Analytic methods in QCD Perturbative QCD and effective Hamiltonian

Sébastien Descotes-Genon

Laboratoire de Physique Théorique
CNRS \& Université Paris-Sud 11, 91405 Orsay, France

Gif 2010, Besse-et-St-Anastaise September 62010

Contents

(1) Why QCD here ?
(2) Elements of $Q C D$
(3) Perturbation theory
(4) Effective Hamiltonian
(5) Hadronic quantities
(8) Conclusions

From weak to strong interactions for heavy flavours

Weak interaction and CKM-matrix

In the quark sector of the SM,
weak interaction not diagonal in mass eigenstates

$$
\frac{g}{\sqrt{2}} \bar{u}_{L i} V_{i j} \gamma^{\mu} d_{L j} W_{\mu}^{+}+\text {h.c. }
$$

with the Cabibbo-Kobayashi-Maskawa matrix:
$V=\left[\begin{array}{ccc}V_{u d} & V_{u s} & V_{u b} \\ V_{c d} & V_{c s} & V_{c b} \\ V_{t d} & V_{t s} & V_{t b}\end{array}\right] \simeq\left[\begin{array}{ccc}1-\frac{\lambda^{2}}{2} & \lambda & A \lambda^{3}(\rho-i \eta) \\ -\lambda & 1-\frac{\lambda^{2}}{2} & A \lambda^{2} \\ A \lambda^{3}(1-\rho-i \eta) & -A \lambda^{2} & 1\end{array}\right]$
3 generations of fermions \Longrightarrow complex phase $\eta, C P$-violation in SM

"The" unitarity triangle

Unitarity of CKM matrix \Longrightarrow relations between the matrix elements
B-meson triangle
$V_{u d} V_{u b}^{*}+V_{c d} V_{c b}^{*}+V_{t d} V_{t b}^{*}=0$
Terms of same size $O\left(A \lambda^{3}\right)$
\Longrightarrow Large CP asymmetries

"The" unitarity triangle

Unitarity of CKM matrix \Longrightarrow relations between the matrix elements
B-meson triangle
$V_{u d} V_{u b}^{*}+V_{c d} V_{c b}^{*}+V_{t d} V_{t b}^{*}=0$
Terms of same size $O\left(A \lambda^{3}\right)$
\Longrightarrow Large CP asymmetries

Idea : Overconstrain the CKM matrix, check its determination or find inconsistency related to new physics (BaBar, Belle, CDF/D0, LHCb...)

Why life is difficult

For theorists at least, the answer is:

Why life is difficult

For theorists at least, the answer is: QCD

Why life is difficult

For theorists at least, the answer is: QCD

At the quark level, short-distance physics, described by electroweak part of lagrangian [computed in perturbation theory]

Why life is difficult

For theorists at least, the answer is: QCD

At the quark level, short-distance physics, described by electroweak part of lagrangian [computed in perturbation theory]

At the hadronic level, convoluted with long-distance physics, described by QCD [new hadronic quantities]
\Longrightarrow We need to understand QCD
to extract information on weak interaction from heavy meson decays

Spectroscopy of heavy states

QCD needed to understand the spectrum and dynamics of

- Heavy-light states: $D, D_{s}, B, B_{s} \ldots$
- Heavy-heavy states : $J / \Psi, \eta_{c}, \chi_{c}, \Upsilon \ldots$

equivalent to hydrogen atom or positronium,
potential from strong interactions rather than electromagnetic

Elements of QCD

Free quarks

- Dirac equation: relativistic description of spin $1 / 2$ fermion

$$
\left(i \gamma^{\mu} \partial_{\mu}-m\right) \psi=0 \quad \text { with } \quad \gamma^{\mu} \gamma^{\nu}+\gamma^{\nu} \gamma^{\mu}=2 g^{\mu \nu}
$$

in order to fulfill the on-shell conditions
$\left(\partial_{\mu} \partial^{\mu}+m^{2}\right) \psi=-\left(i \gamma^{\mu} \partial_{\mu}-m\right)\left(i \gamma^{\nu} \partial_{\nu}-m\right) \psi=0 \longrightarrow E^{2}-\vec{p}^{2}=m^{2}$

Free quarks

- Dirac equation: relativistic description of spin 1/2 fermion

$$
\left(i \gamma^{\mu} \partial_{\mu}-m\right) \psi=0 \quad \text { with } \quad \gamma^{\mu} \gamma^{\nu}+\gamma^{\nu} \gamma^{\mu}=2 g^{\mu \nu}
$$

in order to fulfill the on-shell conditions
$\left(\partial_{\mu} \partial^{\mu}+m^{2}\right) \psi=-\left(i \gamma^{\mu} \partial_{\mu}-m\right)\left(i \gamma^{\nu} \partial_{\nu}-m\right) \psi=0 \longrightarrow E^{2}-\vec{p}^{2}=m^{2}$

- 4×4 matrices $\gamma_{0,1,2,3}: \gamma^{0}=\left(\begin{array}{cc}0 & I_{2} \\ I_{2} & 0\end{array}\right) \quad \vec{\gamma}=\left(\begin{array}{cc}0 & \vec{\sigma} \\ -\vec{\sigma} & 0\end{array}\right)$ with Pauli matrices: $\vec{\sigma}=\left[\left(\begin{array}{cc}0 & 1 \\ 1 & 0\end{array}\right),\left(\begin{array}{cc}0 & -i \\ i & 0\end{array}\right),\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)\right]$

Free quarks

- Dirac equation: relativistic description of spin $1 / 2$ fermion

$$
\left(i \gamma^{\mu} \partial_{\mu}-m\right) \psi=0 \quad \text { with } \quad \gamma^{\mu} \gamma^{\nu}+\gamma^{\nu} \gamma^{\mu}=2 g^{\mu \nu}
$$

in order to fulfill the on-shell conditions
$\left(\partial_{\mu} \partial^{\mu}+m^{2}\right) \psi=-\left(i \gamma^{\mu} \partial_{\mu}-m\right)\left(i \gamma^{\nu} \partial_{\nu}-m\right) \psi=0 \longrightarrow E^{2}-\vec{p}^{2}=m^{2}$

- 4×4 matrices $\gamma_{0,1,2,3}: \gamma^{0}=\left(\begin{array}{cc}0 & I_{2} \\ l_{2} & 0\end{array}\right) \quad \vec{\gamma}=\left(\begin{array}{cc}0 & \vec{\sigma} \\ -\vec{\sigma} & 0\end{array}\right)$
with Pauli matrices: $\vec{\sigma}=\left[\left(\begin{array}{cc}0 & 1 \\ 1 & 0\end{array}\right),\left(\begin{array}{cc}0 & -i \\ i & 0\end{array}\right),\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)\right]$
- Why 4×4 matrices ? spin $1 / 2$ fermion has 4 degrees of freedom
- 2 : Spin orientation (up or down)
- 2 : Particle vs. antiparticle (2 spinors)

Colours

- Quark model : proton uud, neutron udd...
- Among states discovered in 50's

$$
\Delta^{++}\left(J=3 / 2, J_{3}=3 / 2\right)=u^{\uparrow} u^{\uparrow} u^{\uparrow}
$$

- But Δ is a fermion, with antisymmetric wave function (Pauli)
\Longrightarrow additional d.o.f. : colour (green, blue, red)

$$
\Delta^{++}\left(J=3 / 2, J_{3}=3 / 2\right)=\epsilon^{\alpha \beta \gamma} u_{\alpha}^{\uparrow} u_{\beta}^{\uparrow} u_{\gamma}^{\uparrow}
$$

Colours

- Quark model : proton uud, neutron udd...
- Among states discovered in 50's

$$
\Delta^{++}\left(J=3 / 2, J_{3}=3 / 2\right)=u^{\uparrow} u^{\uparrow} u^{\uparrow}
$$

- But Δ is a fermion, with antisymmetric wave function (Pauli) \Longrightarrow additional d.o.f. : colour (green, blue, red)

$$
\Delta^{++}\left(J=3 / 2, J_{3}=3 / 2\right)=\epsilon^{\alpha \beta \gamma} u_{\alpha}^{\uparrow} u_{\beta}^{\uparrow} u_{\gamma}^{\uparrow}
$$

$$
\begin{aligned}
R & =\frac{\sigma\left(e^{+} e^{-} \rightarrow \text { hadrons }\right)}{\sigma\left(e^{+} e^{-} \rightarrow \mu^{+} \mu^{-}\right)} \\
& \simeq \frac{\sum_{q}\left(e^{+} e^{-} \rightarrow q \bar{q}\right)}{\sigma\left(e^{+} e^{-} \rightarrow \mu^{+} \mu^{-}\right)} \simeq N_{c} \sum_{q} Q_{q}^{2}
\end{aligned}
$$

varies when $q \bar{q}$ threshold crossed

3 colours

Resonances after each $q \bar{q}$ threshold, then asymptotic value with $N_{c}=3$

QCD

Following similar train of thought to Quantum Electrodynamics

- QED: invariance of Maxwell equations under global redefinition of the phase $\psi(x) \rightarrow e^{i \alpha} \psi(x)$
- invariance of strong interaction under global redefinition of colour

$$
q=\left(\begin{array}{l}
q \\
q \\
q
\end{array}\right) \rightarrow U q(x)=\exp \left[i \alpha_{a} T^{a}\right] q(x)
$$

where 3×3 matrix U special unitary $U^{\dagger} U=1, \operatorname{det} U=1$

QCD

Following similar train of thought to Quantum Electrodynamics

- QED: invariance of Maxwell equations under global redefinition of the phase $\psi(x) \rightarrow e^{i \alpha} \psi(x)$
- invariance of strong interaction under global redefinition of colour

$$
q=\left(\begin{array}{l}
q \\
q \\
q
\end{array}\right) \rightarrow U q(x)=\exp \left[i \alpha_{a} T^{a}\right] q(x)
$$

where 3×3 matrix U special unitary $U^{\dagger} U=1$, $\operatorname{det} U=1$
parametrised by $a=1 \ldots 8$ matrices 3×3 Gell-Mann matrices
$T^{a}=\left(\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0\end{array}\right),\left(\begin{array}{ccc}0 & -i & 0 \\ i & 0 & 0 \\ 0 & 0 & 0\end{array}\right),\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0\end{array}\right),\left(\begin{array}{lll}0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0\end{array}\right)$,
$\left(\begin{array}{lll}0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0\end{array}\right),\left(\begin{array}{ccc}0 & 0 & -i \\ 0 & 0 & 0 \\ i & 0 & 0\end{array}\right),\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1\end{array}\right),\left(\begin{array}{ccc}1 / \sqrt{3} & 0 & 0 \\ 0 & 1 / \sqrt{3} & 0 \\ 0 & 0 & -2 / \sqrt{3}\end{array}\right)$

QCD Lagrangian

- Lagrangian for free coloured quarks

$$
\mathcal{L}=\bar{q}_{\alpha}\left(i \gamma^{\mu} \partial_{\mu}-m\right) q_{\alpha}
$$

QCD Lagrangian

- Lagrangian for free coloured quarks

$$
\mathcal{L}=\bar{q}_{\alpha}\left(i \gamma^{\mu} \partial_{\mu}-m\right) q_{\alpha}
$$

- Gauge principle : build Lagrangian invariant under local

$$
q(x) \rightarrow U(x) q(x)=\exp \left[i \alpha_{a}(x) T^{a}\right] q
$$

QCD Lagrangian

- Lagrangian for free coloured quarks

$$
\mathcal{L}=\bar{q}_{\alpha}\left(i \gamma^{\mu} \partial_{\mu}-m\right) q_{\alpha}
$$

- Gauge principle : build Lagrangian invariant under local

$$
q(x) \rightarrow U(x) q(x)=\exp \left[i \alpha_{a}(x) T^{a}\right] q
$$

- Covariant derivative : $D_{\mu} q=\left(\partial_{\mu}-i g_{s} G_{\mu}\right) q \rightarrow U(x) D_{\mu} q$. provided that $G_{\mu} \rightarrow U G_{\mu} U^{\dagger}-\frac{i}{g_{s}}\left(\partial^{\mu} U\right) U^{\dagger}$,

QCD Lagrangian

- Lagrangian for free coloured quarks

$$
\mathcal{L}=\bar{q}_{\alpha}\left(i \gamma^{\mu} \partial_{\mu}-m\right) q_{\alpha}
$$

- Gauge principle : build Lagrangian invariant under local

$$
q(x) \rightarrow U(x) q(x)=\exp \left[i \alpha_{a}(x) T^{a}\right] q
$$

- Covariant derivative : $D_{\mu} q=\left(\partial_{\mu}-i g_{s} G_{\mu}\right) q \rightarrow U(x) D_{\mu} q$. provided that $G_{\mu} \rightarrow U G_{\mu} U^{\dagger}-\frac{i}{g_{s}}\left(\partial^{\mu} U\right) U^{\dagger}$,
- QCD Lagrangian for quarks : free + interaction

$$
\mathcal{L}_{D}=\bar{q}\left(i \gamma^{\mu} D_{\mu}-m\right) q=\bar{q}\left(i \gamma^{\mu} \partial_{\mu}-m\right) q+g_{s} \bar{q}_{\alpha} T_{\alpha \beta}^{a} \gamma^{\mu} q_{\beta} G_{\mu}^{a}
$$

QCD Lagrangian

- Lagrangian for free coloured quarks

$$
\mathcal{L}=\bar{q}_{\alpha}\left(i \gamma^{\mu} \partial_{\mu}-m\right) q_{\alpha}
$$

- Gauge principle : build Lagrangian invariant under local

$$
q(x) \rightarrow U(x) q(x)=\exp \left[i \alpha_{a}(x) T^{a}\right] q
$$

- Covariant derivative : $D_{\mu} q=\left(\partial_{\mu}-i g_{s} G_{\mu}\right) q \rightarrow U(x) D_{\mu} q$. provided that $G_{\mu} \rightarrow U G_{\mu} U^{\dagger}-\frac{i}{g_{s}}\left(\partial^{\mu} U\right) U^{\dagger}$,
- QCD Lagrangian for quarks : free + interaction

$$
\mathcal{L}_{D}=\bar{q}\left(i \gamma^{\mu} D_{\mu}-m\right) q=\bar{q}\left(i \gamma^{\mu} \partial_{\mu}-m\right) q+g_{s} \bar{q}_{\alpha} T_{\alpha \beta}^{a} \gamma^{\mu} q_{\beta} G_{\mu}^{a}
$$

- QCD Lagrangian for gluons $\quad \mathcal{L}_{F}=-\frac{1}{4} G_{a}^{\mu \nu} G_{\mu \nu}^{a}=-\frac{1}{2} \operatorname{Tr}\left[G^{\mu \nu} G_{\mu \nu}\right]$ where $G^{\mu \nu}$ analogue of electromagnetic $F^{\mu \nu}$

$$
G^{\mu \nu}=\partial^{\mu} G^{\nu}-\partial^{\nu} G^{\mu}-i g_{s}\left[G^{\mu}, G^{\nu}\right] \rightarrow U G^{\mu \nu} U^{\dagger}
$$

QCD interactions

- $G_{\alpha \beta}^{\mu}=G_{a}^{\mu} T_{\alpha \beta}^{a}$ collects eight gluons
- No mass term (not gauge invariant), hence gluons are massless
- Interactions: q-q-g from $\mathcal{L}_{D}, 3$ gluons and 4 gluons from \mathcal{L}_{F}

$g_{s} \gamma^{\mu} T^{a}$

$g_{s} f^{a b c}$

$g_{s}^{2} f_{a b c} f_{a d e}$

Differences from electromagnetism

- Gluons themselves sensitive to strong interaction
- Universal coupling g_{s} (no "colour-electric charge")

Perturbation theory

 A A A A A A A A A A AAA A A A A A \& AAAA

Perturbation theory

QCD computations can be treated as an expansion in powers of $\alpha_{s}=g_{s}^{2} /(4 \pi)$ (each gluon exchange adds a power)

Quantum field theory

- Relativistic : creation/annihilation of pairs possible \Longrightarrow One can add loops of gluons and quarks
- Quantum : summation over all possible configurations \Longrightarrow Loop momenta not fixed (only sum up to external momenta)

Loops and renormalisation

$$
g_{s}^{3} \int d^{4} k\left[\gamma_{\mu} T^{a} \frac{1}{p+K-m} \gamma^{\rho} \frac{1}{q+K-m} \gamma^{\mu} T^{a}\right] \frac{1}{k^{2}}
$$

$$
\text { where } k=k^{\mu} \gamma_{\mu}
$$

- Summation over all loop momenta, up to infinity
- Logarithmically divergent integral for $|k| \rightarrow \infty: \int \frac{d^{4} k}{k^{4}}$

Loops and renormalisation

$$
\begin{array}{r}
g_{s}^{3} \int d^{4} k\left[\gamma_{\mu} T^{a} \frac{1}{\bar{p}+\not K-m} \gamma^{\rho} \frac{1}{d+K-m} \gamma^{\mu} T^{a}\right] \frac{1}{k^{2}} \\
\text { where } k=k^{\mu} \gamma_{\mu}
\end{array}
$$

- Summation over all loop momenta, up to infinity
- Logarithmically divergent integral for $|k| \rightarrow \infty: \int \frac{d^{4} k}{k^{4}}$
- Dimensional regularisation $(d=4-\epsilon): \int \frac{d^{4}-\epsilon_{k}}{k^{4}}=\frac{1}{\epsilon}+O\left(\epsilon^{0}\right)$

Loops and renormalisation

$$
\begin{array}{r}
g_{s}^{3} \int d^{4} k\left[\gamma_{\mu} T^{a} \frac{1}{\bar{p}+\not K-m} \gamma^{\rho} \frac{1}{d+K-m} \gamma^{\mu} T^{a}\right] \frac{1}{k^{2}} \\
\text { where } k=k^{\mu} \gamma_{\mu}
\end{array}
$$

- Summation over all loop momenta, up to infinity
- Logarithmically divergent integral for $|k| \rightarrow \infty: \int \frac{d^{4} k}{k^{4}}$
- Dimensional regularisation $(d=4-\epsilon): \int \frac{d^{4-\epsilon}}{k^{4}}=\frac{1}{\epsilon}+O\left(\epsilon^{0}\right)$
- Change dimension of parameters
\Longrightarrow Introduction of scale μ for coupling constant $g_{s} \times \mu^{\epsilon / 2}$

Loops and renormalisation

$$
g_{s}^{3} \int d^{4} k\left[\gamma_{\mu} T^{a} \frac{1}{p+K-m} \gamma^{\rho} \frac{1}{q+K-m} \gamma^{\mu} T^{a}\right] \frac{1}{k^{2}}
$$

$$
\text { where } k=k^{\mu} \gamma_{\mu}
$$

- Summation over all loop momenta, up to infinity
- Logarithmically divergent integral for $|k| \rightarrow \infty: \int \frac{d^{4} k}{k^{4}}$
- Dimensional regularisation $(d=4-\epsilon): \int \frac{d^{4}-\epsilon}{k^{4}}=\frac{1}{\epsilon}+O\left(\epsilon^{0}\right)$
- Change dimension of parameters
\Longrightarrow Introduction of scale μ for coupling constant $g_{s} \times \mu^{\epsilon / 2}$
- QCD renormalisable: at each order of pert. th., all divergences can be reabsorbed by redefinition of fundamental parameters

$$
g_{s}^{(0)} \rightarrow g_{s}^{\mathrm{ren}}(\mu), \quad m_{q}^{(0)} \rightarrow m_{q}^{\mathrm{ren}}(\mu) \ldots
$$

- Remain of $1 / \epsilon$ (cancelled by renorm): dependence on $\log \mu$

Asymptotic freedom

What about the potential between 2 quarks ?
gluon exchange between 2 quarks \Longrightarrow vacuum polarisation

Asymptotic freedom

What about the potential between 2 quarks ?
gluon exchange between 2 quarks \Longrightarrow vacuum polarisation

q

Pairs of virtual quarks and gluons from the vacuum

- modification of $\alpha_{s}=g_{S}^{2} /(4 \pi)$ with the distance/energy

$$
\frac{d g_{s}(\mu)}{d \log (\mu)}=\beta(g)=-\frac{g_{s}^{3}}{4 \pi^{2}}\left[\frac{11}{3} N_{c}-\frac{2}{3} N_{f}\right]+\ldots
$$

Asymptotic freedom

What about the potential between 2 quarks ?
gluon exchange between 2 quarks \Longrightarrow vacuum polarisation

q

Pairs of virtual quarks and gluons from the vacuum

- modification of $\alpha_{s}=g_{S}^{2} /(4 \pi)$ with the distance/energy

$$
\frac{d g_{s}(\mu)}{d \log (\mu)}=\beta(g)=-\frac{g_{s}^{3}}{4 \pi^{2}}\left[\frac{11}{3} N_{c}-\frac{2}{3} N_{f}\right]+\ldots
$$

- pairs of quarks : α_{s} increases at small distances (large μ)

Asymptotic freedom

What about the potential between 2 quarks ?
gluon exchange between 2 quarks \Longrightarrow vacuum polarisation

q

Pairs of virtual quarks and gluons from the vacuum

- modification of $\alpha_{s}=g_{S}^{2} /(4 \pi)$ with the distance/energy

$$
\frac{d g_{s}(\mu)}{d \log (\mu)}=\beta(g)=-\frac{g_{s}^{3}}{4 \pi^{2}}\left[\frac{11}{3} N_{c}-\frac{2}{3} N_{f}\right]+\ldots
$$

- pairs of quarks : $\alpha_{\boldsymbol{s}}$ increases at small distances (large μ)
- pairs of gluons : α_{s} decreases at small distances

Asymptotic freedom

What about the potential between 2 quarks ?
gluon exchange between 2 quarks \Longrightarrow vacuum polarisation

q

Pairs of virtual quarks and gluons from the vacuum

- modification of $\alpha_{s}=g_{s}^{2} /(4 \pi)$ with the distance/energy

$$
\frac{d g_{s}(\mu)}{d \log (\mu)}=\beta(g)=-\frac{g_{s}^{3}}{4 \pi^{2}}\left[\frac{11}{3} N_{c}-\frac{2}{3} N_{f}\right]+\ldots
$$

- pairs of quarks : $\alpha_{\boldsymbol{s}}$ increases at small distances (large μ)
- pairs of gluons : α_{s} decreases at small distances
- in our world ($N_{c}=3, N_{f}=6$), the gluons win and $\beta<0$!
α_{s} decrease at small distances

α_{s} at various scales

\Longrightarrow asymptotic freedom: at large energies, interactions (prop to g_{s}) small perturbations

Correlatively, at large distance/small energies,
no perturbation theory possible !

Explicit solution for α_{s}

- Dependence on μ (renormalisation group equation or RGE)

$$
\frac{d \alpha_{s}(\mu)}{d \log \mu}=-2 \beta_{0} \frac{\alpha_{s}^{2}}{4 \pi}-2 \beta_{1} \frac{\alpha_{s}^{3}}{(4 \pi)^{2}}+\ldots
$$

- $\beta_{0}=\left(11 N_{c}-2 N_{f}\right) / 3$ from 1-loop computation
- $\beta_{1}=\left(34 N_{c}^{2}-10 N_{c} N_{f}-3\left(N_{c}^{2}-1\right) N_{f} / N_{c}\right) / 3$ from 2 loops
- $\log \mu$ dependence reflects divergences occuring at each loop

Explicit solution for α_{s}

- Dependence on μ (renormalisation group equation or $R G E$)

$$
\frac{d \alpha_{s}(\mu)}{d \log \mu}=-2 \beta_{0} \frac{\alpha_{s}^{2}}{4 \pi}-2 \beta_{1} \frac{\alpha_{s}^{3}}{(4 \pi)^{2}}+\ldots
$$

- $\beta_{0}=\left(11 N_{c}-2 N_{f}\right) / 3$ from 1-loop computation
- $\beta_{1}=\left(34 N_{c}^{2}-10 N_{c} N_{f}-3\left(N_{c}^{2}-1\right) N_{f} / N_{c}\right) / 3$ from 2 loops
- $\log \mu$ dependence reflects divergences occuring at each loop
- Solution introduces a scale $\Lambda \simeq 250 \mathrm{MeV}$ (from experiment)

$$
\frac{\alpha_{s}(\mu)}{4 \pi}=\frac{1}{\beta_{0} \log \left(\mu^{2} / \Lambda^{2}\right)}-\frac{\beta_{1}}{\beta_{0}^{3}} \frac{\log \log \left(\mu^{2} / \Lambda^{2}\right)}{\log ^{2}\left(\mu^{2} / \Lambda^{2}\right)}+\ldots
$$

with $\log \mu$ dependence very well satisfied experimentally

Leading logarithms

- Keeping only first order in $d \alpha_{s} / d \log \mu$:

$$
\alpha_{s}(\mu)=\frac{\alpha_{s}\left(\mu_{0}\right)}{1-\beta_{0} \frac{\alpha_{s}\left(\mu_{0}\right)}{2 \pi} \log \left(\mu_{0} / \mu\right)}=\alpha_{s}\left(\mu_{0}\right)\left[1+\sum_{n=1}^{\infty}\left(\beta_{0} \frac{\alpha_{s}\left(\mu_{0}\right)}{2 \pi} \log \frac{\mu_{0}}{\mu}\right)^{n}\right]
$$

- resummation of leading logs $\alpha_{s}^{n}\left(\mu_{0}\right) \log ^{n}\left(\mu_{0} / \mu\right)$ needed for $\mu \ll \mu_{0}: \alpha_{s}\left(\mu_{0}\right) \ll 1$ but $\alpha_{s}\left(\mu_{0}\right) \log \left(\mu_{0} / \mu\right)=O(1)$

Leading logarithms

- Keeping only first order in $d \alpha_{s} / d \log \mu$:

$$
\alpha_{s}(\mu)=\frac{\alpha_{S}\left(\mu_{0}\right)}{1-\beta_{0} \frac{\alpha_{s}\left(\mu_{0}\right)}{2 \pi} \log \left(\mu_{0} / \mu\right)}=\alpha_{s}\left(\mu_{0}\right)\left[1+\sum_{n=1}^{\infty}\left(\beta_{0} \frac{\alpha_{s}\left(\mu_{0}\right)}{2 \pi} \log \frac{\mu_{0}}{\mu}\right)^{n}\right]
$$

- resummation of leading logs $\alpha_{s}^{n}\left(\mu_{0}\right) \log ^{n}\left(\mu_{0} / \mu\right)$ needed for $\mu \ll \mu_{0}: \alpha_{\boldsymbol{s}}\left(\mu_{0}\right) \ll 1$ but $\alpha_{s}\left(\mu_{0}\right) \log \left(\mu_{0} / \mu\right)=O(1)$

LO1
NLO $\quad \alpha_{s}\left(\mu_{0}\right) \log \left(\mu_{0} / \mu\right)$
NNLO $\quad \alpha_{s}^{2}\left(\mu_{0}\right) \log ^{2}\left(\mu_{0} / \mu\right)$

$$
\begin{array}{cc}
\alpha_{s}\left(\mu_{0}\right) & \\
\alpha_{s}^{2}\left(\mu_{0}\right) \log \left(\mu_{0} / \mu\right) & \alpha_{s}^{2}\left(\mu_{0}\right)
\end{array}
$$

Leading Logs RGE LO

Next - to - Leading Logs RGE NLO

NNLL
RGE NNLO

Computing $d \alpha_{s} / d \log \mu$ at N^{k} LO in perturbation theory provides the resumation of N^{k} leading log contributions

Effective Hamiltonian

Making life slightly easier

Two different problems here due to mixture of strong/weak:

- Weak Lagrangian in terms of quarks, but hadronic final states
- Multi-scale problem $m_{t}, m_{b}, \Lambda_{Q C D}, m_{\text {light }}$

Here scales of order m_{b} (or lower)!
so why not integrate out heavier degrees of freedom (t, W, Z) ?

to get weak effective Hamiltonian $\mathcal{H}_{\text {eff }}$
(still b, c, s, d, u, g and γ as dynamical particles)

Effective Hamiltonian

Fermi-like approach : μ separation between low and high energies

- Short distances : (perturbative) Wilson coefficients
- Long distances : local operator

Effective Hamiltonian

Fermi-like approach : μ separation between low and high energies

- Short distances : (perturbative) Wilson coefficients
- Long distances : local operator

Effective Hamiltonian

Fermi-like approach : μ separation between low and high energies

- Short distances : (perturbative) Wilson coefficients
- Long distances : local operator

$$
V_{u d} V_{c b}^{*} \frac{G_{F}}{\sqrt{2}} \bar{u} \gamma_{\mu}\left(1-\gamma_{5}\right) d \bar{b} \gamma^{\mu}\left(1-\gamma_{5}\right) c
$$

$\mathcal{A}(B \rightarrow H)=\frac{G_{F}}{\sqrt{2}} \sum_{i} \lambda_{i} C_{i}(\mu)\langle H| \mathcal{O}_{i}|B\rangle(\mu)$

- λ_{i} collect CKM-matrix elements,
- $C_{i}(\mu)$ Wilson coefficients (physics above m_{b})
- matrix-elements of local operators \mathcal{O}_{i}

QCD effects

When we take into account one (or more) gluons

$$
\mathcal{H}_{\mathrm{eff}}=\frac{G_{F}}{\sqrt{2}} V_{c b}^{*} V_{u d}\left[C_{1}(\mu) Q_{1}(\mu)+C_{2}(\mu) Q_{2}(\mu)\right]
$$

$$
\begin{array}{ll}
Q_{1}=\left(\bar{b}_{\alpha} c_{\beta}\right)_{V-A}\left(\bar{u}_{\beta} d_{\alpha}\right)_{V-A} \\
Q_{2}=\left(\bar{b}_{\alpha} c_{\alpha}\right)_{V-A}\left(\bar{u}_{\beta} d_{\beta}\right)_{V-A}
\end{array} \quad(\bar{b} c)_{V-A}=\bar{b} \gamma_{\mu}\left(1-\gamma_{5}\right) c
$$

- new colour structures (flipped indices α, β)
- divergences absorbed by renormalisation
- C_{1} and C_{2} calculable fonctions of μ as perturbative series in α_{S}
- Without QCD $C_{1}=0, C_{2}=1$, but with QCD ?

$\bar{b} \rightarrow \bar{c} \bar{d} u$ at one loop: fundamental theory

C high-energy part, independent of state :
take massless quarks, off-shell by $p^{2}<0$

$\bar{b} \rightarrow \bar{c} \bar{d} u$ at one loop: fundamental theory

C high-energy part, independent of state :
take massless quarks, off-shell by $p^{2}<0$

In "full" (SM) theory, taking into account quark renormalisation,

$$
A_{\text {full }}^{(1)}=\frac{G_{F}}{\sqrt{2}} V_{c s}^{*} V_{u d}\left[M_{2}+\frac{3}{N_{c}} \frac{\alpha_{s}}{4 \pi} \log \frac{M_{W}^{2}}{-p^{2}} M_{2}-3 \frac{\alpha_{s}}{4 \pi} \log \frac{M_{W}^{2}}{-p^{2}} M_{1}\right]
$$

at leading logarithms, with the matrix elements

$$
\begin{aligned}
& M_{1}=\left\langle Q_{1}\right\rangle^{L O}=\left(\bar{b}_{\alpha} c_{\beta}\right)_{V-A}\left(\bar{u}_{\beta} d_{\alpha}\right)_{V-A} \\
& M_{2}=\left\langle Q_{2}\right\rangle^{L O}=\left(\bar{b}_{\alpha} c_{\alpha}\right)_{V-A}\left(\bar{u}_{\alpha} d_{\alpha}\right)_{V-A}
\end{aligned}
$$

$\bar{b} \rightarrow \bar{c} \bar{d} u$ at one loop: effective theory

In the effective theory (effective Hamiltonian)

$\bar{b} \rightarrow \bar{c} \bar{d} u$ at one loop: effective theory

In the effective theory (effective Hamiltonian)

we obtain after quark-field renormalisation
$\left\langle Q_{1}\right\rangle^{(0)}=M_{1}+\frac{3}{N_{c}} \frac{\alpha_{s}}{4 \pi}\left(\frac{1}{\epsilon}+\log \frac{\mu^{2}}{-p^{2}}\right) M_{1}-3 \frac{\alpha_{s}}{4 \pi}\left(\frac{1}{\epsilon}+\log \frac{\mu^{2}}{-p^{2}}\right) M_{2}$
$\left\langle Q_{2}\right\rangle^{(0)}=M_{2}+\frac{3}{N_{c}} \frac{\alpha_{s}}{4 \pi}\left(\frac{1}{\epsilon}+\log \frac{\mu^{2}}{-p^{2}}\right) M_{2}-3 \frac{\alpha_{s}}{4 \pi}\left(\frac{1}{\epsilon}+\log \frac{\mu^{2}}{-p^{2}}\right) M_{2}$

- Effective theory more singular than fundamental theory ($1 / \epsilon$, absorbed by renormalising operators of eff. Hamiltonian)
- Involve only low scales (p^{2} and μ, but not M_{W})

Matching and Wilson coefficients

Matching: C_{1} and C_{2} so that full and effective theory yield same result

$$
A_{\mathrm{full}}=\frac{G_{F}}{\sqrt{2}} V_{C s}^{*} V_{u d}\left[C_{1}(\mu)\left\langle Q_{1}(\mu)\right\rangle+C_{2}(\mu)\left\langle Q_{2}(\mu)\right\rangle\right]
$$

At NLO in α_{s}, leading logarithms

$$
C_{1}(\mu)=-3 \frac{\alpha_{s}}{4 \pi} \log \frac{M_{W}^{2}}{\mu^{2}}+O\left(\alpha_{s}^{2}\right), \quad C_{2}(\mu)=1+\frac{3}{N_{c}} \frac{\alpha_{s}}{4 \pi} \log \frac{M_{W}^{2}}{\mu^{2}}+O\left(\alpha_{s}^{2}\right)
$$

Matching and Wilson coefficients

Matching: C_{1} and C_{2} so that full and effective theory yield same result

$$
A_{\mathrm{full}}=\frac{G_{F}}{\sqrt{2}} V_{C s}^{*} V_{u d}\left[C_{1}(\mu)\left\langle Q_{1}(\mu)\right\rangle+C_{2}(\mu)\left\langle Q_{2}(\mu)\right\rangle\right]
$$

At NLO in α_{s}, leading logarithms
$C_{1}(\mu)=-3 \frac{\alpha_{s}}{4 \pi} \log \frac{M_{W}^{2}}{\mu^{2}}+O\left(\alpha_{s}^{2}\right), \quad C_{2}(\mu)=1+\frac{3}{N_{c}} \frac{\alpha_{s}}{4 \pi} \log \frac{M_{W}^{2}}{\mu^{2}}+O\left(\alpha_{s}^{2}\right)$

Matching performed separation of scales $-p^{2}<\mu^{2}<M_{W}^{2}$

$$
\begin{aligned}
\left(1+\alpha_{s} X \log \frac{M_{W}^{2}}{-p^{2}}\right) & =\left(1+\alpha_{s} X \log \frac{M_{W}^{2}}{\mu^{2}}\right) \times\left(1+\alpha_{s} X \log \frac{\mu^{2}}{-p^{2}}\right) \\
\int_{-p^{2}}^{M_{W}^{2}} \frac{d k^{2}}{k^{2}} & =\int_{\mu^{2}}^{M_{W}^{2}} \frac{d k^{2}}{k^{2}}+\int_{-p^{2}}^{\mu^{2}} \frac{d k^{2}}{k^{2}}
\end{aligned}
$$

Resumming large logarithms

- At $\mu=m_{b}$ (separation between low and high energies)

$$
\begin{aligned}
& C_{1}(\mu)=-3 \frac{\alpha_{s}}{4 \pi} \log \frac{M_{W}^{2}}{\mu^{2}}+O\left(\alpha_{s}^{2}\right)=-0.3+\ldots \\
& C_{2}(\mu)=1+\frac{\alpha_{s}}{4 \pi} \log \frac{M_{W}^{2}}{\mu^{2}}+O\left(\alpha_{s}^{2}\right)=1+0.1+\ldots
\end{aligned}
$$

better to sum all leading-logs $\left(\alpha_{s}(\mu) \log \frac{M_{W}^{2}}{\mu^{2}}\right)^{n}$
\Longrightarrow use renormalisation group equation (dependence on μ)

Resumming large logarithms

- At $\mu=m_{b}$ (separation between low and high energies)

$$
\begin{aligned}
& C_{1}(\mu)=-3 \frac{\alpha_{s}}{4 \pi} \log \frac{M_{W}^{2}}{\mu^{2}}+O\left(\alpha_{s}^{2}\right)=-0.3+\ldots \\
& C_{2}(\mu)=1+\frac{\alpha_{s}}{4 \pi} \log \frac{M_{W}^{2}}{\mu^{2}}+O\left(\alpha_{s}^{2}\right)=1+0.1+\ldots
\end{aligned}
$$

better to sum all leading-logs $\left(\alpha_{s}(\mu) \log \frac{M_{w}^{2}}{\mu^{2}}\right)^{n}$
\Longrightarrow use renormalisation group equation (dependence on μ)

- Renormalising $\left\langle Q_{i}\right\rangle^{(0)}=Z_{i j}\left\langle Q_{j}\right\rangle, Z=1+\frac{\alpha_{s}}{4 \pi} \frac{1}{\epsilon}\left(\begin{array}{cc}3 / N_{c} & -3 \\ -3 & 3 / N_{c}\end{array}\right)$ which is diagonal in $Q_{ \pm}=\frac{Q_{2} \pm Q_{1}}{2}, C_{ \pm}=C_{2} \pm C_{1}$:

$$
\begin{gathered}
Q_{ \pm}^{(0)}=Z_{ \pm} Q_{ \pm}, \quad C_{ \pm}^{(0)}=Z_{ \pm}^{-1} C_{ \pm} \\
\mathcal{H}_{\mathrm{eff}}=\frac{G_{F}}{\sqrt{2}} V_{c S}^{*} V_{u d}\left[C_{+}^{(0)} Q_{+}^{(0)}+C_{-}^{(0)} Q_{-}^{(0)}\right]
\end{gathered}
$$

Resumming large logarithms

- At $\mu=m_{b}$ (separation between low and high energies)

$$
\begin{aligned}
& C_{1}(\mu)=-3 \frac{\alpha_{s}}{4 \pi} \log \frac{M_{W}^{2}}{\mu^{2}}+O\left(\alpha_{s}^{2}\right)=-0.3+\ldots \\
& C_{2}(\mu)=1+\frac{\alpha_{s}}{4 \pi} \log \frac{M_{W}^{2}}{\mu^{2}}+O\left(\alpha_{s}^{2}\right)=1+0.1+\ldots
\end{aligned}
$$

better to sum all leading-logs $\left(\alpha_{s}(\mu) \log \frac{M_{w}^{2}}{\mu^{2}}\right)^{n}$
\Longrightarrow use renormalisation group equation (dependence on μ)

- Renormalising $\left\langle Q_{i}\right\rangle^{(0)}=Z_{i j}\left\langle Q_{j}\right\rangle, Z=1+\frac{\alpha_{s}}{4 \pi} \frac{1}{\epsilon}\left(\begin{array}{cc}3 / N_{c} & -3 \\ -3 & 3 / N_{c}\end{array}\right)$ which is diagonal in $Q_{ \pm}=\frac{Q_{2} \pm Q_{1}}{2}, C_{ \pm}=C_{2} \pm C_{1}$:

$$
\begin{gathered}
Q_{ \pm}^{(0)}=Z_{ \pm} Q_{ \pm}, \quad C_{ \pm}^{(0)}=Z_{ \pm}^{-1} C_{ \pm} \\
\mathcal{H}_{\mathrm{eff}}=\frac{G_{F}}{\sqrt{2}} V_{c s}^{*} V_{u d}\left[C_{+}(\mu) Q_{+}(\mu)+C_{-}(\mu) Q_{-}(\mu)\right]
\end{gathered}
$$

Renormalisation group equation

- Renormalisation of Wilson coefficient: $C_{ \pm}(\mu)=C_{ \pm}^{(0)} Z_{ \pm}\left(\alpha_{s}\right)$ $C_{ \pm}^{(0)}$ independent of $\mu, Z_{ \pm}$function of μ through α_{s}, so

$$
\frac{d C_{ \pm}(\mu)}{d \log \mu}=\gamma_{ \pm}(\mu) C_{ \pm}(\mu) \quad \gamma_{ \pm}=\frac{1}{Z_{ \pm}} \frac{d Z_{ \pm}}{d \log \mu}= \pm \frac{\alpha_{s}(\mu)}{4 \pi} \frac{6\left(N_{c} \mp 1\right)}{N_{c}}
$$

Renormalisation group equation

- Renormalisation of Wilson coefficient: $C_{ \pm}(\mu)=C_{ \pm}^{(0)} Z_{ \pm}\left(\alpha_{s}\right)$
$C_{ \pm}^{(0)}$ independent of $\mu, Z_{ \pm}$function of μ through α_{s}, so

$$
\frac{d C_{ \pm}(\mu)}{d \log \mu}=\gamma_{ \pm}(\mu) C_{ \pm}(\mu) \quad \gamma_{ \pm}=\frac{1}{Z_{ \pm}} \frac{d Z_{ \pm}}{d \log \mu}= \pm \frac{\alpha_{s}(\mu)}{4 \pi} \frac{6\left(N_{c} \mp 1\right)}{N_{c}}
$$

- Dependence of α_{s} on μ

$$
\begin{array}{ll}
\frac{d g_{s}(\mu)}{\log \mu}=\beta\left(g_{s}(\mu)\right)=-\beta_{0} \frac{g_{s}^{3}}{16 \pi^{2}}+\ldots & \beta_{0}=\frac{11 N_{c}-2 N_{f}}{3} \\
\longrightarrow C_{ \pm}(\mu)=\left[\frac{\alpha_{s}\left(M_{W}\right)}{\alpha_{s}(\mu)}\right]^{\frac{\gamma_{ \pm}^{(0)}}{\beta^{(0)}}} C_{ \pm}\left(M_{W}\right) & \gamma_{ \pm}^{(0)}=\frac{6\left(N_{c} \mp 1\right)}{N_{c}}
\end{array}
$$

Renormalisation group equation

- Renormalisation of Wilson coefficient: $C_{ \pm}(\mu)=C_{ \pm}^{(0)} Z_{ \pm}\left(\alpha_{s}\right)$ $C_{ \pm}^{(0)}$ independent of $\mu, Z_{ \pm}$function of μ through α_{s}, so

$$
\frac{d C_{ \pm}(\mu)}{d \log \mu}=\gamma_{ \pm}(\mu) C_{ \pm}(\mu) \quad \gamma_{ \pm}=\frac{1}{Z_{ \pm}} \frac{d Z_{ \pm}}{d \log \mu}= \pm \frac{\alpha_{s}(\mu)}{4 \pi} \frac{6\left(N_{c} \mp 1\right)}{N_{c}}
$$

- Dependence of α_{s} on μ

$$
\begin{array}{ll}
\frac{d g_{s}(\mu)}{\log \mu}=\beta\left(g_{s}(\mu)\right)=-\beta_{0} \frac{g_{s}^{3}}{16 \pi^{2}}+\ldots & \beta_{0}=\frac{11 N_{c}-2 N_{f}}{3} \\
\longrightarrow C_{ \pm}(\mu)=\left[\frac{\alpha_{s}\left(M_{W}\right)}{\alpha_{s}(\mu)}\right]^{\frac{\gamma_{(}^{(0)}}{\beta^{(0)}}} C_{ \pm}\left(M_{W}\right) & \gamma_{ \pm}^{(0)}=\frac{6\left(N_{c} \mp 1\right)}{N_{c}}
\end{array}
$$

- Resumming leading logarithms in Wilson coefficients

$$
C_{+}(\mu)=\left[\frac{\alpha_{S}\left(M_{W}\right)}{\alpha_{s}(\mu)}\right]^{\frac{6}{23}} \quad C_{-}(\mu)=\left[\frac{\alpha_{S}\left(M_{W}\right)}{\alpha_{S}(\mu)}\right]^{\frac{-12}{23}}
$$

Advantages of effective Hamiltonian

$$
A(B \rightarrow H)=\frac{G_{F}}{\sqrt{2}} \sum_{i} \lambda_{i} C_{i}(\mu)\left\langle Q_{i}\right\rangle(\mu)
$$

- Simplification of the problem, keeping only relevant d.o.f.
- Matching to fundamental theory at a high scale M_{W} and renormalisation of operators
\Longrightarrow resummation of large logs (leading, next-to-leading...) in $C(\mu)$
- Easy implementation of New Physics (change C, new Q)
- Can be applied to any process, for instance $B_{d} \rightarrow \pi^{+} \pi^{-}$

Advantages of effective Hamiltonian

$A(B \rightarrow H)=\frac{G_{F}}{\sqrt{2}} \sum_{i} \lambda_{i} C_{i}(\mu)\left\langle Q_{i}\right\rangle(\mu)$

- Simplification of the problem, keeping only relevant d.o.f.
- Matching to fundamental theory at a high scale M_{W} and renormalisation of operators
\Longrightarrow resummation of large logs (leading, next-to-leading...) in $C(\mu)$
- Easy implementation of New Physics (change C, new Q)
- Can be applied to any process, for instance $B_{d} \rightarrow \pi^{+} \pi^{-}$

$$
\begin{gathered}
V_{u d} V_{u b}^{*}(\bar{b} u)_{V-A}(\bar{u} d)_{V-A} \\
\text { Tree }
\end{gathered}
$$

$V_{q d} V_{q b}^{*}(\bar{b} d)_{V-A} \sum_{q}(\bar{q} q)_{V \pm A}$,
Penguin

Advantages of effective Hamiltonian

$A(B \rightarrow H)=\frac{G_{F}}{\sqrt{2}} \sum_{i} \lambda_{i} C_{i}(\mu)\left\langle Q_{i}\right\rangle(\mu)$

- Simplification of the problem, keeping only relevant d.o.f.
- Matching to fundamental theory at a high scale M_{W} and renormalisation of operators
\Longrightarrow resummation of large logs (leading, next-to-leading...) in $C(\mu)$
- Easy implementation of New Physics (change C, new Q)
- Can be applied to any process, for instance $B_{d} \rightarrow \pi^{+} \pi^{-}$

$$
\begin{gathered}
V_{u d} V_{u b}^{*}(\bar{b} u)_{V-A}(\bar{u} d)_{V-A} \\
\text { Tree }
\end{gathered}
$$

$V_{q d} V_{q b}^{*}(\bar{b} d)_{V-A} \sum_{q}(\bar{q} q)_{V \pm A}$,
Penguin

Operators of interest for heavy flavours

- Current-curent
- $(\bar{b} u)_{v-A}(\bar{u} d)_{v-A}$,
- $\left(\bar{b}_{i} u_{j}\right) v-A\left(\bar{u}_{j} d_{i}\right) v-A$

Operators of interest for heavy flavours

- Current-curent
- $(\bar{b} u)_{V-A}(\bar{u} d)_{V-A}$,
- $\left(\bar{b}_{i} u_{j}\right)_{V-A}\left(\bar{u}_{j} d_{i}\right)_{V-A}$
- QCD penguins
- $(\bar{b} d)_{v-A} \sum_{q}(\bar{q} q)_{v \pm A}$,
- $\left(\bar{b}_{i} d_{j}\right) v-A \sum_{q}\left(\bar{q}_{j} q_{i}\right)_{v \pm A}$

Buras et al.

Operators of interest for heavy flavours

- Current-curent
- $(\bar{b} u)_{V-A}(\bar{u} d)_{V-A}$,
- $\left(\bar{b}_{i} u_{j}\right)_{V-A}\left(\bar{u}_{j} d_{i}\right)_{v-A}$
- QCD penguins
- $(\bar{b} d)_{v-A} \sum_{q}(\bar{q} q)_{v \pm A}$,
- $\left(\bar{b}_{i} d_{j}\right)_{v-A} \sum_{q}\left(\bar{q}_{j} q_{i}\right) v_{ \pm A}$
- Electroweak penguins
- $(\bar{b} d)_{v-A} \sum_{q} e_{q}(\bar{q} q)_{v \pm A}$,
- $\left(\bar{b}_{i} d_{j}\right)_{v-A} \sum_{q} e_{q}\left(\bar{q}_{j} q_{i}\right)_{v \pm A}$

Buras et al.

Operators of interest for heavy flavours

- Current-curent
- $(\bar{b} u)_{V-A}(\bar{u} d)_{V-A}$,
- $\left(\bar{b}_{i} u_{j}\right)_{V-A}\left(\bar{u}_{j} d_{i}\right)_{v-A}$
- QCD penguins
- $(\bar{b} d)_{v-A} \sum_{q}(\bar{q} q)_{v \pm A}$,
- $\left(\bar{b}_{i} d_{j}\right)_{v-A} \sum_{q}\left(\bar{q}_{j} q_{i}\right)_{v \pm A}$
- Electroweak penguins
- $(\bar{b} d)_{v-A} \sum_{q} e_{q}(\bar{q} q)_{v \pm A}$,
- $\left(\bar{b}_{i} d_{j}\right)_{v-A} \sum_{q} e_{q}\left(\bar{q}_{j} q_{i}\right)_{v \pm A}$
- Magnetic operators
- $\frac{e}{8 \pi^{2}} m_{b} \overline{\mathbf{s}} \sigma^{\mu \nu}\left(1+\gamma_{5}\right) b F_{\mu \nu}$,
- $\frac{g}{8 \pi^{2}} m_{b} \overline{\boldsymbol{s}} \sigma^{\mu \nu}\left(1+\gamma_{5}\right) b G_{\mu \nu}$

$\Delta B=2$ operators

Buras et al.

Operators of interest for heavy flavours

- Current-curent
- $(\bar{b} u)_{V-A}(\bar{u} d)_{V-A}$,
- $\left(\bar{b}_{i} u_{j}\right)_{V-A}\left(\bar{u}_{j} d_{i}\right)_{v-A}$
- QCD penguins
- $(\bar{b} d)_{v-A} \sum_{q}(\bar{q} q)_{v \pm A}$,
- $\left(\bar{b}_{i} d_{j}\right)_{v-A} \sum_{q}\left(\bar{q}_{j} q_{i}\right)_{v \pm A}$
- Electroweak penguins
- $(\bar{b} d)_{v-A} \sum_{q} e_{q}(\bar{q} q)_{v \pm A}$,
- $\left(\bar{b}_{i} d_{j}\right)_{v-A} \sum_{q} e_{q}\left(\bar{q}_{j} q_{i}\right)_{v \pm A}$
- Magnetic operators
- $\frac{e}{8 \pi^{2}} m_{b} \overline{\mathbf{s}} \sigma^{\mu \nu}\left(1+\gamma_{5}\right) b F_{\mu \nu}$,
- $\frac{g}{8 \pi^{2}} m_{b} \overline{\mathbf{s}} \sigma^{\mu \nu}\left(1+\gamma_{5}\right) b G_{\mu \nu}$
- $\Delta B=2$ operators
- $(\bar{b} d)_{V-A}(\bar{b} d)_{V-A}$

Magnetic operators
Electroweak penguins

$\Delta B=2$ operators

Buras et al.

Operators of interest for heavy flavours

- Current-curent
- $(\bar{b} u)_{V-A}(\bar{u} d)_{V-A}$,
- $\left(\bar{b}_{i} u_{j}\right)_{V-A}\left(\bar{u}_{j} d_{i}\right)_{V-A}$
- QCD penguins
- $(\bar{b} d)_{v-A} \sum_{q}(\bar{q} q)_{v \pm A}$,
- $\left(\bar{b}_{i} d_{j}\right)_{v-A} \sum_{q}\left(\bar{q}_{j} q_{i}\right)_{v \pm A}$
- Electroweak penguins
- $(\bar{b} d)_{v-A} \sum_{q} e_{q}(\bar{q} q)_{v \pm A}$,
- $\left(\bar{b}_{i} d_{j}\right)_{v-A} \sum_{q} e_{q}\left(\bar{q}_{j} q_{i}\right)_{v \pm A}$
- Magnetic operators
- $\frac{e}{8 \pi^{2}} m_{b} \overline{\mathbf{s}} \sigma^{\mu \nu}\left(1+\gamma_{5}\right) b F_{\mu \nu}$,
- $\frac{g}{8 \pi^{2}} m_{b} \overline{\mathbf{s}} \sigma^{\mu \nu}\left(1+\gamma_{5}\right) b G_{\mu \nu}$
- $\Delta B=2$ operators
- $(\bar{b} d)_{V-A}(\bar{b} d)_{V-A}$
- Semileptonic operators

- $(\bar{b} s)_{V-A}(\bar{e} e)_{V / A}$

Buras et al.

Hadronic quantities

Hadronic matrix elements

Effective Hamiltonian yields $A(B \rightarrow H)=\sum \lambda_{i} C_{i}(\mu)\langle H| \mathcal{O}_{i}|B\rangle(\mu)$

- above m_{b}, perturbative Wilson coefficients $C_{i}(\mu)$
- below m_{b}, operators yielding matrix elements $\langle H| \mathcal{O}_{i}|B\rangle(\mu)$

Strong interaction in nonperturbative regime

How to compute $\langle H| \mathcal{O}_{i}|B\rangle$?

- Model building
- Lattice simulations
- Sum rules
- Light flavour symmetries (isospin, SU(3)...)
- Heavy flavour symmetries (HQET...)

Hadronic quantities

Describe hadronic matrix elements in terms of hadronic quantities

- simple (handled/computable theoretically if not perturbatively)
- universal (common to several processes)
\Longrightarrow Exploit Lorentz symmetry to simplify them whenever possible
\Longrightarrow The more mesons, the more complicated the quantity

Hadronic quantities

Describe hadronic matrix elements in terms of hadronic quantities

- simple (handled/computable theoretically if not perturbatively)
- universal (common to several processes)
\Longrightarrow Exploit Lorentz symmetry to simplify them whenever possible
\Longrightarrow The more mesons, the more complicated the quantity

Decay constant
$\langle 0| \bar{u} \gamma_{\mu} \gamma_{5} b\left|B^{-}(p)\right\rangle=i p_{\mu} F_{B}$ (real number)

- probability amplitude of hadronising quark pair into given hadron
- related (among others) to purely leptonic decay

$$
\Gamma\left(B^{-} \rightarrow \ell \nu_{\ell}\right) \propto\left|V_{u b}\right|^{2} F_{B}^{2}
$$

Form factors

$\left\langle\pi\left(p^{\prime}\right)\right| \overline{\gamma_{\gamma}} \gamma_{\mu}|B(p)\rangle=\left(p+p^{\prime}\right)_{\mu} F_{+}\left(q^{2}\right)+\left(p-p^{\prime}\right)_{\mu}\left[F_{0}-F_{+}\right]\left(q^{2}\right) \frac{m_{-}^{2}-m_{\mu}^{2}}{q^{2}}$

- transition from meson to another through flavour change
- projection over available Lorentz stuctures $\left(p \pm p^{\prime}\right)_{\mu}$
- form factors $F_{+, 0}$ scalar functions of $q^{2}=\left(p-p^{\prime}\right)^{2}$
- more complicated for vector mesons, since polarisation available

$$
\frac{d \Gamma(B \rightarrow \pi \ell \nu)}{d\left(q^{2}\right)} \propto\left|V_{u b}\right|^{2} \times\left|F_{+}\left(q^{2}\right)\right|^{2} \quad\left(m_{\ell} \rightarrow 0\right)
$$

General statements about form factors

Not much known, apart from structure of Scattering matrix

$$
S_{\beta \alpha}=\left\langle\beta_{o u t} \mid \alpha_{\text {in }}\right\rangle=\langle\beta \mid \alpha\rangle
$$

and its related T ransition matrix $S=1+i T$

$$
\langle\beta| i T|\alpha\rangle=(2 \pi)^{4} \delta\left(\sum p_{\alpha}-\sum p_{\beta}\right) \cdot i A(\alpha \rightarrow \beta)
$$

General statements about form factors

Not much known, apart from structure of Scattering matrix

$$
S_{\beta \alpha}=\left\langle\beta_{o u t} \mid \alpha_{\text {in }}\right\rangle=\langle\beta \mid \alpha\rangle
$$

and its related T ransition matrix $S=1+i T$

$$
\langle\beta| i T|\alpha\rangle=(2 \pi)^{4} \delta\left(\sum p_{\alpha}-\sum p_{\beta}\right) \cdot i A(\alpha \rightarrow \beta)
$$

Almost only one thing known for sure
from conservation of probability, S-matrix is unitary

$$
\begin{aligned}
\left(S^{\dagger} S\right)_{\gamma \alpha} & =\sum_{\beta}\left\langle\beta_{\text {out }} \mid \gamma_{\text {in }}\right\rangle^{*}\left\langle\beta_{\text {out }} \mid \alpha_{\text {in }}\right\rangle \\
& =\sum_{\beta}\left\langle\gamma_{\text {in }} \mid \beta_{\text {out }}\right\rangle\left\langle\beta_{\text {out }} \mid \alpha_{\text {in }}\right\rangle=\left\langle\gamma_{\text {in }} \mid \alpha_{\text {in }}\right\rangle=\delta(\alpha-\gamma)
\end{aligned}
$$

since sum over complet state of states $|\beta\rangle$

Cuts

Translation for Transition matrix $S=1+i T$

$$
S^{\dagger} S=1 \Longrightarrow T-T^{\dagger}=i T^{\dagger} T
$$

or in terms of amplitude

$$
-i\left[A(\alpha \rightarrow \beta)-A^{*}(\alpha \rightarrow \beta)\right]=\sum_{f} A^{*}(\beta \rightarrow f) A(\alpha \rightarrow f)
$$

Form factors for $\alpha \rightarrow \beta$ acquire an imaginary part

- if there are (real) intermediate states f between α and β
- which depends on the value of the transfer momenta q^{2}

Analytic structure of a form factor

Taking for instance form factor describing $D \rightarrow K \ell \nu$

- Two physical regions, accessible to experiment
- real for $t=q^{2}$ between m_{ℓ}^{2} and $t_{-}=\left(m_{D}-m_{K}\right)^{2} \quad D \rightarrow K$ decay
- complex for $t \geq\left(m_{D}+m_{K}\right)^{2} \quad W \rightarrow D K$ production
- Same form factor involved
- Analytic function for almost every value of t in the complex plane
- apart from poles for resonances (like D_{s}^{*})
- and cuts along the real axis due to imaginary part for open channels

	D decay	$\mathrm{D}_{\mathrm{s}}^{*}$	DK production
0		$\mathrm{t}_{\text {s }}$	
	f real	pole	$\underset{\text { f complex }}{\text { cut }}$

Back to CP violation

Weak process $=$ sum of several amplitudes $\lambda_{i} C_{i}(\mu)\langle H| \mathcal{O}_{i}|B\rangle(\mu)$
Complex amplitudes, with phases from $\begin{array}{ccc}\text { Weak part } & \text { CKM factor } & \text { Phase odd under CP } \\ \text { Strong part } & \text { Hadronic amplitude } & \text { Phase even under CP }\end{array}$
Strong phases often important to extract SM parameters
from CP-violating observabless

Back to CP violation

Weak process $=$ sum of several amplitudes $\lambda_{i} C_{i}(\mu)\langle H| \mathcal{O}_{i}|B\rangle(\mu)$
Complex amplitudes, with phases from

Weak part CKM factor Phase odd under CP
Strong part Hadronic amplitude

Phase even under CP

Strong phases often important to extract SM parameters
from CP-violating observabless
Two different ways of understanding the strong phases

Hadron level
Final state interaction

QCD level
Gluon exchanges

Conclusions

Conclusions

Why strong interactions for heavy flavours

- Disentangle strong and weak interactions in decays
- Spectroscopy of heavy-light and heavy-heavy resonances

QCD

- Renormalisation yields running of strong coupling constant
- Asymptotic freedom: perturbation theory OK at high energies only

Effective Hamiltonian

- Disentangle the scales to integrate out perturbative high energies
- Necessary to resum effects of gluon exchanges (leading logs)

Hadronic quantities (decay constants, form factors, matrix elements)

- Well-defined quantities, related to low-energy strong interactions
- How to compute them from first principles ?

Conclusions

Why strong interactions for heavy flavours

- Disentangle strong and weak interactions in decays
- Spectroscopy of heavy-light and heavy-heavy resonances

QCD

- Renormalisation yields running of strong coupling constant
- Asymptotic freedom: perturbation theory OK at high energies only

Effective Hamiltonian

- Disentangle the scales to integrate out perturbative high energies
- Necessary to resum effects of gluon exchanges (leading logs)

Hadronic quantities (decay constants, form factors, matrix elements)

- Well-defined quantities, related to low-energy strong interactions
- How to compute them from first principles ?

> Help from light- and heavy-quark symmetries to describe hadronic part of heavy-flavour dynamics

