AC-LGAD strip sensor measurements with 120 GeV protons

Karri Folan DiPetrillo
36th RD50 Workshop
4 June 2020

with Artur Apresyan, Wei Chen, Gabriele D'Amen, Gabriele Giacomini, Ryan Heller, Hakseong Lee, Sergey Los, Chang-Seong Moon, Alessandro Tricoli
Motivation for 4D Trackers

Future colliders present tremendous challenges for trackers

- Eg: at FCC-hh we expect 1000 pile-up interactions per bunch crossing
 - LHC: PU ~ 50
 - HL-LHC: PU ~ 200
- Future trackers need $O(10 \text{ ps})$ and $O(10 \text{ µm})$ resolution per-hit
 - simplify pattern recognition
 - correctly associate tracks to pile-up vertices
- Need a sensor with both precise time resolution and fine segmentation!

At HL-LHC already need ~50 ps time resolution per track to resolve pile-up vertices
Why AC-LGADs

- Low Gain Avalanche Detectors (LGADs) achieve 30 ps time resolution
 - ATLAS and CMS plan to use 1.3 x 1.3 mm² pads at HL-LHC
 - cannot easily shrink pitch: 50-80 µm inactive region between pads

- AC-coupled LGADs solve the fill factor problem
 - uninterrupted gain layer, read out with AC-coupled electrodes
 - → smaller pitch and signal sharing between pads
 - can easily achieve O(10 µm) and 30 ps time resolution with same sensor
The AC-LGAD sensor

- Fabricated at BNL
 - 50 µm thick p- substrate
 - Depletion voltage -150 V
 - Breakdown -225 V at 22°C
 - Bias Voltage -210 V

- 17 Strips
 - 100 µm pitch
 - 80 µm width

- DC contact surrounds pads
 - behaves as a standard LGAD when directly traversed by a proton
 - used to measure gain

- Readout with Fermilab 16-channel board
 - 15 strips (additional stage of amplification)
 - DC pad

Guard Ring
DC-contact
strips: 0-17
Simulation

- AC-LGAD simulations with a similar geometry
 - 100 µm pitch, 80 µm width, similar doping/gain, but shorter strip length
 - simulations performed with SILVACO

Current-sharing between adjacent strips

DC-contact signals for different proton positions
Fermilab Test Beam setup

- Main injector provides 120 GeV protons
 - Beam width: few mm to few cm
 - ~100k protons per 4 seconds spill, every minute

- Independent scintillator provides trigger
- Telescope provides proton track position
- Photek MCP serves as time reference (10 ps resolution)
- Oscilloscope saves waveforms from Photek and three channels
- Study $\Delta t(\text{AC-LGAD,Photek})$
Analysis strategy

- Basic requirements
 - Well measured proton track
 - Photek signal
 - Proton x and y consistent with sensor

- Can only study 3 strips + Photek at a time with oscilloscope
 - Three adjacent strips
 - Or stitch separate events together

- Hit amplitude thresholds
 - Strips: 110 mV
 - DC contact: 11 mV

- Clusters formed from adjacent strips with hits

Following slides include amplifier gain
Signal Properties

- **Center strip**
 - initial negative pulse
 - 1 ns FWHM
 - followed by overshoot
 - S/N~27

- **Adjacent strips**
 - lower amplitude signals
 - longer tails
Signal sharing between strips

- Confirms predictions from simulation
 - strip amplitude decreases with distance to proton
 - adjacent strip sees lower amplitude signal, usually above threshold
 - 2nd adjacent rarely sees signal above threshold (few percent)
Estimating cluster size

• Since we can only read out 3 channels at once, we use amplitude distributions to estimate cluster size
 • ~70% of events have a 3 hit cluster
 • ~25% have 2 hits
 • few% will have a 4th or 5th hit
 • <1% of clusters have 1 hit or less

• Majority of signal contained within three strips
 • sum of amplitudes well described by landau convolved with a gaussian
DC-contact

- DC-pad signal amplitude decreases with distance to incident proton
 - direct hits in DC pad (>30 mV), induced hits near DC pad (11-30 mV)
- DC-pad behaves like a standard LGAD when struck directly by proton
 - measure collected charge to be 11 fC, 30% systematic uncertainty
 - corresponds to gain of 17

![Graph showing collected charge and events distribution](image)
Efficiency measurement

- Study the efficiency as a function of proton x and y position
- Efficiency definition: amplitude > 100 mV, t_{peak} ~ consistent with MIP
- Measure efficiency = 99.4 ± 0.1
- Observe no loss of efficiency between strips!
Efficiency measurement cont.

- Can also study efficiency of individual strips
 - consistent across the device
 - indicative of good uniformity!
Spatial Resolution

- **AC-LGAD feature** - signal sharing between strips can improve position measurement beyond \((\text{strip size})/\sqrt{12}\)

- **Our measurement**
 - \(\sigma(\ x_{\text{sensor}} - x_{\text{tracker}})\)
 - dominated by tracker resolution \(\sim 50\ \mu\text{m}\)*

- **Looking into ways to improve tracker resolution for future**

50 \(\mu\text{m}\) res due to extrapolation to DUT, not intrinsic to telescope
Time resolution

- Measurement:
 - time difference with respect to photek ($t_0 - t_{ref}$)
 - t_0 and t_{ref} defined at 20% of pulse maximum amplitude
 - resolution: sigma of gaussian fit

- Within a 2 or 3 hit cluster
 - leading strip: 45-47 ps
 - subleading: 70-90 ps
 - no significant improvement from combining hits within clusters - at most few ps expected

- Future improvements
 - investigate lower noise electronics
 - systematic study of how gain/geometry/charge sharing impacts time resolution
Conclusions

• AC-LGADs make excellent candidates for future 4D trackers

• We present numerical simulations & first measurements of an AC-LGAD strip sensor with 120 GeV pp-collisions
 • characterization of signal properties, including signal sharing
 • efficiency demonstrated to be >99%
 • steps towards spatial & time resolution measurements

• Read more in arXiv:2006.01999