Experimental aspects of the CP violation.

S. Monteil, LPC – Université Blaise Pascal – in2p3. [Aleph and LHCb experiments]

Some authoritative literature about the lecture:

- BaBar physics book: http://www.slac.stanford.edu/pubs/slacreports/slac-r-504.html
- LHCb performance TDR: http://cdsweb.cern.ch/record/630827?ln=en
- A. Höcker and Z. Ligeti: CP Violation and the CKM Matrix. hep-ph/0605217

World Averages and Global Fits:

- Heavy Flavour Averaging Group: http://www.slac.stanford.edu/xorg/hfag/
- CKMfitter: http://ckmfitter.in2p3.fr/
- UTFit: http://www.utfit.org/

Experimental aspects of the CP violation.

Motivation

• In any HEP physics conference summary talk, you will find this plot, stating that heavy flavours and CP violation physics is a pillar of the Standard Model.

• One objective of these serie of lectures is to undress this plot.

Experimental aspects of the CP violation.

A more detailed outline

- 1. History and recent past of the parity violation experiments. The discovery of the CP violation.
- 2. Observables and measurements relevant to study CP violation.
- 3. The global fit of the SM.
- 4. Outlook. New Physics exploration with current data: two examples.

3. The Standard Model global fit results

1. Some words about the statistical method.

- 2. The global picture: fit, detailed view of the constraints, metrology of the SM parameters.
- 3. Historical perspective.
- 4. The tensions of the global fit.

3.1 Some words about the statistical method.

- I will present in this chapter the big picture of the global fit of the flavour data to establish the Standard Model CKM profile.
- Though several approaches exist, there are two main groups aiming at establishing CKM profile from flavour data: The UTFit collaboration and the CKMfitter group, which results will be shown in this chapter.
- They differ by their statistical approach to make the metrology of the parameters: bayesian for UTFit and frequentist for CKMfitter.
- They differ also in the treatment of the theoretical uncertainties.
 The CKMfitter group uses the Rfit approach.

3.1 Sketch of the statistical method.

- The frequentist approach:
- Use Frequentist Hypothesis testing to build statistical significance(p-value) functions from which estimates and confidence intervals are obtained.
- The statistical test is a Maximum Likelihood Ratio = $\Delta \chi^2$.
- The situation is further complicated by the presence of theoretical uncertainties for which a dedicated scheme is considered: Rfit.
- When the theoretical uncertainty is not controlled at a satisfactory enough level, the related observable is not considered in the global fit (e.g the ε ' measurement direct CP violation in the kaon system).

3.1 Sketch of the statistical method.

- The Rfit treatment of theoretical uncertainties:
- Theoretical systematics are considered as additional nuisance parameters bounded over a confidence interval.
- These errors are not statistically distributed.
- This approach yields very different
 ¹/_{2.4}
 results from what one would get from a 0.2
 statistical modelling of the systematic
 (ex ample here: uniform over the range)

3.2 The global picture

- List of the inputs: in the details.
- The ones we discussed in previous chapter, and:

•	$\alpha \sim \gamma$

Lattice parameters. And ratios.

s. And ratio	S.
K	

The tauonic B decay. Deserves a brief description.

T	W1 (B / /)	-	Errors	
Parameter	$Value \pm Error(s)$	Reference	GS	TH
$ V_{ud} $ (nuclei)	0.97425 ± 0.00022	[1]	*	-
$ V_{us} $ $(K_{\ell 3})$	0.2254 ± 0.0013	[2]	*	_
$ V_{ub} $	$(3.92 \pm 0.09 \pm 0.45) \times 10^{-3}$	[3, 4]	*	*
$ V_{cb} $	$(40.89 \pm 0.38 \pm 0.59) \times 10^{-3}$	[3]	*	*
$ \varepsilon_K $	$(2.229 \pm 0.010) \times 10^{-3}$	[5]	*	
Δm_d	$(0.507 \pm 0.005) \text{ ps}^{-1}$	[3]	*	-
Δm_s	$(17.77 \pm 0.12) \text{ ps}^{-1}$	[6]	*	-
$\sin(2\beta)_{[c\bar{c}]}$	0.673 ± 0.023	[3]	*	-
$S_{\pi\pi}^{+-}, C_{\pi\pi}^{+-}, C_{\pi\pi}^{00}$	Inputs to isospin analysis	[3]	*	10.75
$\mathcal{B}_{\pi\pi}$ all charges	Inputs to isospin analysis	[3]	*	1.75
$S_{\rho\rho,L}^{+-}, C_{\rho\rho,L}^{+-}, S_{\rho\rho}^{00}, C_{\rho\rho}^{00}$	Inputs to isospin analysis	[3]	*	
$S_{\rho\rho,L}^{+-}, C_{\rho\rho,L}^{+-}, S_{\rho\rho}^{00}, C_{\rho\rho}^{00}$ $\mathcal{B}_{\rho\rho,L}$ all charges	Inputs to isospin analysis	[3]	*	1.7
$B^0 \to (\rho\pi)^0 \to 3\pi$	Time-dependent Dalitz analysis	[7, 8]	*	-
$B^- \to D^{(*)}K^{(*)}$	Inputs to GLW analysis	[3]	*	i e
$B^- \to D^{(*)}K^{(*)-}$	Inputs to ADS analysis	[3]	*	
$B^- \to D^{(*)}K^{(*)-}$	GGSZ Dalitz analysis	[3]	*	100
$\mathcal{B}(B^- o au^- \overline{ u}_ au)$	$(1.68 \pm 0.31) \times 10^{-4}$	[9]	*	
$m_c(m_c)$	$(1.286 \pm 0.013 \pm 0.040) \text{GeV}$	[12]	*	*
$\overline{m}_t(m_t)$	$(165.02 \pm 1.16 \pm 0.11) \mathrm{GeV}$	[10]	*	*
B_K	$0.723 \pm 0.004 \pm 0.067$	[16]	*	*
$\alpha_S(m_Z^2)$	0.1176 ± 0.0020	[5]	-	*
η_{cc} Calculated from $\overline{m}_c(m_c)$ and α_s		[17]	-	*
η_{ct} 0.47 ± 0.04		[18]	-	*
η_{tt} 0.5765 \pm 0.0065		[17, 18]	-	*
$\eta_B(\overline{ m MS})$	0.551 ± 0.007	[19]	-	*
f_{B_s}	$(228 \pm 3 \pm 17) \mathrm{MeV}$	[16]	*	*
B_s	$1.28 \pm 0.02 \pm 0.03$	[16]	*	*
f_{B_s}/f_{B_d}	$1.199 \pm 0.008 \pm 0.023$	[16]	*	*
B_s/B_d	$1.05 \pm 0.01 \pm 0.03$	[16]	*	*

3.2 The global picture. Aparte: Taunic B decay.

$$\mathcal{B}[M \to \ell \nu] = \frac{G_F^2 m_M m_\ell^2}{8\pi \hbar} (1 - \frac{m_\ell^2}{m_M^2})^2 |V_{q_u q_d}|^2 f_M^2 \tau_M (1 + \delta_{\rm em}^{Ml2})$$

- B^{*}→τ*ν is another way to access the matrix element |V_{ub}|. Remember that we have seen in Chapter II that exclusive and inclusive determinations only marginally agrees.
- Actually it's not only $|V_{ub}|$ but the product $f_B|V_{ub}|$.
- The simultaneous treatment of Δm_d and Br[$B^* \rightarrow \tau^* \nu$] allows to get rid from the B decay constant.

3.2 The global picture. Aparte: Taunic B decay reconstruction.

3.2 The global picture. Aparte: Taunic B decay reconstruction.

- ECL/Extra = extra calorimeter energy
- SM prediction(CKMfitter):

$$B(B^+ \to \tau^+ \nu_{\tau}) = (0.763^{+0.114}_{-0.061}) \cdot 10^{-4}$$

S.Monteil

Ecole de GIF 2010

3.2 Standard Model: the CKM profile

- The global picture:
- Notice to read the picture: regions outside the coloured area are excluded at 95 % Confidence Level.
- There is a region of Wolfenstein parameter space which is common to all the constraints.
- In other terms, there is a remarkable consistency between all of the observables at the 95 % CL.

3.2 Standard Model: the CKM profile

The global picture: comparison of observables constraints.

CP-conserving against CP violating.

Correct agreement. CP-conserving observables can quantify CP violation.

3.2 Standard Model: the CKM profile

The global picture: comparison of observables constraints.

 Correct agreement. Remember that only observables with a good theoretical control are considered in the global fit.
 S.Monteil Ecole de GIF 2010

14

3.2 Standard Model: the CKM profile

The global picture: comparison of observables constraints.

Trees against Loops.

 Trees are thought to be pure SM. Loops could exhibit New Physics. Fair agreement.

3.2 Standard Model: the CKM profile.

- The global picture:
- This is a tremendous success of the Standard Model and especially the Kobayashi-Maskawa mechanism.

 This is simultaneously an outstanding experimental achievement by the B factories.
- CKM is at work in weak charged current.
- The KM phase IS the dominant source of CP violation in K and B system.

3.3 Back to the future .

Recreational Homework. Find the break through measurements along ages.

3.3 Back to the future .

3.3 Back to the future .

- 1995: starting point given by the top quark mass measurement. K and B mixings can be predicted.
- 2001: pre-Bfactories era. LEP/CLEO based UT. Comparison with kaon mixing gives a consistency check.
- 2002: CP violation in the interference between decay and mixing is observed. This is the first true consistency test of the Standard Model.
- 2004: precise β measurement. First alpha measurement.
- 2006-2009: Δm_s First gamma measurement. Δm_s is measured.
- 2013: LHCb with precise gamma measurement.
- 2017: Super Flavour Factories (including LQCD improvements.)

3.3 Standard Model Predictions from the global fit.

- Now that the Standard Model hypothesis is validated [Validated does not mean that the SM is THE theory: it means that it passed the statistical test !!!] it's relevant to make the metrology of the CKM parameters.
- Additionally, perform consistency checks. Exclude the meas. of the observable you want to predict from the global fit and ... compare
- Please pick your favourite around here: http://ckmfitter.in2p3.fr.

3.3 Standard Model Predictions from the global fit.

CKM parameters:

$$\begin{array}{lcl} A & = & 0.812^{+0.013}_{-0.027} \\ \lambda & = & 0.22543 \pm 0.00077 \\ \bar{\rho} & = & 0.144 \pm 0.025 \\ \bar{\eta} & = & 0.342^{+0.016}_{-0.015} \\ J & = & (2.96^{+0.18}_{-0.17})10^{-5} \end{array}$$

Matrix element / angles (including Bs system)

$$|V_{ub}| = 0.00354^{+0.00016}_{-0.00020}$$

$$\sin 2\beta = 0.830^{+0.013}_{-0.034}$$

$$\sin 2\beta_s = 0.0363 \pm 0.0017$$

Rare decays:

$$\mathcal{B}(B^{+} \to \tau^{+}\nu_{\tau}) = (0.763^{+0.114}_{-0.061})10^{-4}$$

$$\mathcal{B}(B^{+} \to \mu^{+}\nu_{\mu}) = (0.387^{+0.045}_{-0.043})10^{-6}$$

$$\mathcal{B}(B_{s} \to \mu^{+}\mu^{-}) = (3.073^{+0.070}_{-0.190})10^{-9}$$

$$\mathcal{B}(B_{s} \to \mu^{+}\mu^{-}) = (9.87^{+0.25}_{-0.67})10^{-11}$$

Lattice parameters (!)

$$B_K = 0.83^{+0.26}_{-0.15}$$

 $\xi = 1.195^{+0.053}_{-0.044}$
 $f_{B_s} = 235.8 \pm 8.9 \text{ MeV}$

3.4 Les tensions de l'ajustement global

- Among the consistency checks, we find some discrepancies (would it be better to say marginal agreement?).
- We will review what could be possible hints of New Physics as indicated by the big picture.
- The only significant one is the marginal agreement of tauonic B decay branching ratio and $\sin 2\beta$.
- The outlook will de dedicated to specific New Physics analysis which can accomodate the observed discrepancy.

3.4 The tensions in the global fit.

$3.4.1 |V_{ub}| \text{ vs sin } 2\beta$?

- It is actually more a $|V_{ub}|$ vs $|V_{ub}|$ tension.
- We are living with a significant difference between exclusive and inclusive measurements: a longstanding issue. (See all theo. lectures in this school ...)
- The $\sin 2\beta$ measurement prefers the exclusive value under SM hypothesis.

3.4 The tensions in the global fit.

 $3.4.2 /\mathcal{E}_{K} / \text{vs sin} 2\beta$?

Buras & Guadagnoli recently advocated necessity of an additional parameter in the SM lowering the prediction.

A possible tension $/\mathcal{E}_{K}/$ vs sin 2β was mentioned and received appealing explanations (Soni & Lunghi).

A tension arises in CKMfitter only if all the uncertainties on QCD parameters are Gaussian.

3.4 The tensions in the global fit.

 $3.4.3 B \rightarrow \tau^+ \nu \text{ vs sin } 2\beta$?

Actually, all measurements are consistent with their predictions within one standard deviation apart Br($B^* \rightarrow \tau^* \nu$) [2.8 σ] and sin 2β [2.6 σ]

3.4 The tensions in the global fit.

$3.4.3 B^+ \rightarrow \tau^+ \nu \text{ vs sin } 2\beta$?

4. Outlook and conclusions.

- 1. Additional mesaurements from Tevatron: the angle β_s , the semileptonic asymmetries a_{SL} ,
- 1. Model independent analysis of mixing processes. Which room left for new physics.
- 1. Concluding remarks.

4.1 Tevatron measurements.

- See Zoltan's lecture for the SM parameters dependencies of these observables.
- A_{SL} measures the CP violation in the mixing of the B mesons.
- β_s is the measure of the weak phase of B_s mixing, analogously to β for B^0 mixing.

- D0 meas. 3.2 σ from SM.
- Excellent muon coverage.
- Flip the magnetic field..

- Very complicated (VV, angular) analysis.
- Some discrepancy w.r.t /SM.
- World Averaging not
- Young experts in the room.

4.2 NP in $\triangle F=2$ processes

Aim at investigating in a model-independent manner the space left to NP contributions by the current data. Only two additional parameters added. Several equivalent parametrisations exist:

$$\langle B_q | \mathcal{H}_{\Delta B=2}^{\mathrm{SM+NP}} | \bar{B}_q \rangle \equiv \langle B_q | \mathcal{H}_{\Delta B=2}^{\mathrm{SM}} | \bar{B}_q \rangle \times (\mathrm{Re}(\Delta_q) + i \mathrm{Im}(\Delta_q))$$

$$\mathrm{Re}(\Delta_q) + i \mathrm{Im}(\Delta_q) = r_q^2 e^{i2\theta_q} = 1 + h_q e^{i\sigma_q}$$

Soares & Wolfenstein, PRD 47, 1021 (1993) Deshpande, Dutta & Oh, PRL77, 4499 (1996) Silva & Wolfenstein, PRD 55, 5331 (1997) Cohen et al., PRL78, 2300 (1997) Grossman, Nir & Worah, PLB 407, 307 (1997) Goto et al., PRD 53, 6662 (1996)

Hypotheses:

- •only the short distance part of the mixing processes might receive NP contributions.
- Unitary 3X3 CKM matrix.
- tree-level processes are not affected by NP (so-called SM4FC: $b \rightarrow q_i q_j q_k \ (i \neq j \neq k)$). As a consequence, the quantities which do not receive NP contributions in that scenario *are:*

$$|V_{ud}|, |V_{us}|, |V_{ub}|, |V_{cb}|, B^+ \to \tau^+ \nu_{\tau} \text{ and } \gamma$$

4.2 NP in $\triangle F=2$ processes

Following the cartesian coordinates parametrisation proposed by Lenz and Nierste (JHEP0706:072,2007)

 $\Delta_q = |\Delta_q| e^{i2\Phi_q^{
m NP}}$

The predictions of the observables sensitive to NP contributions are modified as:

parameter	prediction in the presence of NP
Δm_q	$ \Delta_q^{ ext{NP}} imes \Delta m_q^{ ext{SM}}$
2β	$2eta^{ ext{ iny SM}} + \Phi_d^{ ext{ iny NP}}$
$2\beta_s$	$2eta_s^{ ext{SM}} - \Phi_s^{ ext{NP}}$
2α	$2(\pi - \beta^{\text{SM}} - \gamma) - \Phi_d^{\text{NP}}$
$\Phi_{12,q} = \text{Arg}[-\frac{M_{12,q}}{\Gamma_{12,q}}]$	$\Phi_{12,q}^{ ext{ iny SM}} + \Phi_q^{ ext{ iny NP}}$
A_{SL}^q	$\frac{\Gamma_{12,q}}{M_{12,q}^{\rm SM}} \times \frac{\sin(\Phi_{12,q}^{\rm SM} + \Phi_q^{\rm NP})}{ \Delta_q^{\rm NP} }$
$\Delta\Gamma_q$	$2 \Gamma_{12,q} \times \cos(\Phi_{12,q}^{\text{SM}} + \Phi_q^{\text{NP}})$

4.2 NP in $\triangle F=2$ processes

Hypotheses:

• tree-level processes are not affected by NP (so-called SM4FC: $b \rightarrow q_i q_j q_k$ ($i \neq j \neq k$)). As a consequence, the quantities which do not receive NP contributions in that scenario *are:*

$$|V_{ud}|, |V_{us}|, |V_{ub}|, |V_{cb}|, B^+ \to \tau^+ \nu_{\tau} \text{ and } \gamma$$

- They fix the apex of the UT.
- α and β receives the same additionnal phase with opposite sign and hence can be interpreted as γ tree.
- The second (symmetric) solution is disfavored by the semileptonic charge asymmetry.

4.2 NP in $\triangle F=2$ processes

- β and A_{SL} are both favouring the negative imaginary part.
- SM hypothesis (2D): 2.5σ

- 1. Sizeable NP contributions allowed in the Bd mixing.
- 2. A new phase in the Bd mixing accomodates the $B^* \rightarrow \tau^* \nu$ vs sin 2β discrepancy of the SM global fit

4.2 NP in $\triangle F=2$ processes

- β_s and A_{SL} are both favouring the negative imaginary part.
- SM hypothesis (2D): 2.7σ

- 1. Sizeable NP contributions allowed in the Bs mixing.
- 2. Recent CDF measurement (more SM like) not taken into account. LHCb contribution will be decisive in the near future.

- CKM mechanism is at work for describing quark flavor transitions.
- KM phase likely to be dominant in B's.
- Triumph of the SM and the B factories.
- Still, sizeable NP contributions still allowed in both Bd and Bs systems.
- We are not yet at the level of precision achieved for Z pole EW fits. For instance, the CKM unitarity triangle is not much constrained: *Winter09*

$$\alpha + \beta + \gamma = (180 \pm 31) \deg$$
.

- Hunt for rare decays where significant BSM contributions might occur.
- Improve the UT consistency test: measure the gamma angle.
- This is the physics case of the LHCb experiment! Exciting times.