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➢ Resistive Silicon Detectors design

○ Signal attenuation law & position reconstruction method

➢ Optimization of the RSD design

➢ Multi-output regression algorithm

○ Assessment of the algorithm resolution

➢ Machine learning algorithm validation with laser tests

➢ Validation with beam test data & future plans
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Resistive Silicon Detectors
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See M.Tornago’s talk for more details:
● RSD are based on LGAD technology
● Unsegmented gain layer spreading over the whole 

sensor area
● AC-coupling to metal pads
● Several geometries can be implemented by simply 

changing pads geometry
● 100% fill factor
● Signal sharing among many pads
● Parameters governing signal induction on AC-pads: 

coupling oxide thickness, n++ layer resistivity

 
Sensors presented in this talk are from the FBK RSD1 production



Signal attenuation law
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● Key feature to reconstruct the hit position with RSD: signal 
generated by an impinging particle spreads among 2-4 pads 

○ Reconstruction techniques that combine informations of 
many read-out channels

○ Similar to what happens in calorimeters
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● Key feature to reconstruct the hit position with RSD: signal 
generated by an impinging particle spreads among 2-4 pads 

○ Reconstruction techniques that combine informations of 
many read-out channels

○ Similar to what happens in calorimeters

● We developed an analytic signal attenuation law (M.Tornago’s 
talk) 
→ signal amplitude seen by a read-out pad vs distance of the hit position
     from pad’s edge

● No signal sharing when the particle crosses a metal pad → signal only seen by the hit pad

amplitude vs distance from the pad’s edge 
(analytic law)

 attenuation coefficient 



Signal attenuation law - 2
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● The attenuation law defines circumferences of 
equidistant positions that produce the same signal

● All pads always see a signal, due to read-out noise 
○ only those above noise level are used            

(fixed threshold ~ 15mV)
○ This sets the maximum distance at which a pad 

can be used 
● Amplitude constant under the metal pad → no signal 

sharing there 

Signal seen by a read-out pad vs x-y position
The max distance at which it can be used is shown
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● The attenuation law defines circumferences of 
equidistant positions that produce the same signal

● All pads always see a signal, due to read-out noise 
○ only those above noise level are used            

(fixed threshold ~ 15mV)
○ This sets the maximum distance at which a pad 

can be used 
● Amplitude constant under the metal pad → no signal 

sharing there 

● We can reconstruct the hit position if at least 3 pads 
see a signal → the intercept of 3 circumferences define 
a point

Signal seen by a read-out pad vs x-y position
The max distance at which it can be used is shown



Position reconstruction Efficiency 
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● Combining the attenuation laws of many read-out channels: x-y map representing, in each 
position, the number of pads that see a signal above threshold

● Regions where less than 3 pads see a signal: the reconstruction method is inefficient there
→ we need to design RSD avoiding such regions
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● Combining the attenuation laws of many read-out channels: x-y map representing, in each 
position, the number of pads that see a signal above threshold

● Regions where less than 3 pads see a signal: the reconstruction method is inefficient there
→ we need to design RSD avoiding such regions

x-y map representing an RSD                                        
with 100-200* um geometry

● 3x3 pixel matrix (as all measured sensors)
● Circular metal pads drawn for simplicity (squared in 

real detectors, it doesn’t change much)
● Blue / green regions: position reconstruction 

inefficient 

pa
ds

 a
bo

ve
 th

re
sh

ol
d

*pad size -pitch
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● Combining the attenuation laws of many read-out channels: x-y map representing, in each 
position, the number of pads that that see a signal above threshold

● Regions where less than 3 pads see a signal: the reconstruction method is inefficient there
→ we need to design RSD avoiding such regions

x-y map representing an RSD                                        
with 100-200* um geometry

● 3x3 pixel matrix (as all measured sensors)
● Circular metal pads drawn for simplicity (squared in 

real detectors, it doesn’t change much)
● Blue / green regions: position reconstruction 

inefficient 
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*pitch -pad size

Only 1 pad reconstruct the position here, 
because signal is not shared
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Impact of pad geometry on position reconstruction
● In RSD, the spatial resolution beneath the metal pads is that of a standard silicon sensor with binary 

read-out  σ = pixel size / √12
○ The RSD spatial resolution is much better than pixel size / √12 (next slides), as signal sharing 

enhances position reconstruction 
○ Using squared pads, the spatial resolution is position dependent, worsening beneath the metal
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● In RSD, the spatial resolution beneath the metal pads is that of a standard silicon sensor with binary 

read-out  σ = pixel size / √12
○ The RSD spatial resolution is much better than pixel size / √12 (next slides), as signal sharing 

enhances position reconstruction 
○ Using squared pads, the spatial resolution is position dependent, worsening beneath the metal

● We should redesign RSD pixels in an innovative way, minimizing the area covered by metal 
→ achieve signal sharing everywhere in this way

present design better design
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Impact of pad geometry on position reconstruction
● In RSD, the spatial resolution beneath the metal pads is that of a standard silicon sensor with binary 

read-out  σ = pixel size / √12
○ The RSD spatial resolution is much better than pixel size / √12 (next slides), as signal sharing 

enhances position reconstruction 
○ Using squared pads, the spatial resolution is position dependent, worsening beneath the metal

● We should redesign RSD pixels in an innovative way, minimizing the area covered by metal 
→ achieve signal sharing everywhere in this way

present design better design

● In the following, I will always talk of spatial resolution between pads
● We will address the resolution under metal in the near future 



Impact of sensor geometry on position reconstruction
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100-200 um 50-100 um

● 2nd parameter affecting position reconstruction efficiency: sensor area not covered by metal, given 
by pitch - pad size (“interpad”)

● Small interpad → pads are closer, more likely to have 3 or more pads seeing the signal than with 
larger  interpad
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100-200 um 50-100 um

● 2nd parameter affecting position reconstruction efficiency: sensor area not covered by metal, given 
by pitch - pad size (“interpad”)

● Small interpad → pads are closer, more likely to have 3 or more pads seeing the signal than with 
larger  interpad

100-200 vs 50-100 
(both devices measured in this work):
● Same resistivity
● 100-200 has small inefficient 

regions 
● 50-100 reaches 100% 3-4 pad 

coverage on its whole sensitive 
area
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Optimized RSD design
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● Using the previous results, we can define an optimized RSD design to precisely reconstruct the position:

○ Cross-shaped metal read-out pads: 100% signal sharing  

○ Small interpad: 100% 3-4 pad coverage
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Machine learning applied to RSD
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● Machine learning algorithms are suited to solve regression problems with many inputs and one (or 
multiple) output

● We trained a Multi-ouput regression algorithm taking the RSD signal features as inputs and 
the x-y position as outputs (it’s a multi-output problem since we need 2 coordinates)

○ Training performed using only 4 read-out pads 

https://scikit-learn.org/stable/modules/generated/sklearn.multioutput.MultiOutputRegressor.html
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● Machine learning algorithms are suited to solve regression problems with many inputs and one (or 
multiple) output

● We trained a Multi-ouput regression algorithm taking the RSD signal features as inputs and 
the x-y position as outputs (it’s a multi-output problem since we need 2 coordinates)

○ Training performed using only 4 read-out pads

● Region considered for training, defined by the centers of 
4 read-out pads

● Outside the red region, a different set of 4 read-out pads 
can be used to reconstruct the position

● Define the algorithm for 4 pads then get the full sensor 
by tessellation 
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https://scikit-learn.org/stable/modules/generated/sklearn.multioutput.MultiOutputRegressor.html


Machine learning applied to RSD - 2
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● ML algorithm trained with 8 input features: 4 pads’ amplitudes ( Ai ) + the same 4 amplitudes 
normalized to the total amplitude  ( Ai / ∑ Ai)

● We used the signal attenuation law to train the ML algorithm, assessing in each x-y position 
the amplitude seen by each pad
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● ML algorithm trained with 8 input features: 4 pads’ amplitudes ( Ai ) + the same 4 amplitudes 
normalized to the total amplitude  ( Ai / ∑ Ai)

● We used the signal attenuation law to train the ML algorithm, assessing in each x-y position 
the amplitude seen by each pad

○ Amplitude values are randomly extracted from a Landau  
    distribution with parameters taken from beam test data
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● ML algorithm trained with 8 input features: 4 pads’ amplitudes ( Ai ) + the same 4 amplitudes 
normalized to the total amplitude  ( Ai / ∑ Ai)

● We used the signal attenuation law to train the ML algorithm, assessing in each x-y position 
the amplitude seen by each pad

○ Amplitude values are randomly extracted from a Landau  
    distribution with parameters taken from beam test data

○ The attenuation coefficient (depending upon sensor resistivity 
     and geometry) used in the attenuation law  is tuned for each DUT
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● ML algorithm trained with 8 input features: 4 pads’ amplitudes ( Ai ) + the same 4 amplitudes 
normalized to the total amplitude  ( Ai / ∑ Ai)

● We used the signal attenuation law to train the ML algorithm, assessing in each x-y position 
the amplitude seen by each pad

○ Amplitude values are randomly extracted from a Landau  
    distribution with parameters taken from beam test data

○ The attenuation coefficient (depending upon sensor resistivity 
     and geometry) used in the attenuation law  is tuned for each DUT

○ We add a gaussian smearing to the amplitudes 
     → it’s a way of adding “noise” to the system,
         prevents overfitting 

pa
ds

 a
bo

ve
 th

re
sh

ol
d



Algorithm resolution

Siviero F.   “36th RD50 Workshop” , CERN, June 2020 26

● Amplitudes smearing: x-y position not uniquely defined by one set of amplitudes → this leads to an 
intrinsic resolution of the algorithm
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● Amplitudes smearing: x-y position not uniquely defined by one set of amplitudes → this leads to an 
intrinsic resolution of the algorithm

● Resolution can be obtained by predicting the same data used for training and calculating the
width of xpredicted - xtruth  distribution

● The resolution saturates at about 10mV,
 reaching 4-5 um
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● Amplitudes smearing: x-y position not uniquely defined by one set of amplitudes → this leads to an 
intrinsic resolution of the algorithm

● Resolution can be obtained by predicting the same data used for training and calculating the
width of xpredicted - xtruth  distribution

● The resolution saturates at about 10mV,
 reaching 4-5 um

● In order not to be too dependent on simulation
parameters, we fixed the gaus smearing on
the plateau, at 10 mV

● The position reconstruction method will have
therefore a resolution floor  (σ intrinsic)  of
 4-5 um due to the ML algorithm 



Read-out noise
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● 2nd source of uncertainty contributing to the spatial resolution is the read-out noise
→ σtotal 

2 = σ intrinsic
2 + σnoise

2   

● σtotal has been determined predicting 1000 times the same position but with sligthly different amplitudes 
each time, to reproduce the read-out noise
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● 2nd source of uncertainty contributing to the spatial resolution is the read-out noise
→ σtotal 

2 = σ intrinsic
2 + σnoise

2   

● σtotal has been determined predicting 1000 times the same position but with sligthly different amplitudes 
each time, to reproduce the read-out noise

● The total spatial resolution increases linearly 
with read-out noise and does not saturate
→ σtotal ∝ read-out noise

● σtotal  for the 3 geometries considered in this
work are shown: 50-100 um, 100-200 um,
150-300 um

● The effect of read-out noise is more 
pronounced in sensors with larger pitch

50-100

150-300

100-200
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Algorithm validation using TCT setup
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● ML algorithm has been firstly validated using a TCT setup
● IR pulsed laser (1060 nm) → 10-15 μm spot 
● xy-stage with sub-μm precision → laser shot position are 

known with <1 um resolution → can be used as reference 
positions to assess RSD predictions 

z

y

x



Laser results on 100-200 sensor
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● 1st measured sensor: 3x3 matrix with 100-200 um geometry
● Gain = 15
● Focused on positions within the red region, as already explained
● Only regions where at least 3 pads can reconstruct the position are considered 
● RSD spatial resolution: width of the xlaser - xRSD distribution (negligible contribution from σLaser)  

Number of pads seeing a signal (left). Laser shot positions compared to RSD predictions (right)
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Laser results on 100-200 sensor - 2
● A spatial resolution σtotal ~ 5.5 ± 0.1 (fit) ± 3.5 (syst.) um has been measured

● That is 10 times better than what would be achievable with a pixel binary read-out: 
σ = pixel size / √12 = 200 um / √12 ~ 55 um

● The optimized attenuation coefficient used 
(expressed in % of signal loss per um) is: β = 0.3% / um

● We added a systematic error of 3.5 um, which is the 
maximum variation of σ intrinsic depending on simulation 
parameters



Summary of laser results
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● Three 3x3 RSD with different geometries have been tested: 100-200, 50-100, 150-300
● Gain = 15
● 4 pads read out 
● All 3 geometries provided a resolution ~ 5um

Geometry Interpad Resolution β (%/um)

100-200 um 100 um 5.5 ± 0.1 (fit) ± 3.5 (syst.) um 0.3

50-100 um 50 um 4 ± 0.1 (fit) ± 3.5 (syst.) um 0.33

150-300 um 150 um 5.9 ± 0.1 (fit) ± 3.5 (syst.) um 0.3
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● Three 3x3 RSD with different geometries have been tested: 100-200, 50-100, 150-300
● Gain = 15
● 4 pads read out
● All 3 geometries provided a resolution ~ 5um

● The read-out noise during laser 
measurements is ~ 3 mV

● Nice agreement with simulation 
predictions

predictions of σtotal from simulation 

50-100

150-300

100-200
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Summary of laser results - 2
● Also a 200-500 um sensor has been 

measured, but without optimization

● Spatial resolution ~ 10um
● Sensor with the largest interpad (300 um)
● The interpad size  seems to have an important 

role in determining the spatial resolution

● We planned to measure other geometries, to 
further study this aspect of the RSD design, 
starting from an optimized training of the 
200-500 geometry

50-100

150-300100-200

200-500
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Results from FNAL beam test 
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● Beam test setup already described in M.Tornago’s talk

● We measured the 100-200 um RSD, reading out the same 4 pads of laser test 
● Gain = 15

●  The total resolution is given by the width of the xTracker - xRSD distribution

○ σTracker independently measured to be 45 um *

*due to non-standard run conditions, usually ~ 15 um



Results from FNAL beam test 
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● Beam test setup already described in M.Tornago’s talk

● We measured the 100-200 um RSD, reading out the same 4 pads of laser test 
● Gain = 15

●  The total resolution is given by the width of the xTracker - xRSD distribution

○ σTracker independently measured to be 45 um

Resolution dominated by σtracker

consistent with  σRSD  ~ 5 um



Future plans
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● Train the ML algorithm using real beam test data taken with a very precise tracker

○ No need to rely on analytic laws, which are based on our assumptions
○ Feed the network with a wider range of input features, whose attenuation laws cannot be 

derived analytically : signal width, signal derivative, risetime
→ Deeper and more complex network

● We believe the reconstruction method will further improve in this way

● Meanwhile: do the same training with TCT (although few drawbacks: laser spot has finite 
dimension, hard to simulate exactly 1 MIP )



4d-tracking with RSD

Siviero F.   “36th RD50 Workshop” , CERN, June 2020 42

RSDs meet the requirements of 4d-tracking:

1. Timing resolution as standard LGAD: σt ~ 30 ps (M.Tornago’s talk)
2. Radiation hardness of standard LGAD
3. Spatial resolution : σx ~ 5 um  → 10 times better than with binary read-out

4. Low power consumption due to a reduced number of read-out channels:
a. σx ~ 5 um with binary read-out is achieved with 25 um pixels

 → x64 more channels in the same area, compared to RSD

5. Plenty of space for the electronics, given the RSD pixel dimension



Summary & Outlook
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● The distributed signal of RSD allows position reconstruction technique that combine the informations 
of many read-out channels

● The optimal RSD design features very small metal pads and a small interpad

● We trained a Multi-output regression algorithm to precisely reconstruct particles hit positions
○ Signal amplitude of 4 pads as inputs
○ x, y coordinates of the hit position as outputs

● The algorithm has been validated with laser tests: 
○ 50-100, 100-200, 150-300 um geometries provided 5 um spatial resolution
○ 200-500 um provided 10 um spatial resolution

● RSDs meet the requirements of 4d-tracking

● In the near future, we will train the algorithm with precise beam test data → feed a deeper network, 
resulting in an enhanced position reconstruction



Thank You!
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Systematic error on σtotal  
● 3.5 um systematic error on measured 

spatial resolution

● This accounts for the maximum variability of 
σintrinsic  , depending on the gaussian 
smearing parameter used in the algorithm 
training

● Since we do not know yet the best value for 
the smearing, we expect a change 
(considered in the systematic) in  σtotal  when 
the optimal value will be found

max excursion = 3.5 um


