are $\frac{1}{\sqrt{2}}(|B^0\rangle \pm |\overline{B}^0\rangle)$, corresponding to |q/p|=1 and $\arg(M_{12}/\Gamma_{12})=0$ — CPV if (mass eigenstates) \neq (CP eigenstates) $\left|\frac{p}{a}\right| \neq 1 \Rightarrow$ CPV in mixing occurs iff: $\langle B_H|B_L\rangle = |p|^2 - |q|^2 \neq 0$

Simplest example: decay to "wrong sign" lepton ("dimuon asymmetry")

$$A_{\rm SL} = \frac{\Gamma[\overline{B}^{0}(t) \to \ell^{+}X] - \Gamma[B^{0}(t) \to \ell^{-}X]}{\Gamma[\overline{B}^{0}(t) \to \ell^{+}X] + \Gamma[B^{0}(t) \to \ell^{-}X]} = \frac{|p/q|^{2} - |q/p|^{2}}{|p/q|^{2} + |q/p|^{2}} = \frac{1 - |q/p|^{4}}{1 + |q/p|^{4}} = \operatorname{Im} \frac{\Gamma_{12}}{M_{12}}$$

Observed in K decay in agreement with SM — intriguing hint at DØ in B_s mixing

• Large hadronic uncertainties in calculation of Γ_{12} , but interesting to look for NP: $|\Gamma_{12}/M_{12}| = \mathcal{O}(m_b^2/m_W^2) \quad \text{model independently}$ $\arg(\Gamma_{12}/M_{12}) = \mathcal{O}(m_c^2/m_b^2) \quad \text{in SM, maybe } \mathcal{O}(1) \quad \text{with NP}$

CPV in interference between decay and mixing

• Can get theoretically clean information in some cases when B^0 and \overline{B}^0 decay to same final state

$$|B_{L,H}\rangle = p|B^0\rangle \pm q|\overline{B}^0\rangle \qquad \lambda_{f_{CP}} = \frac{q}{p} \frac{\overline{A}_{f_{CP}}}{A_{f_{CP}}}$$

Time dependent CP asymmetry:

$$a_{fCP} = \frac{\Gamma[\overline{B}^{0}(t) \to f] - \Gamma[B^{0}(t) \to f]}{\Gamma[\overline{B}^{0}(t) \to f] + \Gamma[B^{0}(t) \to f]} = \underbrace{\frac{2\operatorname{Im}\lambda_{f}}{1 + |\lambda_{f}|^{2}}}_{S_{f}} \sin(\Delta m t) - \underbrace{\frac{1 - |\lambda_{f}|^{2}}{1 + |\lambda_{f}|^{2}}}_{C_{f}} \cos(\Delta m t)$$

- If amplitudes with one weak phase dominate a decay, hadronic physics drops out
- Measure a phase in the Lagrangian theoretically cleanly:

$$a_{f_{CP}} = \eta_{f_{CP}} \sin(\text{phase difference between decay paths}) \sin(\Delta m t)$$

Quantum entanglement in $\Upsilon(4S) o B^0 \overline{B}{}^0$

ullet $B^0\overline{B}{}^0$ pair created in a p-wave (L=1) evolve coherently and undergo oscillations

Two identical bosons cannot be in an antisymmetric state — if one B decays as a B^0 (\overline{B}^0), then at the same time the other B must be \overline{B}^0 (B^0)

• First decay ends quantum correlation and tags the flavor of the other B at $t=t_1$

Asymmetric colliders

... to measure time dependence of decay after the collision

Hadron colliders — no quantum correlation

• B_s^0 with sufficient boost to study CPV at Tevatron & LHC (+ Belle data on rates)

• $gg, q\bar{q} \to b\bar{b}$: measure flavor of a b hadron, and flavor of B^0_s as a function of time Need excellent time resolution, and fully reconstructed B^0_s to know its boost

The cleanest case: $B o \psi K_S$

• Interference of $\overline B o\psi \overline K^0$ ($b o c \overline c s$) with $\overline B o B o\psi K^0$ ($\overline b o c \overline c \overline s$)

Amplitudes with a second weak phase strongly suppressed (unitarity: $V_{tb}V_{ts}^* + V_{cb}V_{cs}^* + V_{ub}V_{us}^* = 0$)

$$\overline{A}_{\psi K_S} = \underbrace{V_{cb}V_{cs}^*}_{\mathcal{O}(\lambda^2)} \underbrace{\langle "T" \rangle}_{"1"} + \underbrace{V_{ub}V_{us}^*}_{\mathcal{O}(\lambda^4)} \underbrace{\langle "P" \rangle}_{\alpha_s(2m_c)}$$

$$S_{\psi K_S} = -\sin[(B\text{-mix} = -2\beta) + (\text{decay} = 0) + (K\text{-mix} = 0)]$$

Corrections: $|\overline{A}/A| \neq 1$ (main uncertainty), $\epsilon_K \neq 0$, $\Delta\Gamma_B \neq 0$ all are few $\times 10^{-3} \Rightarrow \text{accuracy} < 1\%$

- World average: $\sin 2\beta = 0.673 \pm 0.023$ better than 4%!
- Large deviations from CKM excluded (e.g., approximate CP in the sense that all CPV phases are small) \Rightarrow Look for corrections, rather than alternatives to CKM

CP violation in $B o J/\psi\, K_S$ by the naked eye

• CP violation is an $\mathcal{O}(1)$ effect: $\sin 2\beta = 0.673 \pm 0.023$

$$a_{fCP} = \frac{\Gamma[\overline{B}^{0}(t) \to \psi K] - \Gamma[B^{0}(t) \to \psi K]}{\Gamma[\overline{B}^{0}(t) \to \psi K] + \Gamma[B^{0}(t) \to \psi K]} = \sin 2\beta \sin(\Delta m t)$$

• CP violation is large in some B decays — in K decays it is small due to small CKM elements, not because CP violation is generically small

Similarly: β_s from $B_s o \psi \phi$

• Next key measurement: time dep. CP asymmetry in $B_s \to \psi \phi$ (analog of $\sin 2\beta$)

In SM:
$$\beta_s = \arg(-V_{ts}V_{tb}^*/V_{cs}V_{cb}^*) = 0.019 \pm 0.001$$

CDF & DØ hints at possible deviation:

The B_s "squashed" UT:

No big change in results at ICHEP, no combination yet ⇒ key LHCb measurement

$B o \phi K$ and $B_s o \phi \phi$ — window to NP?

 Measuring same angle in decays sensitive to different short distance physics may give best sensitivity to NP

Amplitudes with one weak phase expected to dominate:

$$\overline{A} = \underbrace{V_{cb}V_{cs}^*}_{\mathcal{O}(\lambda^2)} \underbrace{[P_c - P_t + T_c]}_{\text{"1"}} + \underbrace{V_{ub}V_{us}^*}_{\mathcal{O}(\lambda^4)} \underbrace{[P_u - P_t + T_u]}_{\mathcal{O}(1)}$$

SM: $S_{\phi K_S} - S_{\psi K}$ and $C_{\phi K_S} < 0.05$

NP: $S_{\phi K_S} \neq S_{\psi K}$ possible Expect different S_f for each $b \rightarrow s$ mode

NP could enter $S_{\psi K}$ mainly in mixing, while $S_{\phi K_S}$ through both mixing and decay

Interesting to pursue independent of present results — plenty of room left for NP

Status of $\sin 2\beta_{\rm eff}$ measurements

• Earlier hints of deviations reduced, e.g., $S_{\psi K} - S_{\phi K_S} = 0.11 \pm 0.17$

It is still interesting to significantly reduce these experimental uncertainties

γ from $B^\pm o DK^\pm$

- Tree level: interference of $b \to c \bar{u} s$ $(B^- \to D^0 K^-)$ and $b \to u \bar{c} s$ $(B^- \to \bar{D}^0 K^-)$ Extract B & D decay amplitudes from data; many variants depending on D decay
- Problem: large ratio of interfering amplitudes, sensitivity crucially depends on:

$$r_B = |A(B^- \to \overline{D}{}^0 K^-)/A(B^- \to D^0 K^-)| \approx 0.1$$

- Best measurement so far: $D^0, \overline{D}{}^0 o K_S \, \pi^+ \pi^- \stackrel{\del{delta}}{-} \, {}^{\del{delta}_0.4}$
 - Both amplitudes Cabibbo allowed;
 - Can integrate over regions in Dalitz plot

More data: besides reducing error of γ , test/refine the D decay model

Measurement will not be theory limited at any conceived future experiment

γ : some other methods

• $B^{\pm} \to K^{\pm}D$ [GLW]: theoretically very clean, experimentally hard

(only assumes no CPV in *D* sector)

$$A(B^- o K^- \overline{D}{}^0)$$

$$\frac{|A(B^+ o K^+ D^0)|}{|A(B^+ o K^+ \overline{D}{}^0|} \sim \frac{\lambda}{N_c}$$

• $B^{\pm} \to K^{\pm}(D^0, \overline{D}{}^0) \to K^{\pm}f$ [ADS]

(f can be two- or multy-body)

Idea: $B^+ \to K^+ \overline D{}^0 \to K^+ f$ doubly Cabibbo suppressed $B^+ \to K^+ D^0 \to K^+ f$ Cabibbo allowed

comparable amplitudes

Using n different $B \to DKX_i$ decays and k different $D \to f_j$ states, n+k unknown amplitudes and $n \times k$ observables; or measure $D \to f$ amplitudes separately

Only LHCb: γ from $B_s o D_s^\pm K^\mp$

Same weak phase in each $B_s, \overline{B}_s \to D_s^{\pm} K^{\mp}$ decay \Rightarrow the 4 time dependent rates determine 2 amplitudes, a strong, and a weak phase (clean, although $|f\rangle \neq |f_{CP}\rangle$)

Four amplitudes:
$$\overline{B}_s \stackrel{A_1}{\to} D_s^+ K^ (b \to c \overline{u} s)$$
, $\overline{B}_s \stackrel{A_2}{\to} K^+ D_s^ (b \to u \overline{c} s)$ $B_s \stackrel{A_1}{\to} D_s^- K^+$ $(\overline{b} \to \overline{c} u \overline{s})$, $B_s \stackrel{A_2}{\to} K^- D_s^+$ $(\overline{b} \to \overline{u} c \overline{s})$ $\overline{A}_{D_s^+ K^-} = \frac{A_1}{A_2} \left(\frac{V_{cb} V_{us}^*}{V_{ub}^* V_{cs}} \right)$, $\overline{A}_{D_s^- K^+} = \frac{A_2}{A_1} \left(\frac{V_{ub} V_{cs}^*}{V_{cb}^* V_{us}} \right)$

Magnitudes and relative strong phase of A_1 and A_2 drop out if four time dependent rates are measured \Rightarrow no hadronic uncertainty:

$$\lambda_{D_s^+ K^-} \lambda_{D_s^- K^+} = \left(\frac{V_{tb}^* V_{ts}}{V_{tb} V_{ts}^*}\right)^2 \left(\frac{V_{cb} V_{us}^*}{V_{ub}^* V_{cs}}\right) \left(\frac{V_{ub} V_{cs}^*}{V_{cb}^* V_{us}}\right) = e^{-2i(\gamma - 2\beta_s - \beta_K)}$$

Similarly, $B_d \to D^{(*)\pm}\pi^{\mp}$ determines $\gamma + 2\beta$, since $\lambda_{D^+\pi^-}\lambda_{D^-\pi^+} = e^{-2i(\gamma+2\beta)}$... ratio of amplitudes $\mathcal{O}(\lambda^2) \Rightarrow$ small asymmetries (tag side interference)

Constraining new physics

The standard model CKM fit

- Very impressive accomplishments
- Level of agreement between the measurements often misinterpreted
- Increasing the number of parameters can alter the fit completely
- Plausible TeV scale NP scenarios, consistent with all low energy data, w/o minimal flavor violation (MFV)
- CKM is inevitable; the question is not if it's correct, but is it sufficient?

New physics in B^0 – \overline{B}^0 mixing

• Assume: (i) 3×3 CKM matrix is unitary; (ii) Tree-level decays dominated by SM

Concentrate on NP in mixing amplitude; two parameters for each neutral meson:

$$M_{12} = M_{12}^{\rm SM} r^2 e^{2i\theta} \equiv M_{12}^{\rm SM} (1 + h e^{2i\sigma})$$
 easy to relate to data easy to relate to models

- Tree-level CKM constraints unaffected: $|V_{ub}/V_{cb}|$ and γ (or $\pi \beta \alpha$)
- lacksquare $B\overline{B}$ mixing dependent observables sensitive to NP: $\Delta m_{d,s},\,S_{f_i},\,A_{
 m SL}^{d,s},\,\Delta\Gamma_s$

New physics in $B^0 – \overline{B}{}^0$ mixing

• Assume: (i) 3×3 CKM matrix is unitary; (ii) Tree-level decays dominated by SM

Concentrate on NP in mixing amplitude; two parameters for each neutral meson:

$$M_{12} = M_{12}^{\rm SM} r^2 e^{2i\theta} \equiv M_{12}^{\rm SM} (1 + h e^{2i\sigma})$$
easy to relate to data easy to relate to models

- Tree-level CKM constraints unaffected: $|V_{ub}/V_{cb}|$ and γ (or $\pi \beta \alpha$)
- ullet $B\overline{B}$ mixing dependent observables sensitive to NP: $\Delta m_{d,s}$, S_{f_i} , $A_{
 m SL}^{d,s}$, $\Delta \Gamma_s$

$$\Delta m_{Bq} = r_q^2 \Delta m_{Bq}^{\text{SM}} = |1 + h_q e^{2i\sigma_q}| \Delta m_q^{\text{SM}}$$

$$S_{\psi K} = \sin(2\beta + 2\theta_d) = \sin[2\beta + \arg(1 + h_d e^{2i\sigma_d})] \qquad S_{\rho\rho} = \sin(2\alpha - 2\theta_d)$$

$$S_{\psi\phi} = \sin(2\beta_s - 2\theta_s) = \sin[2\beta_s - \arg(1 + h_s e^{2i\sigma_s})]$$

$$A_{\rm SL}^q = \operatorname{Im}\left(\frac{\Gamma_{12}^q}{M_{12}^q r_q^2 \, e^{2i\theta_q}}\right) = \operatorname{Im}\left[\frac{\Gamma_{12}^q}{M_{12}^q (1 + h_q e^{2i\sigma_q})}\right] \qquad \Delta\Gamma_s^{CP} = \Delta\Gamma_s^{\rm SM} \cos^2 2\theta_s$$

Constraints on new physics in B_d^0 mixing

Overconstraining measurements (tree vs. loop) are crucial to bound new physics

even in the presence of NP in mixing NP \ll SM unless $\sigma_d = 0 \pmod{\pi/2}$

Only the SM-like region is allowed, $NP \sim SM$ is still allowed, approaching

What we really want to know: assume $h \sim (4\pi v/\Lambda_{\rm flav.})^2$, is then $\Lambda_{\rm flav.} \gg \Lambda_{\rm EWSB}$?

The one-page summary of BaBar & Belle

 Strong constraints on NP in many FCNC amplitudes — much more progress in this and more interesting than just the uncertainties of the SM parameters

Qualitative change before vs. after 2004 — the justification of the Nobel Prize in my mind

lacktriangle Despite huge progress $\sim\!20\%$ NP contribution to most loop processes still allowed

Summary

- The SM flavor sector is tested with impressive & increasing precision
 KM phase is the dominant source of CP violation in flavor changing processes
- The point is not just to measure magnitudes and phases of CKM elements (or ρ , η and α , β , γ), but to probe the flavor sector by overconstraining it in many ways
- Measurements probe scales $\gg 1 \, \mathrm{TeV}$; sensitivity limited by statistics, not theory
- New physics in most FCNC processes may still be $\gtrsim 10\%$ of the SM contributions
- Few hints of discrepancies existing data could have shown NP, and a lot more is needed to achieve theoretical limits

