Performance of the Low Gain Avalanche Diodes after irradiation developed by NDL and IHEP in China

36th RD50 Workshop (CERN - - online Workshop)

Yunyun Fan on behalf of IHEP HGDT group 2020.6.4

Introduction to HGTD and IHEP-NDL LGAD

Irradiation study

- X ray irradiation
- Neutron irradiation

Summary

High-Granularity Timing Detector

- High-granularity timing detector (HGTD)
 - For ATLAS phase II upgrade to reduce pile up
 - Employ the Low Gain Avalanche Diode (LGAD) technology

Radiation hardness ATLAS requirements

LGAD sensors after radiation : 2.5 x10¹⁵ N_{eq} /cm² and 2 MGy

- Timing resolution : < 70 ps</p>
- Collected charge: > 4 fC
- Leakage current per pad: < 5 µA

Atlas LGAD Foundry:

CNM (Spain), HPK (Japan), FPK (Italy), BNL (US) , IHEP-NDL (from

China)

- IHEP cooperatea with Novel Device Laboratory (NDL) in the early 2019
- Introduction to NDL:<u>http://www.ndlsipm.net/contacteng.html</u>
 - Foundry for SiPM.
 - Thickness of epitaxial layer: 33um
 - Epitaxial layer Resistivity: 100 Ohm.cm or 300 Ohm.cm
 - Have both contact mask and step-in projective mask machine. step-in for 2 x 2 LGAD sensors, contact mask for 15 x 30 LGAD sensors

Yunyun Fan

IHEP NDL Sensor Production

Three batches LGAD sensor fabricated in one year (2019).

2nd Batches

2rd Batches:

- Parameters of the Batches
 - Epitaxial layer: 33 μm
 - Different wafer resistivity : 100
 Ω·cm , 300 Ω·cm
 - Guard ring: grounded , floating
 - Different doping profile

- Introduction to HGTD and IHEP-NDL LGAD
- Irradiation study
 - X ray irradiation
 - Neutron irradiation
- Summary

- Total ionization dose (TID) study for NDL LGAD sensors
 - X ray irradiation experiment at IHEP, TID up to 100kGy
 - Irradiation machine: MutlRad160
 - Dose rate: 174 Gy/min

X-ray irradiation machine

In the future, the TID dose will accumulate up to 2 MGy

> NDL sensors

Leakage current for NDL BV170 is 0.5 μ A and NDL #10 is lower than 1 x 10⁻³ μ A. The leakage current of the rests is about 1 μ A.

Laser Setup

Testing timing response for NDL LGAD sensor with TCT laser system

- Replace the TCT laser with pico-second pulse laser
- pico-second Laser Pulse width : 7ps; wavelength: 1064nm, , Frequency: 20MHz

Evaluate the jitter contribution

- Less than 10ps
- Laser power is larger than MIP

$$\sigma_t^2 = \sigma_{TimeWalk}^2 + \sigma_{LandauNoise}^2 + \sigma_{Distortion}^2 + \sigma_{Jitter}^2 + \sigma_{TDC}^2$$

Wirebond one pixel to UCSC single channel board

Time Resolution from Laser Test

- After 100kGy
 - The timing resolution contributed from jitter is about 14 ps
 - The time resolution have a potential to satisfy the request 70 ps

- Introduction to HGTD and IHEP-NDL LGAD
- Irradiation study
- X ray irradiation
 Neutron irradiation
- Summary

- Non-ionization damage study on LGAD sensor with neutrons
 - Reactor neutrons: TRIGA research reactor of the the Jozef
 Stefan Institut (JSI) in Ljubljana
 - Fluence up to 2.5 x 10¹⁵ n_{eq}/cm² (1 MeV equivalent neutrons per cm2)
- Annealing: after irradiation, the devices were annealed for 80 min at 60 °C

- Beta test (time resolution , collected charge)
 Done by UCSC
 - Electrons by Sr90 Beta source
 - Single channel board developed by UCSC
 - Fast amplifier with bandwidth >1GHz

- NDL #9: 30 ps at about 562 V, 35 ps at 550 V (satisfy the requirement of ATLAS, < 70 ps)
- NDL 5 × 5 #6 and BV170 : best timing resolution : ~ 96 ps, ~ 74 ps
- The better timing resolution of 9# was most possible due to higher wafer resistance (300 Ω·cm). BV170 and NDL #6 (100 Ω·cm)

- NDL #9 : collected charge is close to 4 fC at 550 V. (more study on noise in high Voltage bias is on going)
- NDL 5 × 5 #6 and BV170: best collected charge is ~0.4 fC, ~ 0.6 fC
- Reason for the better performance of NDL #9 is considered to be the higher wafer resistivity (300 Ω·cm), BV170 and NDL #6 (100 Ω·cm)
- To improve the collected charge in the future
 - The thicker epitaxial layer, 50 μ m, will be used
 - the Carbon would be done by cooperating with the Institute of Microelectronics (IME) in China

http://english.ime.cas.cn

Yunyun Fan

- Introduction to HGTD and IHEP-NDL LGAD
- Irradiation study
 - X ray irradiation
 - Neutron irradiation
- Summary

Summary

- Irradiation hardness of NDL has been tested
 - Verify that satisfies the ATLAS requirement until **100kGy**
 - After neutron irradiation up to 2.5 $\times 10^{15}$ n_{eq}/cm^2
 - The timing resolution of 33 NDL #9 could be ~35 ps satisfy the ATLAS requirements < 70 ps
 - Collected charge is close to 4 fC at 550 V. (more study on noise in high Voltage bias is on going)
- Radiation hardness of NDL sensor with high resistivity (300 Ω·cm) is better than those with lower resistivity (100 Ω·cm).

In the future

- TID dose will be accumulate up to 2 MGy
- Increase the thickness of epitaxial layer: $33 \mu m \rightarrow 50 \mu m$
- Carbon to increase the radiation hardness
 Yunyun Fan

Thank you for your attention !

Back up

- Foundry working with DNL have both contact mask and step-in projective mask machine
- NDL used step-in projection mask aligner for small sensor sensors (2x2cm reticle size)
- Will switch to contact mask aligner for larger sensor (15x30 LGAD or even larger sensors)
 - Similar mask technology as CNM or HPK
 - Layout in full wafer size, not limited by reticle size

IHEP NDL Sensor Production

C area

Three batches LGAD sensor fabricated in one year(2019).

1 st Batches		2nd Batches		Image: A real state sta		
Bathes	Sensor Type	VBD (V)	V_Depleted (V)	Layout	Wafer (Ω.cm)	Gain
1 st	BV170	~165	~100	6GR	100	40
	BV60	~95	~40	6GR	300	40
2 nd	10#	~300	~40	2GR	300	80
	9#	~250	~40	2GR	300	80
3 rd	NDL 5x5 6#	~400	~120	2GR	100	10~20
	NDL 5x5 12#	~390	~35	2GR	300	10~20

Laser test : timing resolution study

$$\sigma_t^2 = \sigma_{TimeWalk}^2 + \sigma_{LandauNoise}^2 + \sigma_{Distortion}^2 + \sigma_{Jitter}^2 + \sigma_{TDC}^2$$

- Laser test:
 - no Landau fluctuation,
 ~ps Laser
 - Help to understand the jitter

22

Preliminary results

- The time resolution of NDL is from 3~50 ps
- Better than HPK W18 SE5

Pileup is the major challenges at HL-LHC

- Track from different vertexes close in space, but well-separated in time.
- Explore the spread of the collision to reduce pileup background by timing
- Need 30ps timing resolution to reduce the pileup background by a factor of 6
- Significant impact on some physics case
 - VBF Higgs, Weak mixing angle measurement

S Yunyun Fan