

Position reconstruction using machine learning algorithms applied to Resistive Silicon Detectors

36th RD50 Workshop, CERN, 4th June 2020

Siviero F., Arcidiacono R., Cartiglia N., Costa M., Ferrero M., Mandurrino M., Sola V. Staiano A., Tornago M. Apreysan A., DiPetrillo K., Heller R., Los. S.

Borghi G., Boscardin M., Dalla Betta G-F., Ficorella F., Pancheri L., Paternoster G., Centis Vignali M.

Outline

- Resistive Silicon Detectors design
 - Signal attenuation law & position reconstruction method
- Optimization of the RSD design
- Multi-output regression algorithm
 - Assessment of the algorithm resolution
- Machine learning algorithm validation with laser tests
- Validation with beam test data & future plans

Outline

- Resistive Silicon Detectors design
 - Signal attenuation law & position reconstruction method
- Optimization of the RSD design
- > Multi-output regression algorithm
 - Assessment of the algorithm resolution
- Machine learning algorithm validation with laser tests
- > Validation with beam test data & future plans

Resistive Silicon Detectors

See M.Tornago's talk for more details:

- RSD are based on LGAD technology
- Unsegmented gain layer spreading over the whole sensor area
- AC-coupling to metal pads
- Several geometries can be implemented by simply changing pads geometry
- 100% fill factor
- Signal sharing among many pads
- Parameters governing signal induction on AC-pads: coupling oxide thickness, n⁺⁺ layer resistivity

Sensors presented in this talk are from the FBK RSD1 production

Signal attenuation law

- **Key feature** to reconstruct the hit position with RSD: **signal** generated by an impinging particle **spreads among 2-4 pads**
 - Reconstruction techniques that combine informations of many read-out channels
 - Similar to what happens in calorimeters

Signal attenuation law

- Key feature to reconstruct the hit position with RSD: signal generated by an impinging particle spreads among 2-4 pads
 - Reconstruction techniques that combine informations of many read-out channels
 - Similar to what happens in calorimeters
- We developed an analytic signal attenuation law (M.Tornago's talk)
 - \rightarrow signal amplitude seen by a read-out pad vs distance of the hit position from pad's edge

$$V(d) = \left[V_0 - \beta * d\right] * \left[tan^{-1}\left(\frac{\alpha}{\alpha + d}\right) / tan^{-1}\left(\frac{\alpha}{\alpha}\right)\right]$$

attenuation coefficient

amplitude vs distance from the pad's edge (analytic law)

• No signal sharing when the particle crosses a metal pad \rightarrow signal only seen by the hit pad

Signal attenuation law - 2

- The attenuation law defines circumferences of equidistant positions that produce the same signal
- All pads always see a signal, due to read-out noise
 - only those above noise level are used (fixed threshold ~ 15mV)
 - This sets the maximum distance at which a pad can be used
- Amplitude constant under the metal pad → no signal sharing there

Signal seen by a read-out pad vs x-y position The max distance at which it can be used is shown

Signal attenuation law - 2

- The attenuation law defines circumferences of equidistant positions that produce the same signal
- All pads always see a signal, due to read-out noise
 - only those above noise level are used (fixed threshold ~ 15mV)
 - This sets the maximum distance at which a pad can be used
- Amplitude constant under the metal pad → no signal sharing there
- We can reconstruct the hit position if at least 3 pads see a signal → the intercept of 3 circumferences define a point

Signal seen by a read-out pad vs x-y position The max distance at which it can be used is shown

Position reconstruction Efficiency

- Combining the attenuation laws of many read-out channels: x-y map representing, in each position, the number of pads that see a signal above threshold
- Regions where less than 3 pads see a signal: the reconstruction method is inefficient there
 → we need to design RSD avoiding such regions

Position reconstruction Efficiency

- Combining the attenuation laws of many read-out channels: x-y map representing, in each position, the number of pads that see a signal above threshold
- Regions where less than 3 pads see a signal: the reconstruction method is inefficient there
 → we need to design RSD avoiding such regions

x-y map representing an RSD with 100-200* um geometry

- 3x3 pixel matrix (as all measured sensors)
- Circular metal pads drawn for simplicity (squared in real detectors, it doesn't change much)
- Blue / green regions: position reconstruction inefficient

*pad size -pitch

RSD ----

Position reconstruction Efficiency

- Combining the attenuation laws of many read-out channels: x-y map representing, in each position, the number of pads that that see a signal above threshold
- Regions where less than 3 pads see a signal: the reconstruction method is inefficient there
 → we need to design RSD avoiding such regions

Outline

- Resistive Silicon Detectors design
 - Signal attenuation law & position reconstruction method
- Optimization of the RSD design
- Multi-output regression algorithm
 - Assessment of the algorithm resolution
- Machine learning algorithm validation with laser tests
- > Validation with beam test data & future plans

Impact of pad geometry on position reconstruction

• In RSD, the **spatial resolution beneath the metal** pads is that of a standard silicon sensor with binary read-out $\sigma = pixel size / \sqrt{12}$

RSD ------

- The RSD spatial resolution is much better than *pixel size* / $\sqrt{12}$ (next slides), as signal sharing enhances position reconstruction
- Using squared pads, the spatial resolution is position dependent, worsening beneath the metal

Impact of pad geometry on position reconstruction

- In RSD, the **spatial resolution beneath the metal** pads is that of a standard silicon sensor with binary read-out $\sigma = pixel size / \sqrt{12}$
 - The RSD spatial resolution is much better than *pixel size* / $\sqrt{12}$ (next slides), as signal sharing enhances position reconstruction
 - Using squared pads, the spatial resolution is position dependent, worsening beneath the metal
- We should redesign RSD pixels in an innovative way, minimizing the area covered by metal

 \rightarrow achieve signal sharing everywhere in this way

Siviero F. "36th RD50 Workshop", CERN, June 2020

Impact of pad geometry on position reconstruction

- In RSD, the **spatial resolution beneath the metal** pads is that of a standard silicon sensor with binary read-out $\sigma = pixel size / \sqrt{12}$
 - The RSD spatial resolution is much better than *pixel size* / $\sqrt{12}$ (next slides), as signal sharing enhances position reconstruction
 - Using squared pads, the spatial resolution is position dependent, worsening beneath the metal
- We should redesign RSD pixels in an innovative way, minimizing the area covered by metal

 \rightarrow achieve signal sharing everywhere in this way

Siviero F. "36th RD50 Workshop", CERN, June 2020

Impact of sensor geometry on position reconstruction

- 2nd parameter affecting position reconstruction efficiency: sensor area not covered by metal, given by *pitch pad size ("interpad")*
- Small *interpad* → pads are closer, more likely to have 3 or more pads seeing the signal than with larger *interpad*

Siviero F. "36th RD50 Workshop", CERN, June 2020

Impact of sensor geometry on position reconstruction

- 2nd parameter affecting position reconstruction efficiency: sensor area not covered by metal, given by *pitch pad size ("interpad")*
- Small *interpad* → pads are closer, more likely to have 3 or more pads seeing the signal than with larger *interpad*

100-200 vs 50-100

(both devices measured in this work):

- Same resistivity
- 100-200 has small inefficient regions
- 50-100 reaches 100% 3-4 pad coverage on its whole sensitive area

Optimized RSD design

- Using the previous results, we can define an optimized RSD design to precisely reconstruct the position:
 - Cross-shaped metal read-out pads: 100% signal sharing
 - **Small interpad**: 100% 3-4 pad coverage

Outline

- Resistive Silicon Detectors design
 - Signal attenuation law & position reconstruction method
- Optimization of the RSD design
- Multi-output regression algorithm
 - Assessment of the algorithm resolution
- Machine learning algorithm validation with laser tests
- > Validation with beam test data & future plans

Machine learning applied to RSD

- Machine learning algorithms are suited to solve regression problems with many inputs and one (or multiple) output
- We trained a <u>Multi-ouput regression algorithm</u> taking the RSD signal features as inputs and the x-y position as outputs (it's a multi-output problem since we need 2 coordinates)
 - Training performed using only 4 read-out pads

Machine learning applied to RSD

- Machine learning algorithms are suited to solve regression problems with many inputs and one (or multiple) output
- We trained a <u>Multi-ouput regression algorithm</u> taking the RSD signal features as inputs and the x-y position as outputs (it's a multi-output problem since we need 2 coordinates)
 - Training performed using only 4 read-out pads

- Region considered for training, defined by the centers of 4 read-out pads
- Outside the red region, a different set of 4 read-out pads can be used to reconstruct the position
- Define the algorithm for 4 pads then get the full sensor by tessellation

RSD -----

Machine learning applied to RSD - 2

- ML algorithm trained with 8 input features: 4 pads' amplitudes (A_i) + the same 4 amplitudes normalized to the total amplitude (A_i / ∑A_i)
- We used the signal attenuation law to train the ML algorithm, assessing in each x-y position the amplitude seen by each pad

Machine learning applied to RSD - 2

- ML algorithm trained with 8 input features: 4 pads' amplitudes (A_i) + the same 4 amplitudes normalized to the total amplitude (A_i / ∑A_i)
- We used the signal attenuation law to train the ML algorithm, assessing in each x-y position the amplitude seen by each pad
 - **Amplitude** values are randomly extracted from a **Landau** distribution with parameters taken from beam test data

Siviero F. "36th RD50 Workshop", CERN, June 2020

ML algorithm trained with 8 input features: 4 pads' amplitudes (A_i) + the same 4 amplitudes normalized to the total amplitude ($A_i / \sum A_i$)

Machine learning applied to RSD - 2

- We used the signal attenuation law to train the ML algorithm, assessing in each x-y position the amplitude seen by each pad
 - **Amplitude** values are randomly extracted from a **Landau** distribution with parameters taken from beam test data
 - The attenuation coefficient (depending upon sensor resistivity and geometry) used in the attenuation law is tuned for each DUT

We used the signal attenuation law to train the ML algorithm, assessing in each x-y position the amplitude seen by each pad

- Amplitude values are randomly extracted from a Landau Ο distribution with parameters taken from beam test data
- The attenuation coefficient (depending upon sensor resistivity Ο and geometry) used in the attenuation law is tuned for each DUT
- We add a gaussian smearing to the amplitudes Ο \rightarrow it's a way of adding "noise" to the system, prevents overfitting

normalized to the total amplitude $(A_i / \sum A_i)$

Machine learning applied to RSD - 2

Algorithm resolution

• Amplitudes smearing: x-y position not uniquely defined by one set of amplitudes → this leads to an intrinsic resolution of the algorithm

Algorithm resolution

- Amplitudes smearing: x-y position not uniquely defined by one set of amplitudes → this leads to an intrinsic resolution of the algorithm
- Resolution can be obtained by predicting the same data used for training and calculating the width of $x_{predicted} x_{truth}$ distribution
- The resolution saturates at about 10mV, reaching 4-5 um

Algorithm resolution

- Amplitudes smearing: x-y position not uniquely defined by one set of amplitudes → this leads to an intrinsic resolution of the algorithm
- Resolution can be obtained by predicting the same data used for training and calculating the width of $x_{predicted} x_{truth}$ distribution
- The resolution saturates at about 10mV, reaching 4-5 um
- In order not to be too dependent on simulation parameters, we fixed the gaus smearing on the plateau, at 10 mV
- The position reconstruction method will have therefore a resolution floor (σ_{intrinsic}) of 4-5 um due to the ML algorithm

Read-out noise

• 2nd source of uncertainty contributing to the spatial resolution is the read-out noise

 $\rightarrow \sigma_{total}^{\ \ 2} = \sigma_{intrinsic}^{\ \ 2} + \sigma_{noise}^{\ \ 2}$

 σ_{total} has been determined predicting 1000 times the same position but with slightly different amplitudes each time, to reproduce the read-out noise

Read-out noise

• 2nd source of uncertainty contributing to the spatial resolution is the read-out noise

 $\rightarrow \sigma_{total}^{2} = \sigma_{intrinsic}^{2} + \sigma_{noise}^{2}$

- σ_{total} has been determined predicting 1000 times the same position but with slightly different amplitudes each time, to reproduce the read-out noise
- The total spatial resolution increases linearly with read-out noise and does not saturate
 → σ_{total} ∝ read-out noise
- σ_{total} for the 3 geometries considered in this work are shown: 50-100 um, 100-200 um, 150-300 um
- The effect of read-out noise is more pronounced in sensors with larger pitch

Outline

- Resistive Silicon Detectors design
 - Signal attenuation law & position reconstruction method
- Optimization of the RSD design
- Multi-output regression algorithm
 - Assessment of the algorithm resolution
- Machine learning algorithm validation with laser tests
- > Validation with beam test data & future plans

Algorithm validation using TCT setup

- ML algorithm has been firstly validated using a TCT setup
- IR pulsed laser (1060 nm) \rightarrow 10-15 µm spot
- xy-stage with sub-µm precision → laser shot position are known with <1 um resolution → can be used as reference positions to assess RSD predictions

Siviero F. "36th RD50 Workshop", CERN, June 2020

Laser results on 100-200 sensor

- 1st measured sensor: 3x3 matrix with 100-200 um geometry
- Gain = 15
- Focused on positions within the red region, as already explained
- Only regions where at least 3 pads can reconstruct the position are considered
- RSD spatial resolution: width of the $x_{laser} x_{RSD}$ distribution (negligible contribution from σ_{Laser})

Number of pads seeing a signal (left). Laser shot positions compared to RSD predictions (right)

Siviero F. "36th RD50 Workshop", CERN, June 2020

Laser results on 100-200 sensor - 2

- A spatial resolution $\sigma_{total} \sim 5.5 \pm 0.1$ (fit) ± 3.5 (syst.) um has been measured
- That is **10 times better** than what would be achievable with **a pixel binary read-out**: $\sigma = pixel size / \sqrt{12} = 200 \text{ um} / \sqrt{12} \sim 55 \text{ um}$
- The optimized attenuation coefficient used (expressed in % of signal loss per um) is: β = 0.3% / um
- We added a systematic error of 3.5 um, which is the maximum variation of $\sigma_{\text{intrinsic}}$ depending on simulation parameters

Summary of laser results

- Three 3x3 RSD with different geometries have been tested: 100-200, 50-100, 150-300
- Gain = 15
- 4 pads read out
- All 3 geometries provided a resolution ~ 5um

Geometry	Interpad	Resolution	β (%/um
100-200 um	100 um	5.5 ± 0.1 (fit) ± 3.5 (syst.) um	0.3
50-100 um	50 um	4 ± 0.1 (fit) ± 3.5 (syst.) um	0.33
150-300 um	150 um	5.9 ± 0.1 (fit) ± 3.5 (syst.) um	0.3

Summary of laser results

- Three 3x3 RSD with different geometries have been tested: 100-200, 50-100, 150-300
- Gain = 15

•

- 4 pads read out
- All 3 geometries provided a resolution ~ 5um

Summary of laser results - 2

- Also a **200-500 um** sensor has been measured, but without optimization
- Spatial resolution ~ 10um
- Sensor with the largest interpad (300 um)
- The *interpad size* seems to have an important role in determining the spatial resolution
- We planned to measure other geometries, to further study this aspect of the RSD design, starting from an optimized training of the 200-500 geometry

Outline

- Resistive Silicon Detectors design
 - Signal attenuation law & position reconstruction method
- Optimization of the RSD design
- Multi-output regression algorithm
 - Assessment of the algorithm resolution
- Machine learning algorithm validation with laser tests
- Validation with beam test data & future plans

Results from FNAL beam test

- Beam test setup already described in M.Tornago's talk
- We measured the 100-200 um RSD, reading out the same 4 pads of laser test
- Gain = 15
- The total resolution is given by the width of the $x_{Tracker} x_{RSD}$ distribution
 - $\circ~\sigma_{_{Tracker}}$ independently measured to be 45 um *

*due to non-standard run conditions, usually ~ 15 um

Siviero F. "36th RD50 Workshop", CERN, June 2020

‡ Fermilab

Results from FNAL beam test

- Beam test setup already described in M.Tornago's talk
- We measured the **100-200 um RSD**, reading out the same 4 pads of laser test
- Gain = 15
- The total resolution is given by the width of the $x_{Tracker}$ x_{RSD} distribution
 - \circ σ_{Tracker} independently measured to be 45 um

Resolution dominated by $\sigma_{tracker}$ consistent with $\sigma_{RSD} \sim 5$ um

‡ Fermilab

Siviero F. "36th RD50 Workshop", CERN, June 2020

Future plans

- Train the ML algorithm using real beam test data taken with a very precise tracker
 - No need to rely on analytic laws, which are based on our assumptions
 - Feed the network with a wider range of input features, whose attenuation laws cannot be derived analytically : signal width, signal derivative, risetime
 → Deeper and more complex network
- We believe the reconstruction method will further improve in this way
- Meanwhile: do the same training with TCT (although few drawbacks: laser spot has finite dimension, hard to simulate exactly 1 MIP)

4d-tracking with RSD

RSDs meet the requirements of 4d-tracking:

- 1. Timing resolution as standard LGAD: $\sigma_{t} \sim 30 \text{ ps}$ (M.Tornago's talk)
- 2. Radiation hardness of standard LGAD
- 3. Spatial resolution : $\sigma_x \sim 5 \text{ um} \rightarrow 10$ times better than with binary read-out
- 4. Low power consumption due to a reduced number of read-out channels:
 - a. $\sigma_x \sim 5$ um with binary read-out is achieved with 25 um pixels $\rightarrow x64$ more channels in the same area, compared to RSD
- 5. Plenty of **space for the electronics**, given the RSD pixel dimension

Summary & Outlook

- The distributed signal of RSD allows position reconstruction technique that combine the informations of many read-out channels
- The optimal RSD design features very small metal pads and a small interpad
- We trained a Multi-output regression algorithm to precisely reconstruct particles hit positions
 - Signal amplitude of 4 pads as inputs
 - x, y coordinates of the hit position as outputs
- The algorithm has been validated with laser tests:
 - 50-100, 100-200, 150-300 um geometries provided 5 um spatial resolution
 - 200-500 um provided 10 um spatial resolution
- RSDs meet the requirements of 4d-tracking
- In the near future, we will train the algorithm with precise beam test data → feed a deeper network, resulting in an enhanced position reconstruction

Thank You!

BACKUP

Siviero F. "36th RD50 Workshop", CERN, June 2020

Systematic error on σ_{total}

- 3.5 um systematic error on measured spatial resolution
- This accounts for the maximum variability of $\sigma_{_{intrinsic}}$, depending on the gaussian smearing parameter used in the algorithm training
- Since we do not know yet the best value for the smearing, we expect a change (considered in the systematic) in σ_{total} when the optimal value will be found

